
Versioning of Network Models in a Multiuser
Environment

Petko Bakalov1, Erik Hoel1, Sudhakar Menon1, and Vassilis J. Tsotras2

1 Environmental Systems Research Institute, Redlands, CA 92373, USA

{pbakalov, ehoel, menon}@esri.com
2 University of California, Riverside, CA 92507, USA

tsotras@cs.ucr.edu

Abstract. The standard database mechanisms for concurrency control, which
include transactions and locking protocols, do not provide the support needed
for updating complex geographic data in a multiuser environment. The
preferred method to resolve conflicts in GIS systems is to encapsulate the
modifications generated by the end users through the use of multiple versions.
Multiuser (or versioned) geographic databases allow users to operate as though
they have full access to the entire dataset. Instead of relying upon row locking,
versioned databases allow multiple users to simultaneously edit the same row.
They implement a model for conflict detection and resolution where the first to
commit the change wins by default (though clients can manually intervene and
select the latter change as the winner).

Network models are frequently used as a mechanism to describe the
connectivity information between spatial features in many emerging GIS
applications. Supporting networks within the context of a versioned database
imposes additional requirements – the complex network model must retain
integrity irrespective of the sequence of simultaneous edits by various clients. In
this paper, we review our network model and discuss the enhancements
necessary to maintaining topological network integrity in this complex
environment. Our solution is based on the notion of dirty areas and dirty objects
(i.e., regions or elements that contain edits that have not been reflected in the
network connectivity index). The dirty areas and objects are identified and
marked during editing of the network feature data. They are then subsequently
cleaned as a byproduct of the incremental update of the connectivity network.

Keywords: Versioning, Network Models, Transportation Networks

1 Introduction

Network data models have a long history as an efficient way to describe the
topological connectivity information among spatial features in geographic
information systems [11], [14], [17], [18]. At an abstract level, the network model can
be viewed as a graph whose elements explicitly represent the connectivity information
about the features in the database. The presence of an edge in the graph depicts the
information that the two features represented by the junctions are connected and vice
versa. Different versions of the network model have been implemented in existing

operational systems such as ARC/INFO [20] and TransCAD [5]. Because of the large
volume of data frequently found in these networks, the model is typically persisted
inside a centralized database server. Using connectivity information, those systems
can then be utilized to solve a wide range of problems, typical for the transportation
or utility network domains (e.g., finding the shortest path between points of interest,
finding optimal resource allocation, determining the maximal flow of a resource, and
other graph theoretic operations).

A typical requirement for the network models (or to the GIS in general), is that
they must provide support for many users simultaneously creating and updating large
amounts of geographic information. In scenarios where those users are required to
edit the same data at the same time, the system must provide an editing environment
that supports multiuser concurrent modifications without creating multiple instances
of the data. In contrast to traditional DBMSs, this editing environment must also
support edit sessions that typically span a number of days or weeks, the facility to
undo or redo changes made to the data, and the ability to develop models and
alternative application designs without affecting the published database.

Concurrency control in traditional database management systems is addressed
through the use of transactions and the two-phase locking protocol. This is efficient
for short-lived edit operations that are typically completed in few seconds. It is not
well suited however for the type of editing tasks required when updating geographic
data. For a GIS multiuser environment, the row-locking mechanisms adopted by
many DBMSs would be prohibitively restrictive for many common workflows.

To deal with long-lasting transactions, a solution based on the use of multiple
versions has been proposed [16], [25]. A version can be logically viewed as an
alternative, independent, persistent view of the database that does not involve creating
a copy of the actual data. Since there is an independent view for every user, a
versioned database can support multiple concurrent editors.

In addition, versioning is useful in many other GIS scenarios such as:

• Modeling "what if" scenarios. The versioning mechanism allows end users
to exploit different alternatives (versions) during a design phase.

• Workflow management. Typically the design process goes through multiple
steps organized in a workflow process where the output of one step is an
input for another. The versioning scheme allows users to save intermediate
results during the design process.

• Historical queries. The versioning scheme allows the preservation of
different states of the data which later can be re-visited and re-examined if
necessary.

Existing database versioning approaches cannot easily manage the specifics of the
geographical data like topological network relations, the presence of connectivity
among the stored elements, and traversability. Such information among spatial
features is represented in a GIS by a network model.

