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Abstract. The standard database mechanisms for concurrency control, which 
include transactions and locking protocols, do not provide the support needed 
for updating complex geographic data in a multiuser environment. The 
preferred method to resolve conflicts in GIS systems is to encapsulate the 
modifications generated by the end users through the use of multiple versions. 
Multiuser (or versioned) geographic databases allow users to operate as though 
they have full access to the entire dataset. Instead of relying upon row locking, 
versioned databases allow multiple users to simultaneously edit the same row. 
They implement a model for conflict detection and resolution where the first to 
commit the change wins by default (though clients can manually intervene and 
select the latter change as the winner). 

Network models are frequently used as a mechanism to describe the 
connectivity information between spatial features in many emerging GIS 
applications. Supporting networks within the context of a versioned database 
imposes additional requirements – the complex network model must retain 
integrity irrespective of the sequence of simultaneous edits by various clients. In 
this paper, we review our network model and discuss the enhancements 
necessary to maintaining topological network integrity in this complex 
environment. Our solution is based on the notion of dirty areas and dirty objects 
(i.e., regions or elements that contain edits that have not been reflected in the 
network connectivity index). The dirty areas and objects are identified and 
marked during editing of the network feature data. They are then subsequently 
cleaned as a byproduct of the incremental update of the connectivity network. 
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1   Introduction 

Network data models have a long history as an efficient way to describe the 
topological connectivity information among spatial features in geographic 
information systems [11], [14], [17], [18]. At an abstract level, the network model can 
be viewed as a graph whose elements explicitly represent the connectivity information 
about the features in the database. The presence of an edge in the graph depicts the 
information that the two features represented by the junctions are connected and vice 
versa. Different versions of the network model have been implemented in existing 



operational systems such as ARC/INFO [20] and TransCAD [5]. Because of the large 
volume of data frequently found in these networks, the model is typically persisted 
inside a centralized database server. Using connectivity information, those systems 
can then be utilized to solve a wide range of problems, typical for the transportation 
or utility network domains (e.g., finding the shortest path between points of interest, 
finding optimal resource allocation, determining the maximal flow of a resource, and 
other graph theoretic operations). 

A typical requirement for the network models (or to the GIS in general), is that 
they must provide support for many users simultaneously creating and updating large 
amounts of geographic information. In scenarios where those users are required to 
edit the same data at the same time, the system must provide an editing environment 
that supports multiuser concurrent modifications without creating multiple instances 
of the data. In contrast to traditional DBMSs, this editing environment must also 
support edit sessions that typically span a number of days or weeks, the facility to 
undo or redo changes made to the data, and the ability to develop models and 
alternative application designs without affecting the published database. 

Concurrency control in traditional database management systems is addressed 
through the use of transactions and the two-phase locking protocol. This is efficient 
for short-lived edit operations that are typically completed in few seconds. It is not 
well suited however for the type of editing tasks required when updating geographic 
data. For a GIS multiuser environment, the row-locking mechanisms adopted by 
many DBMSs would be prohibitively restrictive for many common workflows. 

To deal with long-lasting transactions, a solution based on the use of multiple 
versions has been proposed [16], [25]. A version can be logically viewed as an 
alternative, independent, persistent view of the database that does not involve creating 
a copy of the actual data. Since there is an independent view for every user, a 
versioned database can support multiple concurrent editors. 

In addition, versioning is useful in many other GIS scenarios such as: 

• Modeling "what if" scenarios. The versioning mechanism allows end users 
to exploit different alternatives (versions) during a design phase. 

• Workflow management. Typically the design process goes through multiple 
steps organized in a workflow process where the output of one step is an 
input for another. The versioning scheme allows users to save intermediate 
results during the design process. 

• Historical queries. The versioning scheme allows the preservation of 
different states of the data which later can be re-visited and re-examined if 
necessary. 

Existing database versioning approaches cannot easily manage the specifics of the 
geographical data like topological network relations, the presence of connectivity 
among the stored elements, and traversability. Such information among spatial 
features is represented in a GIS by a network model. 

Recently, we have proposed an incremental connectivity rebuilding algorithm for 
network models [1]. In this algorithm, the users are allowed to rebuild portions of the 
network model using the notions of dirty areas and dirty objects. Changes over 
portions of the network data are effectively captured and the incremental algorithm is 
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utilized to clean such dirty areas/objects and re-establish the associated portions of the 
network connectivity index. The connectivity rebuilding algorithm has been 
implemented in ArcGIS and provides an effective solution to maintain dynamic 
network models in an incremental manner. 

