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ABSTRACT
The increasingly popular GPS technology and the growing amount
of trajectory data it generates create the need for developing appli-
cations that efficiently store and query trajectories of moving ob-
jects. In this paper we introduceTS2 tree, a novel indexing struc-
ture for organizing trajectory data based on similarity between tra-
jectories. TS2 tree provides lower and upper bounds on distance be-
tween trajectories, based on which we propose a general framework
for effectively answering a wide range of similarity-based trajec-
tory queries such assimilarity threshold (ST) queryandsimilarity
best fit (SBF) query. The multifold reduction in query computation
times and the number of I/O operations is demonstrated through an
extensive experimental evaluation.

Categories and Subject Descriptors
H.3.1 [Indexing Methods]: Information Storage and Retrieval

General Terms
Algorithms, Experimentation, Performance

Keywords
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1. INTRODUCTION
With the high availability of GPS devices and advances in com-

munications and sensor technology (RFIDs etc.), applications for
monitoring and tracking moving objects have emerged. Such ap-
plications create large repositories of spatiotemporal data which are
trajectorial in nature. Their large volume motivates the need to de-
velop efficient techniques for managing and querying trajectories.
One of the most popular trajectory query types focuses on finding
similarities between trajectories. Here, the query typically specifies
a trajectory and the answer contains all trajectories in the repository
that are "similar" to the given trajectory. [6] [4]. Spatial similarity is
measured through different distance metrics defined for trajectorial
data (e.g Euclidean distance, Manhattan distance etc.) and is use-
ful in many monitoring and surveillance applications. In this paper
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we examine two variations of this problem, namely the similarity
threshold(ST) and the similaritybest fit(SBF) queries discussed
below. Our focus is in developing a novel technique to index tra-
jectories for answering the ST and SBF queries efficiently.

Consider the scenario discussed in [4] where an urban planing
tool is used to measure the benefits generated from adding extra
bus lines to a public transportation system using a spatiotemporal
archive. In this scenario a benefit is expressed as the number of
commuter trajectories in the archive which are similar to the trajec-
tory of the proposed bus line. Time is important, since a bus sched-
ule should follow the proposed route at times when commuters are
traveling it and thus will prefer to take the bus instead of their car.
In this ST query example, the similarity between the bus route and
a trajectory from the archive is defined by their spatial "closeness"
expressed by a thresholdε (e.g. for example no further than 3 miles)
around the bus route. The ST query returns the set of all trajectories
which are completely covered by the 3 mile envelope crated around
the proposed bus route. In contrast, a SBF query returns as a result
the trajectory from the archive which is "the best fit" to the query
trajectory.

The evaluation of the above queries with existing spatiotempo-
ral indexing techniques, which view a trajectory as a line in the
n + 1 dimensional space is however computationally expensive
and inefficient [3] [2]. A trajectory is typically decomposed in seg-
ments which are then approximated by Minimum Bounding Boxes
(MBBs) and organized using a multidimensional index structure
(R-tree). This approach however has various disadvantages: (i)
The approximation of a line segment with a MBB introduces a large
amount of "dead space" and as a result the discrimination capability
of the index structure deteriorates. (ii) The index structure does not
preserve a global picture of the trajectory. Instead, the trajectory
segments can be scattered in different parts of the index structure.
(iii) Traditional indexing techniques do not cluster trajectories ac-
cording to their similarity. The above problems imply that a better
indexing technique should maintain a global view over a trajectory
and at the same time use a better trajectory approximation and per-
form clustering. In this paper we propose a novel indexing structure
called Time-Specific Similarity Tree (TS2 Tree) with these proper-
ties which make the it a very efficient organization for evaluating
time-specific similarity queries on trajectories.

2. PROBLEM DEFINITION
For simplicity in the rest of the paper we assume that a moving

object trajectory is defined as a sequence of location/time instant
pairs. Other representations can be easily reduced to this general
form by interpolation. More formally:

Definition 1. A trajectoryTi is a sequence of〈location /time〉
pairs:{〈l1, t1〉, . . . , 〈ln, tn〉}, whereli ∈ Rd, ti ∈ N



Here the locationli is ad dimensional vector. Withli.v we de-
note the v-ith component of this vector. For our 2-dimensional ex-
amples however we use theli.x and li.y to refer to thex andy
coordinates. Assume that we are given trajectory distance function
D. Having this function, a set of trajectoriesT ≡ {T1, . . . , Tk}
and a query trajectoryTq the Similarity Threshold (ST) query and
the Similarity Best Fit (SBF) query are defined as follows:

Definition 2. GivenD, T , Tq and a spatial thresholdε, a Simi-
larity Threshold query returns the set of trajectoriesR ≡ {Ru, . . . ,
Rv} such thatR ⊂ T andD(Ri, Tq) ≤ ε, ∀i whereRi ∈ R.