Recently, we have proposed an incremental connectivity rebuilding algorithm for
network models [1]. In this algorithm, the users are allowed to rebuild portions of the
network model using the notions of dirty areas and dirty objects. Changes over
portions of the network data are effectively captured and the incremental algorithm is

2

utilized to clean such dirty areas/objects and re-establish the associated portions of the
network connectivity index. The connectivity rebuilding algorithm has been
implemented in ArcGIS and provides an effective solution to maintain dynamic
network models in an incremental manner.

In this paper, we propose a new versioning scheme for network models that utilizes
the dirty areas/objects of the connectivity rebuild algorithm (a similar mechanism has
also been applied to our topological data model [13]). Versioning of network models
is different from version control over simple spatial data (“simple” meaning data that
is geometrically unrelated to other data – i.e., no topological structuring). While the
same basic principles are still in operation, resolving conflicts between features that
are related to other features, as with network models, is different. This is because of
the specific internal behavior of the network and the requirement that the connectivity
information (or index) in the model should be kept consistent all the time.

The rest of the paper is organized as follows: Section 2 provides a brief description
of the network model including logical structure and physical design and provides
description of the algorithms used for connectivity establishment. Section 3 provides
in depth discussion of versioning spatial databases. Section 4 addresses our proposed
extensions of these techniques to the support of versioned network models. about the
proposed versioning scheme we propose for network models. Section 5 discusses our
implementation experiences, and Section 6 concludes the paper.

2 The Network Model

We now proceed with a brief description of the major aspects of the network model
introduced in [14] and the algorithms for initial and incremental connectivity
establishment presented in [1].

2.1 Basic Elements

A network model is described as a graph (named connectivity graph) that maintains
the connectivity information about spatial features with line or point geometry. The
basic elements of a network model are (edges, junctions and turns). Features with
point geometry are represented with junction elements inside the graph, while lines
are represented as one or more edge elements between pairs of junction elements.
Figure 1 depicts the network model that is composed of spatial features and network
elements. Similar designs have been used in many research or commercial
implementations [7], [12], [15], [21]. In the network models we are considering,
network elements are used only to describe the connectivity information for the
spatial features they are representing; they do not carry any geometrical properties.

3

Fig. 1. Network model – features and elements

Most of the systems that utilize network models have client-server architectures.
Because of their very large data size (e.g., many tens of millions of features for some
nationwide or continent-wide transportation networks), the network models are
usually located in a centralized server, persisted either in a RDBMS tables or in a file
system. Typically the process of analysis is done within a GIS server (that acts as a
client to the database) or within a thick client [4], [22], [26].

2.2 Traversability

While the connectivity elements (edges and junctions) allow the user to express
connections, they are not sufficient for expressing specific restrictions from the real
world (for example, no left turn, or, no u-turn allowed at an intersection) [3], [28].
Take for example a intersection formed by dual carriageway (a street with central
divider) represented in the model with two line features traversable only in one
direction and a two way street represented with a single line feature traversable both
ways (see Figure 2). If we want to specify no u turn restriction in this intersection we
have to restrict the traversability from edge e1 to edge e2 and then through edge e3 in
that sequence. This restriction cannot be expressed only in terms of junctions and
edges. If in attempt to do so we disconnect e1 and e2 this will incorrectly imply no left
turn specified by the sequence e1, e2 and e4. To handle these scenarios, we introduce
two new network elements, namely, turn (only between two edges) and maneuver
(between two or more edges). These elements are used to implement restrictions and
are universally enforced during analysis. As a result, the movement over a network is
a subset of the network graph taking into account the movement restrictions.

Fig. 2. Example of a three part maneuver e1-e2-e3 at an intersection with a dual carriageway.

4

To introduce the turn restriction in addition to the edge and junction elements, a
network model can also have a special network elements called turns (see Figure 1).
Similar to the edges which are defined as a relation between junctions turns are
defined as a relation between edges. A turn element is anchored to a specific junction
(the junction where the turn starts) and controls the movement between sequence
edges expressed as pairs (edge-In, edge-Out).

2.3 Physical Implementation

In our network implementation the connectivity information is maintained as a set of
adjacency pairs of the form <edgeId, junctionId>, stored inside the "junction table"
(see Figure 3). This approach is designed to answer the most common type of
adjacency queries during the network analysis process. The junction table uses fixed-
length records for direct access purposes; this implies a fixed number (four in our
implementation) of adjacency pairs per record (see Figure 3). If the junction has more
than four connected edges an overflow mechanism is applied.