In this paper, we propose a new versioning scheme for network models that utilizes 
the dirty areas/objects of the connectivity rebuild algorithm (a similar mechanism has 
also been applied to our topological data model [13]). Versioning of network models 
is different from version control over simple spatial data (“simple” meaning data that 
is geometrically unrelated to other data – i.e., no topological structuring). While the 
same basic principles are still in operation, resolving conflicts between features that 
are related to other features, as with network models, is different. This is because of 
the specific internal behavior of the network and the requirement that the connectivity 
information (or index) in the model should be kept consistent all the time. 

The rest of the paper is organized as follows: Section 2 provides a brief description 
of the network model including logical structure and physical design and provides 
description of the algorithms used for connectivity establishment. Section 3 provides 
in depth discussion of versioning spatial databases. Section 4 addresses our proposed 
extensions of these techniques to the support of versioned network models. about the 
proposed versioning scheme we propose for network models. Section 5 discusses our 
implementation experiences, and Section 6 concludes the paper.  

2   The Network Model 

We now proceed with a brief description of the major aspects of the network model 
introduced in [14] and the algorithms for initial and incremental connectivity 
establishment presented in [1]. 

2.1   Basic Elements 

A network model is described as a graph (named connectivity graph) that maintains 
the connectivity information about spatial features with line or point geometry. The 
basic elements of a network model are (edges, junctions and turns). Features with 
point geometry are represented with junction elements inside the graph, while lines 
are represented as one or more edge elements between pairs of junction elements. 
Figure 1 depicts the network model that is composed of spatial features and network 
elements. Similar designs have been used in many research or commercial 
implementations [7], [12], [15], [21]. In the network models we are considering, 
network elements are used only to describe the connectivity information for the 
spatial features they are representing; they do not carry any geometrical properties.  
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Fig. 1. Network model – features and elements 

Most of the systems that utilize network models have client-server architectures. 
Because of their very large data size (e.g., many tens of millions of features for some 
nationwide or continent-wide transportation networks), the network models are 
usually located in a centralized server, persisted either in a RDBMS tables or in a file 
system. Typically the process of analysis is done within a GIS server (that acts as a 
client to the database) or within a thick client [4], [22], [26]. 

2.2   Traversability 

While the connectivity elements (edges and junctions) allow the user to express 
connections, they are not sufficient for expressing specific restrictions from the real 
world (for example, no left turn, or, no u-turn allowed at an intersection) [3], [28]. 
Take for example a intersection formed by dual carriageway (a street with central 
divider) represented in the model with two line features traversable only in one 
direction and a two way street represented with a single line feature traversable both 
ways (see Figure 2). If we want to specify no u turn restriction in this intersection we 
have to restrict the traversability from edge e1 to edge e2 and then through edge e3 in 
that sequence. This restriction cannot be expressed only in terms of junctions and 
edges. If in attempt to do so we disconnect e1 and e2 this will incorrectly imply no left 
turn specified by the sequence e1, e2 and e4. To handle these scenarios, we introduce 
two new network elements, namely, turn (only between two edges) and maneuver 
(between two or more edges). These elements are used to implement restrictions and 
are universally enforced during analysis. As a result, the movement over a network is 
a subset of the network graph taking into account the movement restrictions. 

 
Fig. 2. Example of a three part maneuver e1-e2-e3 at an intersection with a dual carriageway. 
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To introduce the turn restriction in addition to the edge and junction elements, a 
network model can also have a special network elements called turns (see Figure 1). 
Similar to the edges which are defined as a relation between junctions turns are 
defined as a relation between edges. A turn element is anchored to a specific junction 
(the junction where the turn starts) and controls the movement between sequence 
edges expressed as pairs (edge-In, edge-Out).  

2.3   Physical Implementation 

In our network implementation the connectivity information is maintained as a set of 
adjacency pairs of the form <edgeId, junctionId>, stored inside the "junction table" 
(see Figure 3). This approach is designed to answer the most common type of 
adjacency queries during the network analysis process. The junction table uses fixed-
length records for direct access purposes; this implies a fixed number (four in our 
implementation) of adjacency pairs per record (see Figure 3). If the junction has more 
than four connected edges an overflow mechanism is applied. 