Definition 3. GivenD, T andTq, a Similarity Best Fit query re-
turns trajectoryRj such thatRj ⊂ T andD(Rj, Tq) ≤ D(T i, T q)
, ∀i whereTi ∈ T .

In order to organize the trajectories in the repository for the pur-
poses of efficient similarity search we need anapproximate repre-
sentationof the trajectories and a lower-bounding distance function
defined over this representation. As is typical in similarity query
processing, we employ a two step query evaluation strategy (for
both ST and SBF queries). In the first phase we perform early prun-
ing in the set of trajectoriesT using the approximate representation
and the lower-bounding distance function. In the second step, the
remaining small, approximate set of candidate trajectories is tested
against the query trajectoryTq, this time using the raw trajectory
data.

For the purposes of trajectory similarity search we use the sym-
bolic representation proposed in [1] for trajectories. This method
utilizes the Piecewise Aggregate Approximation (PAA) [5] which
was used to transform a time-series data into a string. The PAA
algorithm accepts as input a trajectory of lengthn of 〈location
/time〉 pairs and produces as output a trajectory approximation of
reduced size, saym (m << n). This is done by dividing the in-
put sequence intom equi-sized “frames” along the temporal axis
and the spatial values contained in each frame are replaced by their
average. More formally:

Definition 4. Given trajectoryTi = {< l1, t1 >, . . . , < ln, tn >
} of lengthn and a target lengthm ¿ n, PAA produces an approx-
imate trajectoryT̄ i = {< l̄1, t1 >, . . . , < l̄m, tm >} where the
spatial values contained inside each time frame[ n

m
(i−1), n

m
i], 1 ≤

i ≤ m are replaced by their arithmetic mean:

∀v ∈ [1; d] l̄i.v =
m

n

n
m

iX
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m
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lj .v

The approximation produced above is then discretized to a sym-
bolic representation. For this purpose a uniform space grid is used
where a unique label is associated to every discrete grid cell in the
grid. The labels are assigned according to the grid cell position in
the x and y axis starting with label (A,A) in the lower left corner of
the grid. Each label hasx andy components. By using the grid cell
label instead of the average spatial location for each frame a trajec-
tory is converted into a symbolic representation. A 2-dimensional
example is shown in Figure 1. The symbolic representation can
formally be defined as follows:

Definition 5. Given a uniform grid with granularityτ assign an
alphabet of symbolsA = {α1, . . . , αw} such that∀1 ≤ j ≤ w :
[τ(j−1), τj) → αj (every symbol is assigned to a unique interval
of the grid). A trajectoryTi of lengthn can be approximated as
a stringT̃i = 〈l̃1 · · · l̃m〉 of lengthm ¿ n, by replacing every
value l̄i.v in them-length PAA approximation ofTi with symbol
l̄i.v = αj such thatτ(j − 1) ≤ l̄i.v < τj.
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Figure 1: An object trajectory with its PAA representation; the string
representation is: (2,3)(3,3)(3,2)(4,2).
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Figure 2: Trajectory envelope

Given a trajectory distance functionD, for efficient pruning in
the approximation space, we need a distance functionD̃ in that
space, that lower-boundsD. Getting such symbolic distance func-
tion is simple for many trajectory distance functions (Euclidean,
Manhattan etc.)

3. THE INDEX STRUCTURE
We first describe the notion of an “envelope" which is used to

cluster symbolic approximations among many similar trajectories.
Then we discuss how envelopes can be combined hierarchically to
create the TS2 tree.

3.1 Trajectory envelope
Until now we have taken each trajectoryTi and first got its PAA

approximationT̄ i which was then turned into a symbolic represen-
tationT̃ i. The next step is to provide an efficient representation for
a set of similar trajectories.

Assume for simplicity that all symbolic representations of trajec-
tories have the same lengthm (the extension to cover trajectories
with different lengths is straightforward). Consider a set ofk tra-
jectory symbolic representations̃T1 · · · T̃ k. From this set we can
derive two new sequences of grid labelsU andL (each of length
m) called respectively anupperandlower bound. TheL sequence
is derived by taking for each position from 1 tom the smallestx
and smallesty label component on this position from allk strings.
The U string is derived in a similar way taking for each position
the largestx andy components.