Fig. 3. Network tables example

In a similar way, in the traversal process, it is required that at each junction we
know all the turns anchored at this junction. This has influenced the way we
implement the turn storage scheme. Information about turns is stored in the "turn
table", in the form of turn triplets <turnId, edge-InId, edge-OutId>. If there are any
turns anchored at a junction ji, the turn table will have a record with primary key ji
which also contains all the turns anchored on ji. This storage scheme can be easily
optimized for the most commonly used client access patterns [27].

5

2.4 Maintaining Network Connectivity

Maintaining network connectivity can be viewed as a two phase process [1]:

• Initial establishment of connectivity when the network model is first defined,
with the connectivity index being derived from the features participating in
the network.

• Incremental rebuilding the connectivity index on a periodic basis after edits
occur on the spatial features in the network.

Having an incremental solution is of significant practical value - the amortized cost
of maintaining an incrementally rebuildable network is far less than an ordinary
network that must be periodically rebuilt in its entirety (e.g., editing a subdivision and
only rebuilding that portion of the nationwide network versus rebuilding the whole
nationwide network). In order to keep track of the modifications to the features that
occur since the last full or partial rebuilding of the connectivity index, the network
model employs the concept of dirty areas. Similarly, to track changes to elements
without geometrical properties (e.g., turns), we use the concept of dirty objects.

Definition 1. A dirty area corresponds to the regions within the feature space where
features participating in the network have been modified (added, deleted, or updated)
but whose connectivity has not been re-established.

To simplify its computation and storage, a dirty area in our implementation is
defined as a union of envelopes (e.g., bounding boxes) around the features that have
been modified. It is possible however to use other shapes - the convex hull of the
feature for example. In order to ensure that the network is correct, only the portion of
the network encompassed in the dirty areas will need to be rebuilt.

Both the initial establishment of connectivity and the incremental rebuild
algorithms follow the same four steps:

• Geometrical extraction. Extract the geometry information for all features in
the area of interest (the whole area in the case of initial establishment or the
dirty area in the case of subsequent rebuild) and analyze the vertices in those
geometries. The extracted vertex coordinates and their corresponding feature
identifiers are stored in a temporary table, called the "vertex table".

• Connectivity analysis. The content of the vertex table is sorted by
coordinate values. As a result the coincident vertices from different features
are grouped together. The algorithm scans the vertex table sequentially and
picks groups of coincident vertices. Every single group is examined to
determine if the vertices satisfy the connectivity model specified for the
network.

• Junction creation. For each group which satisfies the connectivity model a
new junction element is created in the network model. The junction id of this
newly created junction element is added to all the vertices participating in
this connectivity group.

6

• Edge creation. The content of the vertex table is then resorted using the
feature identifier as the sorting key. As a result, the vertices for each line
feature are again grouped together. The vertex table is scanned sequentially
once more and for each pair of adjacent vertices which belong to the same
line feature a new edge is created.

The difference between the incremental rebuild and the full (re)build algorithms, is
that the incremental rebuild process adds to the vertex table those vertices that are
outside of the rebuild region but belong to features which intersect the rebuild region.
These vertices are saved and later reused as connection points through which the
rebuild portion of the network is "stitched" together with the rest of the model.

Rebuilding turn features in the network requires additional processing. The
complexity comes from the fact that the turn features are defined as a relation
between two or more line features and typically do not have geometrical properties.
As depicted in Figures 1 and 3, a record in the turn table consists of a turn identifier
and a list of the line feature identifiers that participate in the turn. In order to cover
network elements without geometrical properties, we extend our dirty area concept
with the notion of dirty objects.

Definition 2. A dirty object is an object without geometrical properties (like turn
features) whose modifications have not yet resulted in the incremental rebuilding of
the network connectivity index.

During the rebuild process, we restore all dirty objects to their clean state. An
object is kept as dirty until it is successfully cleaned. Turn features are marked as
dirty objects when:

• The turn feature is directly modified (Insert, Update, Delete), or

• The associated line features are modified (Update, Delete), or

• The associated network turn element is deleted (this may happen during the
rebuild process).

Using the dirty areas and dirty objects, we can capture the dynamic behavior of
network maintenance. It is this dynamic behavior that complicates and thus requires
extra attention during the versioning process.

3 Versioned Spatial Databases

Spatial databases have dramatically evolved in their capability to handle multiple
simultaneous editors. Some solutions have required organizations to alter their
workflow so as to ensure that no two editors are editing the same geographic region
within the spatial dataset. Supporting such a constrained workflow can become
problematic once the need for supporting long transactions (e.g., design alternatives)
is considered. In order to address this problem where design alternatives on the same
geographic area are necessary (as well as very long transactions spanning weeks or
months are required), versioned geographic data management technologies were

7

developed [6], [8], [9], [19], [29]. Versioning does not prevent editing conflicts from
occurring, rather, it provides an infrastructure for the detection and resolution of such
conflicts.