 
Fig. 3. Network tables example 

In a similar way, in the traversal process, it is required that at each junction we 
know all the turns anchored at this junction. This has influenced the way we 
implement the turn storage scheme. Information about turns is stored in the "turn 
table", in the form of turn triplets <turnId, edge-InId, edge-OutId>. If there are any 
turns anchored at a junction ji, the turn table will have a record with primary key ji 
which also contains all the turns anchored on ji. This storage scheme can be easily 
optimized for the most commonly used client access patterns [27].  
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2.4   Maintaining Network Connectivity 

Maintaining network connectivity can be viewed as a two phase process [1]: 

• Initial establishment of connectivity when the network model is first defined, 
with the connectivity index being derived from the features participating in 
the network. 

• Incremental rebuilding the connectivity index on a periodic basis after edits 
occur on the spatial features in the network. 

Having an incremental solution is of significant practical value - the amortized cost 
of maintaining an incrementally rebuildable network is far less than an ordinary 
network that must be periodically rebuilt in its entirety (e.g., editing a subdivision and 
only rebuilding that portion of the nationwide network versus rebuilding the whole 
nationwide network). In order to keep track of the modifications to the features that 
occur since the last full or partial rebuilding of the connectivity index, the network 
model employs the concept of dirty areas. Similarly, to track changes to elements 
without geometrical properties (e.g., turns), we use the concept of dirty objects. 

Definition 1. A dirty area corresponds to the regions within the feature space where 
features participating in the network have been modified (added, deleted, or updated) 
but whose connectivity has not been re-established. 

To simplify its computation and storage, a dirty area in our implementation is 
defined as a union of envelopes (e.g., bounding boxes) around the features that have 
been modified. It is possible however to use other shapes - the convex hull of the 
feature for example. In order to ensure that the network is correct, only the portion of 
the network encompassed in the dirty areas will need to be rebuilt. 

Both the initial establishment of connectivity and the incremental rebuild 
algorithms follow the same four steps: 

• Geometrical extraction. Extract the geometry information for all features in 
the area of interest (the whole area in the case of initial establishment or the 
dirty area in the case of subsequent rebuild) and analyze the vertices in those 
geometries. The extracted vertex coordinates and their corresponding feature 
identifiers are stored in a temporary table, called the "vertex table". 

• Connectivity analysis. The content of the vertex table is sorted by 
coordinate values. As a result the coincident vertices from different features 
are grouped together. The algorithm scans the vertex table sequentially and 
picks groups of coincident vertices. Every single group is examined to 
determine if the vertices satisfy the connectivity model specified for the 
network. 

• Junction creation. For each group which satisfies the connectivity model a 
new junction element is created in the network model. The junction id of this 
newly created junction element is added to all the vertices participating in 
this connectivity group. 
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• Edge creation. The content of the vertex table is then resorted using the 
feature identifier as the sorting key. As a result, the vertices for each line 
feature are again grouped together. The vertex table is scanned sequentially 
once more and for each pair of adjacent vertices which belong to the same 
line feature a new edge is created. 

The difference between the incremental rebuild and the full (re)build algorithms, is 
that the incremental rebuild process adds to the vertex table those vertices that are 
outside of the rebuild region but belong to features which intersect the rebuild region. 
These vertices are saved and later reused as connection points through which the 
rebuild portion of the network is "stitched" together with the rest of the model.  

Rebuilding turn features in the network requires additional processing. The 
complexity comes from the fact that the turn features are defined as a relation 
between two or more line features and typically do not have geometrical properties. 
As depicted in Figures 1 and 3, a record in the turn table consists of a turn identifier 
and a list of the line feature identifiers that participate in the turn. In order to cover 
network elements without geometrical properties, we extend our dirty area concept 
with the notion of dirty objects.  

Definition 2. A dirty object is an object without geometrical properties (like turn 
features) whose modifications have not yet resulted in the incremental rebuilding of 
the network connectivity index. 

During the rebuild process, we restore all dirty objects to their clean state. An 
object is kept as dirty until it is successfully cleaned. Turn features are marked as 
dirty objects when: 

• The turn feature is directly modified (Insert, Update, Delete), or  

• The associated line features are modified (Update, Delete), or 

• The associated network turn element is deleted (this may happen during the 
rebuild process). 