Ui.x = max(T1i.x, .., Tki.x), Ui.y = max(T1i.y, .., Tki.y)



Li.x = min(T1i.x, .., Tki.x), Li.y = min(T1i.y, .., Tki.y)

An example is shown on figure 2 where we have three trajecto-
ries and their symbolic representations. The upper and the lower
bound of the set of three sequences are:

L = 〈D, D〉〈D, D〉〈C, E〉〈B, F 〉〈B, F 〉〈B, F 〉〈B, G〉〈B, H〉

U = 〈E, C〉〈E, D〉〈D, D〉〈C, D〉〈C, E〉〈C, E〉〈C, F 〉〈C, G〉
For the rest of the paper we use the termtrajectory envelopeto refer
to the combination ofU andL, and denote it asTE:

TE ≡ (U, L)

SequencesU andL form the smallest possible bounding envelope
in the 3-dimensional space that encompasses this set’s symbolic
representations̃T1 · · · T̃ k from above and below.

An important property of the trajectory envelope structure is that
it can be used as an aggregation of the enclosed set of trajectory
representations. Consider evaluating a threshold-epsilon query for
a trajectoryTq within a set of trajectories{T1 · · ·Tk}. Assume
that the symbolic representations of these trajectories have been
computed and combined under a single trajectory envelope. Using
the upperU and the lowerL bounds of the envelope we can easily
compute an upper and lower bound distance between the query tra-
jectoryTq and all trajectories in that envelope. If the lower bound
distance is larger than thresholdepsilon then we can safely prune
all trajectories in this envelope. In the case of a best fit query, both
the upper and lower bounds are utilized to direct the search.

Another important property of trajectory envelopes is that they
can benestedand thus combined in a hierarchical tree structure.
This is due to the fact that a single trajectory representation is a spe-
cial case of a trajectory envelope where both the upper and lower
bounds are identical to the representation (∀i Li.x = T i.x =
Ui.x ; Li.y = Ti.y = Ui.y). We can thus combine a set of trajec-
tory envelopesTE1, .., TEk into a single one by finding maximum
and minimum values for each position, from all envelopes. We use
this property as the building block of the TS2-tree.

3.2 The TS2-tree
We utilize the nesting property of the trajectory envelopes to

organize them hierarchically into a height balanced tree structure
similar to an R-tree or B-tree. The tree structure partitions the spa-
tiotemporal space with hierarchically nested, and possibly overlap-
ping, trajectory envelopes. We refer to this structure as a TS2-tree.
Similarly to the R-tree, the nodes in the TS2-tree contain a vari-
able number of elements between some pre-defined minimum and
maximum values. Each leaf node in the tree stores a trajectory
symbolic representation as well as a pointer to the raw trajectory
storage where we keep the actual trajectory data. Each entry within
a non-leaf node stores a pointer to a child node, and the bounding
envelope of all entries within this child node. The proposed struc-
ture is completely dynamic which means that the insert and delete
operations can be intermixed with search ones.

Insertions of trajectory symbolic representations in the tree are
similar to the insertions in R-tree family. The algorithm exam-
ines the bounding trajectory envelopes in the non leaf nodes of
the tree to find an envelope which overlaps with the new trajec-
tory representation e.g. an envelope for which∀i Li.x ≤ T i.x ≤
Ui.x ; Li.y ≤ Ti.y ≤ Ui.y. If there is no such envelope the al-
gorithm chooses the one which needs least enlargement to include
the new trajectory representation. After choosing an appropriate
envelope the algorithm continues recursively in the corresponding
subtree. When the leaf level is reached and there is space available

Algorithm 1 Similarity best fit query
Input: Tq: document, R: TS2 root
Output: The set of trajectoriesS which satisfy the query
1: SetB ← ∅;N ← R; UB =∞; BFT ← ∅; BFD =∞;
2: T̃ q = CreateEnvelope(Tq);
3: whileN is not emptydo . TS2 tree traversal
4: C =N .pop();
5: for each child E of node Cdo
6: if E is a leafthen
7: if D̃(E.approximation, T̃ q) < UB then
8: B.push(E);
9: UB = D̃(E.approximation, T̃ q);

10: else
11: if D̃(E.lower, T̃ q) < UB then
12: N .push(E);
13: if D̃(E.upper, T̃ q) < UB then
14: UB = D̃(E.upper, T̃ q);
15: end for;
16: end while;
17: while B is not emptydo . Verification step
18: B̃ = B.pop();
19: B = RawStorageLookUp(̃B);
20: if D(B, Tq) < BFD then
21: BFT ← B̃.id;
22: BFD = D(B, Tq);
23: end while;

in the current node the new trajectory representation is simply in-
serted there. Otherwise the leaf node is split. For the splits we adopt
the R*-tree approach to determine the distribution of the envelopes
between the nodes which minimizes the overlapping between the
trajectory envelopes. The intuition behind this approach is that the
probability for two envelopes to satisfy simultaneously the search
criteria is proportional to their overlapping area. The process of
splitting nodes is propagated up to the root of the tree if it is neces-
sary.