Definition 3. A version is a logical entity that represents a unique, seamless view of
the database that is distinguished from other versions by the particular set of edits
made to the version since it was created.

Definition 4. A state represents a discrete snapshot of the database whenever a
change is made. Every edit operation creates a new database state.

In versioned databases, there are two fundamental abstractions – versions and
states. Versions are organized into a tree that is used to model the hierarchical
relationships between versions (e.g., projects or design alternatives). A version is
associated with a current state. A state is used to represent an instance of the database
that is associated with a particular version. When a child state is created, it will
initially have the same set of rows in each table as its parent state. However, as the
state is edited, rows will either be added, deleted, or updated. Changes made in a child
state are not visible in the parent state. Updated rows in the child will take precedence
over the corresponding row in the parent when materializing the version associated
with the child state.

Fig. 4. Model depicting the relationship between versions and states is on the left, while a
simple example version tree is shown on the right

Similar to versions, states are also organized into trees. A version will commonly
be associated with numerous states over its lifetime; however, it will only be
associated with a single state at any given moment in time. A given state may or may
not be associated with one or more versions (as shown on the left side of Figure 4).

Fig. 5. Example version tree and state tree

8

In Figure 5, we highlight a simple example where there are two versions, labeled
parent and child, and an associated state tree. In the example, the parent version
initially is associated with state 0. When a child version is created (as a child of the
parent), it will also point to state 0. Following an edit to the child version, the child
will then point to state 1. Assuming that the next edit is to the parent version, the
parent will then point to state 2. The child is then edited one more time (causing the
child version to point to state 3) prior to reconciling (making the changes made in the
parent visible to the child – see Section X.X for additional details) with the parent
version. The reconcile will cause the changes that have been made in the parent
version (i.e., the differences between states 0 and 2) to be visible in the new state that
the child will point to following the reconcile (i.e., state 4). This sequence of edits and
a reconcile leaves the parent version pointing to state 2, while the child version points
to state 4.

Versioned databases are useful in supporting a number of database usage patterns
and workflows [16]; this includes:

• Direct multiuser editing of the main database,
• Two-level project organizations – work-order processing systems,
• Multi-level project organizations – hierarchical design parts and alternatives,
• Cyclical workflows (multiple stages of approval), and
• Historical states (temporal snapshots).

Some organizations will require the versioned database to support several of these
workflows simultaneously; for example, a utility company may organize itself into a
two-level project organization for maintaining its ‘as built’ status, while additionally
requiring the maintenance of historical states (temporal snapshots). The key point is
that a versioned database must be able to support each of these usage patterns
(oftentimes simultaneously).

3.1 Operations on Versioned Databases

There are two fundamental operations that can be performed on versioned databases
that are required in order to support versioning. There two operations are termed
reconciling and posting (note – in the following discussion, we will employ the
general terms ‘child’ version and ‘parent’ version; child version will refer to a version
of interest, while parent version will generically refer to any ancestor version of the
child within the version tree). Reconciling is logically the process of taking a child
version and merging all the changes that have been made in its parent version
(effectively making changes made to the parent version visible in the child). These
changes may be either inserted, updated, or deleted features. This results in the
creation of a new state that is then associated with the child version (e.g., state 4 in
Figure 5). Note that it is possible that conflicts may be detected during reconciliation
if a given feature has been modified in both the child version as well as the parent
version. Additionally, if a feature is updated in one version and deleted in another,
this is also a conflict (an update-delete conflict). When conflicts occur, the changes
that are made in the parent version will take precedence by default (note that it is

9

equally reasonable to implement a reconcile process where the child version takes
precedence by default). Thus, human intervention is oftentimes necessary in order to
resolve the difference if any of the changes made in the child version (that are in
conflict with the parent) are to take precedence. In sum, reconciling is the process of
making all the changes that were made to a parent version visible in a child version.

Posting is conceptually the converse operation to a reconcile. Posting involves
taking a child version that has been reconciled with its parent version, and making all
the changes made in the child visible to the parent version. Conceptually, changes in
the child are pushed up into the parent. Once two versions have been reconciled and
posted (with one version assuming the role of descendent, and the other as the
ancestor in both operations), the parent and child versions will represent the same
instance of data within the versioned database (at least until another edit is made to
either version).