Using the dirty areas and dirty objects, we can capture the dynamic behavior of  
network maintenance. It is this dynamic behavior that complicates and thus requires 
extra attention during the versioning process. 

3 Versioned Spatial Databases 

Spatial databases have dramatically evolved in their capability to handle multiple 
simultaneous editors. Some solutions have required organizations to alter their 
workflow so as to ensure that no two editors are editing the same geographic region 
within the spatial dataset. Supporting such a constrained workflow can become 
problematic once the need for supporting long transactions (e.g., design alternatives) 
is considered. In order to address this problem where design alternatives on the same 
geographic area are necessary (as well as very long transactions spanning weeks or 
months are required), versioned geographic data management technologies were 
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developed [6], [8], [9], [19], [29]. Versioning does not prevent editing conflicts from 
occurring, rather, it provides an infrastructure for the detection and resolution of such 
conflicts. 

Definition 3. A version is a logical entity that represents a unique, seamless view of 
the database that is distinguished from other versions by the particular set of edits 
made to the version since it was created. 

Definition 4. A state represents a discrete snapshot of the database whenever a 
change is made. Every edit operation creates a new database state. 

In versioned databases, there are two fundamental abstractions – versions and 
states. Versions are organized into a tree that is used to model the hierarchical 
relationships between versions (e.g., projects or design alternatives). A version is 
associated with a current state. A state is used to represent an instance of the database 
that is associated with a particular version. When a child state is created, it will 
initially have the same set of rows in each table as its parent state. However, as the 
state is edited, rows will either be added, deleted, or updated. Changes made in a child 
state are not visible in the parent state. Updated rows in the child will take precedence 
over the corresponding row in the parent when materializing the version associated 
with the child state. 

 
Fig. 4. Model depicting the relationship between versions and states is on the left, while a 
simple example version tree is shown on the right 

Similar to versions, states are also organized into trees. A version will commonly 
be associated with numerous states over its lifetime; however, it will only be 
associated with a single state at any given moment in time. A given state may or may 
not be associated with one or more versions (as shown on the left side of Figure 4). 

 
Fig. 5. Example version tree and state tree 
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In Figure 5, we highlight a simple example where there are two versions, labeled 
parent and child, and an associated state tree. In the example, the parent version 
initially is associated with state 0. When a child version is created (as a child of the 
parent), it will also point to state 0. Following an edit to the child version, the child 
will then point to state 1. Assuming that the next edit is to the parent version, the 
parent will then point to state 2.  The child is then edited one more time (causing the 
child version to point to state 3) prior to reconciling (making the changes made in the 
parent visible to the child – see Section X.X for additional details) with the parent 
version. The reconcile will cause the changes that have been made in the parent 
version (i.e., the differences between states 0 and 2) to be visible in the new state that 
the child will point to following the reconcile (i.e., state 4). This sequence of edits and 
a reconcile leaves the parent version pointing to state 2, while the child version points 
to state 4. 

Versioned databases are useful in supporting a number of database usage patterns 
and workflows [16]; this includes: 

• Direct multiuser editing of the main database, 
• Two-level project organizations – work-order processing systems, 
• Multi-level project organizations – hierarchical design parts and alternatives, 
• Cyclical workflows (multiple stages of approval), and 
• Historical states (temporal snapshots). 

Some organizations will require the versioned database to support several of these 
workflows simultaneously; for example, a utility company may organize itself into a 
two-level project organization for maintaining its ‘as built’ status, while additionally 
requiring the maintenance of historical states (temporal snapshots). The key point is 
that a versioned database must be able to support each of these usage patterns 
(oftentimes simultaneously). 

3.1   Operations on Versioned Databases 

There are two fundamental operations that can be performed on versioned databases 
that are required in order to support versioning. There two operations are termed 
reconciling and posting (note – in the following discussion, we will employ the 
general terms ‘child’ version and ‘parent’ version; child version will refer to a version 
of interest, while parent version will generically refer to any ancestor version of the 
child within the version tree). Reconciling is logically the process of taking a child 
version and merging all the changes that have been made in its parent version 
(effectively making changes made to the parent version visible in the child). These 
changes may be either inserted, updated, or deleted features. This results in the 
creation of a new state that is then associated with the child version (e.g., state 4 in 
Figure 5). Note that it is possible that conflicts may be detected during reconciliation 
if a given feature has been modified in both the child version as well as the parent 
version. Additionally, if a feature is updated in one version and deleted in another, 
this is also a conflict (an update-delete conflict). When conflicts occur, the changes 
that are made in the parent version will take precedence by default (note that it is 
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equally reasonable to implement a reconcile process where the child version takes 
precedence by default). Thus, human intervention is oftentimes necessary in order to 
resolve the difference if any of the changes made in the child version (that are in 
conflict with the parent) are to take precedence. In sum, reconciling is the process of 
making all the changes that were made to a parent version visible in a child version. 