4. QUERY EVALUATION
In this section we will discuss the evaluation algorithms for both

queries: (i) Similarity threshold (ST), and, (ii) Similarity best fit
(SBF).

4.1 Similarity threshold query
The input to the Similarity threshold algorithm is the root of the

TS2 tree, the query trajectoryTq and the spatial thresholdε. The
algorithm traverses the index tree from the root to the leaf nodes in
a top down manner. At each step, the algorithm checks the bound-
ing envelopes at the current node: if there is overlapping between a
bounding envelope and the the envelope produced by expansion the
query trajectoryTq with ε in each spatial dimension for each time
instance, the algorithm is executed recursively for the correspond-
ing subtree. Similarly to R-tree, due to the overlapping envelops,
the algorithm may need to visit more than one subtree under the
current node. After the traversal of the tree we have a verification
step where we examine the content of the candidate set generated
in the previous step. We load the raw trajectory data for each can-
didate trajectory and compare it with the query trajectoryTq. If
the candidate trajectory satisfies this verification we place it in the
result set.

4.2 Similarity best fit query
The input to the Similarity best fit algorithm is the root of the TS2

tree and the query trajectory. As in the Similarity threshold query
the best fit algorithm traverses the index tree from the root to the



leaf nodes keeping the smallest upper bound distanceUB between
a query and envelope discovered so far. At each step, the algo-
rithm checks the lower bound distance of the bounding envelopes
at the current node and the query trajectoryTq. If the distance is
smaller than theUB the algorithm is executed recursively for the
corresponding subtree. If it is not this means that we already have
a better candidate and we can prune this part of the tree. At the end
we have a verification step (lines 17-23) where we find the best fit
trajectory from the reduced candidate set using raw trajectory data.

5. EXPERIMENTAL EVALUATION
We proceed with the experimental evaluation of the proposed

techniques. In our experiments we use synthetic data. The queries
are based on actual trajectories slightly skewed in the time and
space from the original. We compare the performance of the pro-
posed TS2 tree with the MVR tree approach proposed by [2] using
two measures: The average number of index node accesses and the
average number of data pages per query that need to be retrieved
from storage for verification of the result.

5.1 Experimental Results

5.1.1 Varying the Dataset Size
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Figure 3: Perf. vs. Size

In the first group of experiments we measure the performance
for different data set sizes. The results are shown in figure 3. As it
can be depicted from the plots when the dataset size (in thousands)
increases, the numbers of data pages and index nodes accessed are
also growing. For the ST query the number of index nodes and the
raw trajectory data pages accessed by the TS2 tree is lower than
the corresponding number for the MVR tree for all three datasets.
The improved approximation in TS2 tree requires checking fewer
index nodes and generates fewer candidates. For the SBF queries
both index structures converge fast on a small candidate set. This is
because the queries are not random but relevant to the trajectories.
Pruning is fast because both algorithm use variations of best first
search.

5.1.2 Varying the Spatial thresholdε
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Figure 4: Perf. vs. Spatial threshold

In the next set of experiments we test the behavior of the simi-
larity threshold (ST query) algorithm for increasing values of the
query thresholdε. The intuition behind this set of experiments is

that by increasing the spatial thresholdε the query becomes more
relaxed and thus more expensive for evaluation. We use four dif-
ferent values forε varying from 10 to 40 miles. The results are
shown in figure 4. As expected with the increase of the threshold
parameter the number of index nodes and the raw trajectory data
pages accessed by both: the TS2 tree and the MVR tree increases.
However the TS2 tree index node access increase has a slower rate
when compared to the MVR tree increase due to the holistic ap-
proach (e.g using envelopes that approximate the whole trajectory
than MBRs which approximate only trajectory segments) in the tree
traversal.

5.1.3 Varying the length of the trajectory
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Figure 5: Perf. vs. Time

In the last group of experiments we tested the behavior of the
proposed indexing structure and algorithms for different values of
the trajectory length varying from 50 up to 150 minutes. The results
are shown in figure 5. As it can be observed increasing the length of
the trajectories the performance of the TS2 tree deteriorates. This
is due to the fact that longer trajectories are more likely to be dis-
similar which will deteriorate the clustering in the TS2 tree. The
trajectory envelopes become wider which also increases the over-
lap between the different nodes. An interesting observation is that
the number of raw data I/Os decrease for the MVR tree decreases.
This is due to the fact that by increasing the length of the query it
becomes more restrictive.
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