Version reconciliation (and conflict detection) may be implemented using queries
against the underlying relational database that allow all inserts, updates, and deletes
that occur between two states in the state tree to be detected. We term these queries
‘difference queries’ (detect the differences between two states). Note that for a
conflict to occur between a feature in a child and parent version, the difference
queries between the two states associated with the child and parent version relative to
their common ancestor state (e.g., state 0 in Figure 5) must show that either the
feature was either updated in both, or updated in one and deleted in the other state.

parent branch

reconcile

Fig. 6. Example state tree showing the interaction between child and parent versions

Figure 6 depicts a simple example highlighting the interaction between states,
versions, and a reconcile. In the example assume that the parent version corresponds
to state 2 (as indicated by the dashed arrow labeled “1” between the parent version
and the circle labeled “2” (not that states correspond to labeled circles in the diagram).
If a child version is now created, it will also reference state 2 (also depicted by a
dashed arrow labeled “1” between the child version and state 2). State 2 also becomes
what is termed the common ancestor state between the parent and child version.
Assume that the child version is then edited three times. Each edit operation (an

10

atomic set of edits) results in a new state; in this instance, states 3 through 5. At the
end of the three edit operations, the child version will be referencing state 5.
Following the edits to the child, assume that the parent version also has three edits
made to it. This results in the creation of states 6, 7, and 8, with the parent version
referencing state 8 following the edits. Now assume that the child version is
reconciled with the parent version. The reconcile will require that the edits made in
the parent version (essentially, the edits represented by states 6 – 8 in what is termed
the parent branch) are made visible to the child version. This is accomplished by
creating a new state (state 9) off of state 8, and pushing all the changes that have
occurred in the child branch (states 3 – 5) into state 9, and making the child version
reference state 9. Finally, the example concludes with another edit being made to the
parent version, resulting in a new state (state 10) being created off of the last state that
the parent version referenced (state 8 in the figure).

Fig. 7. Simple edit scenario highlighting the ADDs, DELETEs, and the base table

3.2 Implementation Details

Versions are associated with a state identifier that corresponds to each update that
occurs in the view. The state identifiers are unique and map to a set of updates
corresponding to a single logical edit. For each state, the database keeps information
about the modification type (either an insert, update, or delete). The ADDs table
contains information related to inserts and updates, while the DELETEs table
maintains the deletes (Figure 7). These two tables are collectively referred to as delta
tables. One set of delta tables is associated with each base table in the versioned
database. Thus, if a data model contained two tables, one representing parcels, and the
second representing owners, there would be four additional tables necessary to
represent the two sets of delta tables. A versioned dataset, therefore, consists of the
original table (referred to as the base table, which corresponds to State 0), plus the
two delta tables. The versioned database keeps track of which version the user is
connected to. In addition, when modifications are made to the data, the versioning
system populates the delta tables as appropriate. When a user queries a dataset in a
versioned environment, the system assembles the relevant rows from the base table
and the delta tables to present the correct view of the data for that particular version.

11

4 Versioned Network Models

Network models, with their associated network connectivity indexes, dirty areas,
and dirty objects, introduce complexities into the standard reconcile and post
processes within a versioned database (as described in Section 3). The primary cause
of this complexity is the fact that inconsistent network indexes may occur when an
edited child and parent version are reconciled. This is irrespective of whether or not
each version has its full extent rebuilt (i.e., no dirty areas or objects).

Fig. 8. Example highlighting a reconcile that results in an inconsistent network index (the
inconsistent index is depicted by the shaded region at the bottom of the figure)

Consider the situation shown in Figure 8 (an annotated state tree is depicted – the
common ancestor state refers to the state that the parent version was pointing to when
the child version was originally created). In this example, assume that the network is
clean; no dirty areas or objects exist with the features and the network index being in
a consistent state. Edits are then made to both the parent and child versions. In the
child version, the network is augmented in the southeast direction, while in the parent
version the network is augmented toward the southwest. Assume that the network has
been incrementally rebuilt following all edits in each version (i.e., no dirty areas or
objects exist). In the figure, connectivity between line features is represented by the
small black circles. As can be observed, both the parent and child versions have
planar connectivity.

If the child version is then reconciled against the parent version, new edits made in
the parent version are made visible in the child version. This is depicted in the
southeast corner of Figure 8. Making these new features visible in the child version
results in an inconsistency between the features and the network connectivity index as
depicted in the area enclosed by the gray area. Thus, we observe a simple situation
where two versions that are completely rebuilt can have a network connectivity index
inconsistency following reconciliation. For this reason, the version reconcile process
must be augmented to handle networks correctly.