Posting is conceptually the converse operation to a reconcile. Posting involves 
taking a child version that has been reconciled with its parent version, and making all 
the changes made in the child visible to the parent version. Conceptually, changes in 
the child are pushed up into the parent. Once two versions have been reconciled and 
posted (with one version assuming the role of descendent, and the other as the 
ancestor in both operations), the parent and child versions will represent the same 
instance of data within the versioned database (at least until another edit is made to 
either version). 

Version reconciliation (and conflict detection) may be implemented using queries 
against the underlying relational database that allow all inserts, updates, and deletes 
that occur between two states in the state tree to be detected. We term these queries 
‘difference queries’ (detect the differences between two states). Note that for a 
conflict to occur between a feature in a child and parent version, the difference 
queries between the two states associated with the child and parent version relative to 
their common ancestor state (e.g., state 0 in Figure 5) must show that either the 
feature was either updated in both, or updated in one and deleted in the other state. 

 

parent branch

reconcile

 
Fig. 6. Example state tree showing the interaction between child and parent versions 

Figure 6 depicts a simple example highlighting the interaction between states, 
versions, and a reconcile. In the example assume that the parent version corresponds 
to state 2 (as indicated by the dashed arrow labeled “1” between the parent version 
and the circle labeled “2” (not that states correspond to labeled circles in the diagram). 
If a child version is now created, it will also reference state 2 (also depicted by a 
dashed arrow labeled “1” between the child version and state 2). State 2 also becomes 
what is termed the common ancestor state between the parent and child version. 
Assume that the child version is then edited three times. Each edit operation (an 
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atomic set of edits) results in a new state; in this instance, states 3 through 5. At the 
end of the three edit operations, the child version will be referencing state 5. 
Following the edits to the child, assume that the parent version also has three edits 
made to it. This results in the creation of states 6, 7, and 8, with the parent version 
referencing state 8 following the edits. Now assume that the child version is 
reconciled with the parent version. The reconcile will require that the edits made in 
the parent version (essentially, the edits represented by states 6 – 8 in what is termed 
the parent branch) are made visible to the child version. This is accomplished by 
creating a new state (state 9) off of state 8, and pushing all the changes that have 
occurred in the child branch (states 3 – 5) into state 9, and making the child version 
reference state 9. Finally, the example concludes with another edit being made to the 
parent version, resulting in a new state (state 10) being created off of the last state that 
the parent version referenced (state 8 in the figure). 

 
Fig. 7. Simple edit scenario highlighting the ADDs, DELETEs, and the base table 

3.2   Implementation Details 

Versions are associated with a state identifier that corresponds to each update that 
occurs in the view. The state identifiers are unique and map to a set of updates 
corresponding to a single logical edit. For each state, the database keeps information 
about the modification type (either an insert, update, or delete). The ADDs table 
contains information related to inserts and updates, while the DELETEs table 
maintains the deletes (Figure 7). These two tables are collectively referred to as delta 
tables. One set of delta tables is associated with each base table in the versioned 
database. Thus, if a data model contained two tables, one representing parcels, and the 
second representing owners, there would be four additional tables necessary to 
represent the two sets of delta tables. A versioned dataset, therefore, consists of the 
original table (referred to as the base table, which corresponds to State 0), plus the 
two delta tables. The versioned database keeps track of which version the user is 
connected to. In addition, when modifications are made to the data, the versioning 
system populates the delta tables as appropriate. When a user queries a dataset in a 
versioned environment, the system assembles the relevant rows from the base table 
and the delta tables to present the correct view of the data for that particular version. 
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4 Versioned Network Models 

Network models, with their associated network connectivity indexes, dirty areas, 
and dirty objects, introduce complexities into the standard reconcile and post 
processes within a versioned database (as described in Section 3). The primary cause 
of this complexity is the fact that inconsistent network indexes may occur when an 
edited child and parent version are reconciled. This is irrespective of whether or not 
each version has its full extent rebuilt (i.e., no dirty areas or objects). 