4.1 Dirty Area and Object Management During Reconciliation

As has been discussed, versioning of network models requires additional functionality
on top of the versioning scheme for simple feature classes. This is due to the fact that

12

the m del includes both: (i) a feature space with features modeling reao l world objects,
and (ii) a logical network where connectivity information about these features is

cting automatically to the changes in the feature space. Thus,
the

 algorithm discussed in [1]. We relax the requirement that
the

 features or turn features are modified (created,
up

stored. The connectivity information has to be kept consistent with the state of the
feature space during the process of reconciliation when new features have been
introduced or existing ones have been updated or deleted in the child version as a
result of the reconciliation. All these modifications introduce changes in the
connectivity inside the feature space of the network model, which have to be reflected
in the logical network.

There are two general approaches to solve this problem. The first one employs the
concept of reactive behavior which is applied to the network and has been used in the
ArcGIS geometric network model [2]. The reactive behavior refers to the logical
connectivity network rea

 process of reconciliation will require the maintenance of the connectivity
information. This entails both logical networks (in the child and parent versions)
being analyzed concurrently during the reconciliation process and merged together in
the resultant child version. The main disadvantage to this approach is the complexity
of the problem (analyzing and merging graphs) which itself can deteriorate the
performance of reconcile.

To avoid this disadvantage when reconciling a Network model, we choose to
employ another strategy which we call the active approach. Instead of ananlyzing and
restitching the connectivity information during reconcile, we instead utilize the
incremental network rebuild

 connectivity network must always reflect the state of the feature space. From a
connectivity perspective, the logical network is allowed to be in an incorrect state;
however, the regions of inconsistency are tracked by marked with dirty areas (or dirty
objects in the case of turn features).

Dirty area (and object) management becomes a key concept in the versioned
network model. In order to ensure that the incremental rebuilding of the network
index is properly handled, we rely upon a strategy where dirty areas or objects are
generated for the areas where spatial

dated, or deleted). The user may then choose to rebuild the network over the
portions of the network where these dirty areas are introduced as a byproduct of the
reconcile at a time of their choosing. More specifically, we may summarize the rules
related to the handling of dirty areas and objects during a reconcile as follows:

1. All dirty areas and objects that are present in the child or parent that do not
exist in the common ancestor state (i.e., before the child and parent were
edited) remain in the child version after reconcile (depicted in the left side of
Figure 7).

2. All dirty areas and objects that exist in the common ancestor state but do not
in the child (i.e., an incremental network rebuild in the child) will exist in the
child following the reconcile (depicted in the right side of Figure 7).

13

Fig. 7. Example of dirty area management policies 1 and 2. In this figure (and all others), dirty
areas are represented by the crosshatched rectangles.

3. All dirty areas and objects that exist in the common ancestor state but do not
in the parent version (they were validated) will not exist in the child version
following the reconcile.

4. All dirty areas and objects created in the child version, irrespective of
whether or not they exist at the time of reconciliation, will exist following
the reconcile.

Fig. 8. Example of dirty area management policies 3 and 4.

5. All dirty areas and objects created in the parent version will only exist in the
child version following the reconciliation if they exist at the time of
reconcile. This situation is shown in Figure 9.

14

Fig. 9. Example of dirty area management policy 5. The left side depicts how a dirty area that
no longer exists in the parent at the time of reconcile will not exist in the child following the
reconcile. The right side depicts the opposite situation where the dirty area exists at the time of
reconcile.

4.2 Examples

We illustrate the work of the versioning scheme using the example shown in Figures
10 and 11. In the common ancestor version (see Figure 10a) a new feature f7 has been
added to the feature space. Because the network model is versioned, all new features
inserted in the system after the registration of the model as versioned are stored in the
Add table. The common ancestor version the reactive behavior of the network creates
dirty area d1 around feature f7 in order to keep track of the modifications in the feature
space. Since the area has not been rebuild with the incremental rebuild algorithm the
new line feature f7 has not been reflected in the model.

Fig. 10. Version example – common ancestor and parent versions

In the next step a child version is created. The dirty area in the parent version (see
Figure 10b) associated with the feature f7 remains unclean while in the child version
(see Figure 11a) it is cleaned and the connectivity information for feature f7 is
reflected in the connectivity graph. In the parent version a new feature f8 has added.
The dirty area around it was cleaned and the feature is correctly described in the
network model with edge e8. The new feature however is not visible to the child
version since it is stored locally in the parent add table. The modifications in the
parent logical network are also not visible to the child version.

15

(a) (b)

f2 f9 f5
f1

f3
f7

e9

e8

e4

e12

e1

j3

j1 j2

j6

f6

j9
e10 e11

CHILD version

Dirty Area Table

A Table

Id Geometry Properties

Id Geometry Properties
f7 polyline ….

f2 f5
f1

f3
f7

e6

e3

e4

e5

e1

j1 j2 j4

f8 RECONCILE version

Dirty Area Table

A Table

Id Geometry Properties

Id Geometry Properties

d1 polygon ….

f7 polyline ….
f8 polylinej7e7

e8
e13

j10

f9

f9 polyline
f9 polyline

Point Feature

Junction
Dirty AreaLine Feature

Edge

Fig. 11. Version example – child and reconcile versions

In the child version a new feature f9 has been added as well (the generation of the
feature primary keys - f7, f8, f9 is done by a centralized sequence in the database so
there are no features with the same id in the different versions). The dirty area for this
feature has been cleaned and it is properly reflected in the child logical network.

Finally we perform the process of version reconciliation over the parent and child
versions (Figures 10b and 11a). The content of both Add tables is merged so the
reconciled version has feature f7, f8 and f9 in its Add table. The logical network from
the parent is copied in the child version. The connectivity information for feature f8
has already been reflected so no dirty area is created for this feature (version rule 3).
The connectivity information for feature f7 which was in the child version of the
logical network is lost so it has to be reestablished. This is indicated by recreating the
dirty area around f7 (version rule 2). In a similar way the connectivity information for
feature f9 is lost so it has to be cleaned as well (version rule 4).

5 Implementation Experiences

The proposed versioning scheme for network models has been implemented and will
be shipped with the next upcoming ESRI ArcGIS product. It has been used to provide
multiuser environment for large continental wide network models, including a model
derived from the set of features representing the full street network within the entire
continental United States (35.9 million line features). Similarly sized networks were
constructed for all of Europe.

6 Conclusion

In this paper, we explored the difficulties of managing large network models in a
multiuser environment and presented solutions to address these problems using a
flexible versioning scheme. Many current applications (i.e. mapping services) involve

16

network based capabilities (e.g., underground pipeline management). It is thus
indispensable for users to be able to edit the same geographic data simultaneously
with long transactions and to resolve conflicts between these edits. Traditional DBMS
have not been tailored to meet the special needs that are required in handling large
network models.

Taking into account the dynamic nature of network models, we presented
innovative versioning schemes that facilitate the notions of dirty areas and dirty
objects (used already for maintaining the dynamic network model). The following
summarizes key features of the versioning scheme:

• The flexible reconciling rules allow the definition of a resolving mechanism
between conflicting edits according to user needs.

• In addition, the utilization of dirty areas/objects minimizes the overhead of
tracking editing history.

We have implemented the versioning scheme presented in this paper within the
well-established ArcGIS development framework. The proposed ideas have proven to
be efficient methods in handling concurrency control of large network datasets. As a
future research direction, we plan to extend our versioning scheme in a distributed
database environment.

References

1. Bakalov, P., Hoel, E., Heng, W.L., and Tsotras, V.: Maintaining Connectivity in Dynamic
Multimodal Network Models. In Proceedings of the International Conference on Data
Engineering (ICDE 2008), Cancun, Mexico, April 2008

2. Borchert, R.: Geometric Network: What Is It and How to Make It? In Proceedings of the
23rd Annual ESRI User Conference, San Diego, July 2003

3. Caldwell, T.: On Finding Minimum Routes in a Network with Turn Penalties.
Communications of the ACM, 4 (2), 1961

4. Cho, H.-J., and Chung, C.-W.: An Efficient and Scalable Approach to CNN Queries in a
Road Network. In Proc. of the 31st Intl. Conf. on Very Large Data Bases (VLDB 2005),
Trondheim, Norway, August 2005

5. Caliper Corporation: TransCAD Transportation GIS Software Reference Manual. Caliper
Corporation, 1996

6. Dittrich, K., and Lorie, R.: Version Support for Engineering Database Systems. IEEE
Transactions on Software Engineering, 14 (4), April 1988

7. Dueker, K., and Butler, A.: GIS-T Enterprise Data Model with Suggested Implementation
Choices. Journal of the Urban and Regional Information Systems, 10 (1), 1998

8. Easterfield, M., Newell, R., and Theriault, G.: Version management in GIS - applications
and techniques. In Proc. of the European Conference on Geographical Information
Systems (EGIS 1990), Amsterdam, April 1990