 
Fig. 8. Example highlighting a reconcile that results in an inconsistent network index (the 
inconsistent index is depicted by the shaded region at the bottom of the figure) 

Consider the situation shown in Figure 8 (an annotated state tree is depicted – the 
common ancestor state refers to the state that the parent version was pointing to when 
the child version was originally created). In this example, assume that the network is 
clean; no dirty areas or objects exist with the features and the network index being in 
a consistent state. Edits are then made to both the parent and child versions. In the 
child version, the network is augmented in the southeast direction, while in the parent 
version the network is augmented toward the southwest. Assume that the network has 
been incrementally rebuilt following all edits in each version (i.e., no dirty areas or 
objects exist). In the figure, connectivity between line features is represented by the 
small black circles. As can be observed, both the parent and child versions have 
planar connectivity. 

If the child version is then reconciled against the parent version, new edits made in 
the parent version are made visible in the child version. This is depicted in the 
southeast corner of Figure 8. Making these new features visible in the child version 
results in an inconsistency between the features and the network connectivity index as 
depicted in the area enclosed by the gray area. Thus, we observe a simple situation 
where two versions that are completely rebuilt can have a network connectivity index 
inconsistency following reconciliation. For this reason, the version reconcile process 
must be augmented to handle networks correctly. 

4.1 Dirty Area and Object Management During Reconciliation 

As has been discussed, versioning of network models requires additional functionality 
on top of the versioning scheme for simple feature classes. This is due to the fact that 
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the m del includes both: (i) a feature space with features modeling reao l world objects, 
and (ii) a logical network where connectivity information about these features is 

cting automatically to the changes in the feature space. Thus, 
the

 algorithm discussed in [1]. We relax the requirement that 
the

 features or turn features are modified (created, 
up

 

stored. The connectivity information has to be kept consistent with the state of the 
feature space during the process of reconciliation when new features have been 
introduced or existing ones have been updated or deleted in the child version as a 
result of the reconciliation. All these modifications introduce changes in the 
connectivity inside the feature space of the network model, which have to be reflected 
in the logical network.  

There are two general approaches to solve this problem. The first one employs the 
concept of reactive behavior which is applied to the network and has been used in the 
ArcGIS geometric network model [2]. The reactive behavior refers to the logical 
connectivity network rea

 process of reconciliation will require the maintenance of the connectivity 
information. This entails both logical networks (in the child and parent versions) 
being analyzed concurrently during the reconciliation process and merged together in 
the resultant child version. The main disadvantage to this approach is the complexity 
of the problem (analyzing and merging graphs) which itself can deteriorate the 
performance of reconcile.  

To avoid this disadvantage when reconciling a Network model, we choose to 
employ another strategy which we call the active approach. Instead of ananlyzing and 
restitching the connectivity information during reconcile, we instead utilize the 
incremental network rebuild

 connectivity network must always reflect the state of the feature space. From a 
connectivity perspective, the logical network is allowed to be in an incorrect state;  
however, the regions of inconsistency are tracked by marked with dirty areas (or dirty 
objects in the case of turn features).  

Dirty area (and object) management becomes a key concept in the versioned 
network model. In order to ensure that the incremental rebuilding of the network 
index is properly handled, we rely upon a strategy where dirty areas or objects are 
generated for the areas where spatial

dated, or deleted). The user may then choose to rebuild the network over the 
portions of the network where these dirty areas are introduced as a byproduct of the 
reconcile at a time of their choosing. More specifically, we may summarize the rules 
related to the handling of dirty areas and objects during a reconcile as follows: 

1. All dirty areas and objects that are present in the child or parent that do not 
exist in the common ancestor state (i.e., before the child and parent were 
edited) remain in the child version after reconcile (depicted in the left side of 
Figure 7). 

2. All dirty areas and objects that exist in the common ancestor state but do not
in the child (i.e., an incremental network rebuild in the child) will exist in the 
child following the reconcile (depicted in the right side of Figure 7). 
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Fig. 7. Example of dirty area management policies 1 and 2. In this figure (and all others), dirty 
areas are represented by the crosshatched rectangles. 