9. ESRI: Building a Geodatabase. Prepared by Environmental Systems Research Institute,
ESRI Press, Redlands, CA, 2002

10. Evans, J., and Minieka, E.: Optimization Algorithms for Networks and Graphs. Dekker,
Marcel Incorporated, 1992

11. Goodchild, M.: Geographic Information Systems and Disaggregate Transportation
Modeling. Geographical Systems, 5 (1–2), 1998

17

18

12. Hage, C., Jensen, C., Pedersen, T., Speicys, L., and Timko, I.: Integrated Data
Management for Mobile Services in the Real World. In Proceedings of the 29th Intl. Conf.
on Very Large Data Bases (VLDB 2003), Berlin, September 2003

13. Hoel, E., Menon, S., and Morehouse, S.: Building a Robust Relational Implementation of
Topology. In Proceedings of the 8th International Symposium on Spatial and Temporal
Databases (SSTD 2003). Santorini Island, Greece, July 2003

14. Hoel, E., Heng, W.L., and Honeycutt, D.: High Performance Multimodal Networks. In
Proc. of Symposium on Advances in Spatial and Temporal Databases (SSTD 2005),
Angra dos Reis, Brazil, August 2005

15. Jensen, C., Pedersen, T., Speicys, L., and Timko, I.: Data Modeling for Mobile Services in
the Real World. In Proc. of Symposium on Advances in Spatial and Temporal Databases
(SSTD 2003), Santorini Island, Greece, July 2003

16. Katz, R.: Toward a Unified Framework for Version Modeling in Engineering Databases.
ACM Computing Surveys, 22 (4), 1990

17. Longley, P., Goodchild, M., Maguire, D., and Rhind, D.: Geographical Information
Systems, Principles, Techniques, Applications and Management. Wiley, 1999

18. Mainguenaud, M.: Modeling of the Geographical Information System Network
Component. International Journal of Geographical Information Systems, 9 (6), 1995

19. Menon, S., Aronson, P., Brown, T., Muller, M., Ryden, K., and Morehouse, S.:
Requirements and Design Considerations for Versioned Geographic Data Management.
Unpublished manuscript. ESRI, Redlands, CA, July 2000

20. Morehouse, S.: ARC/INFO: A Geo-relational Model for Spatial Information. In
Proceedings of AUTOCARTO 7, Washington, DC, March 1985

21. Oracle Corp: Oracle Database 10g: Oracle Spatial Network Data Model: technical white
paper, May 2005

22. Papadias, D., Zhang, J., Mamoulis, N., and Tao, Y.: Query Processing in Spatial Network
Databases. In Proc. of the 29th International Conference on Very Large Data Bases (VLDB
2003), Berlin, September 2003

23. Peuquet, D., and Duan, N.: An Event-based Spatiotemporal Data Model (ESTDM) for
Temporal Analysis of Geographic Data. International Journal of Geographical Information
Science, 9 (1), 1995

24. Ralston, B.: GIS and its Traffic Assignment: Issues in Dynamic User-optimal
Assignments. Geoinformatica, 4 (2), 2000

25. Sciore, E.: Versioning and Configuration Management in an Object-oriented Data Model.
International Journal on Very Large Data Bases, 3 (1), 1994

26. Shahabi, C., Kolahdouzan, M., and Sharifzadeh, M.: A Road Network Embedding
Technique for k-nearest Neighbor Search in Moving Object Databases. In Proceedings of
the 10th ACM International Symposium on Advances in Geographic Information Systems
(ACMGIS 2002), McLean Virginia, November 2002

27. Shekhar S., and Liu, D.-R.: Ccam: A Connectivity-clustered Access Method for Networks
and Network Computations. IEEE Transactions on Knowledge and Data Engineering, 9
(1), 1997

28. Speicys, L., Jensen, C., and Kligys, A.: Computational Data Modeling for Network-
constrained Moving Objects. In Proceedings of the 11th ACM Intl. Symp. on Advances in
Geographic Information Systems (ACMGIS 2003), New Orleans, November 2003

29. Stokes, A., Balasubramanian, S., and Harrison, S.: Building Versioning Applications with
the Oracle Internet File System. Oracle Technical Brief, Oracle Corporation, December
2000

30. Worboys, M., Hearnshaw, H., and Maguire, D.: Object-oriented Data Modeling for Spatial
Databases. International Journal of Geographical Information Systems, 4 (4), 1990