3. All dirty areas and objects that exist in the common ancestor state but do not 
in the parent version (they were validated) will not exist in the child version 
following the reconcile. 

4. All dirty areas and objects created in the child version, irrespective of 
whether or not they exist at the time of reconciliation, will exist following 
the reconcile. 

 
Fig. 8. Example of dirty area management policies 3 and 4. 

5. All dirty areas and objects created in the parent version will only exist in the 
child version following the reconciliation if they exist at the time of 
reconcile. This situation is shown in Figure 9. 
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Fig. 9. Example of dirty area management policy 5. The left side depicts how a dirty area that 
no longer exists in the parent at the time of reconcile will not exist in the child following the 
reconcile. The right side depicts the opposite situation where the dirty area exists at the time of 
reconcile. 

4.2  Examples 

We illustrate the work of the versioning scheme using the example shown in Figures 
10 and 11. In the common ancestor version (see Figure 10a) a new feature f7 has been 
added to the feature space. Because the network model is versioned, all new features 
inserted in the system after the registration of the model as versioned are stored in the 
Add table. The common ancestor version the reactive behavior of the network creates 
dirty area d1 around feature f7 in order to keep track of the modifications in the feature 
space. Since the area has not been rebuild with the incremental rebuild algorithm the 
new line feature f7 has not been reflected in the model.  

 
Fig. 10. Version example – common ancestor and parent versions 

In the next step a child version is created. The dirty area in the parent version (see 
Figure 10b) associated with the feature f7 remains unclean while in the child version 
(see Figure 11a) it is cleaned and the connectivity information for feature f7 is 
reflected in the connectivity graph. In the parent version a new feature f8 has added. 
The dirty area around it was cleaned and the feature is correctly described in the 
network model with edge e8. The new feature however is not visible to the child 
version since it is stored locally in the parent add table. The modifications in the 
parent logical network are also not visible to the child version.  
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Fig. 11. Version example – child and reconcile versions 

In the child version a new feature f9 has been added as well (the generation of the 
feature primary keys - f7, f8, f9 is done by a centralized sequence in the database so 
there are no features with the same id in the different versions). The dirty area for this 
feature has been cleaned and it is properly reflected in the child logical network.  

Finally we perform the process of version reconciliation over the parent and child 
versions (Figures 10b and 11a). The content of both Add tables is merged so the 
reconciled version has feature f7, f8 and f9 in its Add table. The logical network from 
the parent is copied in the child version. The connectivity information for feature f8 
has already been reflected so no dirty area is created for this feature (version rule 3). 
The connectivity information for feature f7 which was in the child version of the 
logical network is lost so it has to be reestablished. This is indicated by recreating the 
dirty area around f7 (version rule 2). In a similar way the connectivity information for 
feature f9 is lost so it has to be cleaned as well (version rule 4). 

5   Implementation Experiences 

The proposed versioning scheme for network models has been implemented and will 
be shipped with the next upcoming ESRI ArcGIS product. It has been used to provide 
multiuser environment for large continental wide network models, including a model 
derived from the set of features representing the full street network within the entire 
continental United States (35.9 million line features). Similarly sized networks were 
constructed for all of Europe. 

6   Conclusion 

In this paper, we explored the difficulties of managing large network models in a 
multiuser environment and presented solutions to address these problems using a 
flexible versioning scheme. Many current applications (i.e. mapping services) involve 
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network based capabilities (e.g., underground pipeline management). It is thus 
indispensable for users to be able to edit the same geographic data simultaneously 
with long transactions and to resolve conflicts between these edits. Traditional DBMS 
have not been tailored to meet the special needs that are required in handling large 
network models. 

Taking into account the dynamic nature of network models, we presented 
innovative versioning schemes that facilitate the notions of dirty areas and dirty 
objects (used already for maintaining the dynamic network model). The following 
summarizes key features of the versioning scheme: 

• The flexible reconciling rules allow the definition of a resolving mechanism 
between conflicting edits according to user needs. 

• In addition, the utilization of dirty areas/objects minimizes the overhead of 
tracking editing history. 

We have implemented the versioning scheme presented in this paper within the 
well-established ArcGIS development framework. The proposed ideas have proven to 
be efficient methods in handling concurrency control of large network datasets. As a 
future research direction, we plan to extend our versioning scheme in a distributed 
database environment. 
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