
Minimum-Hot-Spot Query Trees
for Wireless Sensor Networks

Georgios Chatzimilioudis
Dept. of Computer Science

University of California
Riverside

Riverside, 92507 CA USA
gchatzim@cs.ucr.edu

Demetrios
Zeinalipour-Yazti

Dept. of Computer Science
University of Cyprus

1678 Nicosia, Cyprus
dzeina@cs.ucy.ac.cy

Dimitrios Gunopulos
Dept. of Informatics and

Telecommunications
University of Athens
15784 Ilisia, Greece

dg@di.uoa.gr

ABSTRACT

We propose a distributed algorithm to construct a balanced commu-
nication tree that serves in gathering data from the network nodes
to a sink. Our algorithm constructs a near-optimally balanced com-
munication tree with minimum overhead. The balancing of the
node degrees results in the minimization of packet collisions during
query execution, that would otherwise require numerous retrans-
missions and reduce the lifetime of the network. We compare our
simple distributed algorithm against previous work and a central-
ized solution and show that for most network layouts it outperforms
competition and achieves tree balance very close to the centralized
algorithm. It also has the smallest energy overhead possible to con-
struct the tree, increasing the lifetime of the network even more.

Categories and Subject Descriptors

H.4 [Information Systems Applications]: Miscellaneous

General Terms

Algorithms

Keywords

Query Tree, Communication Cost, Wireless Sensor Network, Col-
lision, Optimization

1. INTRODUCTION
Wireless sensor networks (WSNs) are a multi-purpose tool for

a wide range of tasks. Nodes do not need physical connection in
order to communicate with each other; they use radio transceivers.
Also, they do not need to be attached to any static energy source;
they have batteries on board. The price to pay is the energy needed
for communication and on-board batteries have limited energy sup-
plies. Further, the wireless channel in WSNs is unreliable with
many dropped packets. Collisions between data packets is the main
cause of dropped packets, when multiple sensor nodes attempt to
access a shared wireless channel. Every dropped packet needs to
be retransmitted adding to the energy consumption.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiDE’10, June 6, 2010, Indianapolis, Indiana, USA.
Copyright 2010 ACM 978-1-4503-0151-0/10/06 ...$10.00.

(a) (b)

Figure 1: Application that greatly benefits from an energy-

efficient query routing tree. (a) Energy harvesting for battery-

less nodes for the (b) Voltree monitoring application [24]

Due to the limited energy source, WSN applications have to be
founded on the premise of energy-conscious algorithms. A decisive
variable for prolonging the longevity of a WSN is to minimize the
utilization of the wireless communication medium. It is well es-
tablished that communicating over the radio in a WSN is the most
energy demanding factor among all other functions, such as storage
and processing [29, 17, 18, 30, 27].

In data acquisition systems, data from every node needs to be
collected at a sink node. An example is shown in Figure 1(b). Ex-
isting approaches mainly use a Query Routing Tree (denoted as T),
which provides each sensor with a path over which query answers
can be transmitted to the querying node. Energy-efficient query
routing trees are needed in a plethora of systems such as People-
centric Sensing [3, 19], structural monitoring [13], urban monitor-
ing [19] and environmental monitoring [24, 22, 31] among others.

For example the Voltree environmental monitoring sensor net-
works [24] (Figure 1) use a bioenergy harvester that converts liv-
ing plant metabolic energy to electricity providing small but steady
amounts of energy to a sensor device. Such applications deploy
Query Routing Tree structures as a primitive mechanism for per-
colating query results to nodes that query the network. As another
example imagine cyclists that journey through the main streets of a
city. Each cyclist is equipped with a mobile device (e.g., Android,
I-Phone or Maemo), that has the ability to interact with its inte-
grated sensors. The measurements retrieved from these sensors can
be used to quantify various aspects of the cyclic performance (e.g.,
current/average speed, heart rate, burned calories) as well as the
environmental conditions (e.g., CO2 level, car density). A Query
Routing Tree will provide a necessary overlay structure for collect-

ing and aggregating data (e.g., identify routes with low CO2 levels
in the city). For ease of exposition, in this paper we only focus on
static sensor networks as opposed to mobile sensor networks.

0 1 2 3

4 5 6 7

8 9 10 11

12 q 14 15

0 1 2 3

5 7

9 10 11

q 14 15

Figure 2: 4x4 grid network.

A First-Heard-From tree.

0 1 2 3

4 5 6 7

8 9 10 11

12 q 14 15

0 1 2 3

4 5 7

8 9 10 11

q12 14 15

Figure 3: A COPT solution.

COVCOPT = 2.43

Query routing trees are usually constructed in an ad-hoc manner
and therefore there is no guarantee that the query workload will
be distributed equally among all sensors. Various data acquisition
frameworks (e.g., [17, 18, 27, 9, 16, 32, 15]) have been proposed
to optimize query execution. Some by minimizing the data sent or
the time that the transceiver is operating, and some by distributing
the higher workload of the nodes around the sink node. All the
previous techniques are orthogonal to our solution.
We reduce energy consumption by minimizing collisions dur-

ing query execution. We balance the number of incoming streams
for internal nodes of a query routing tree. In Figure 2 we show a
naive first-heard-from query routing tree, which is the most com-
mon form of acquisitional query tree used. Nodes with many in-
coming streams are primary candidates for network hot-spots, where
packet collisions cause numerous retransmissions. The more the re-
transmissions the greater the energy overhead for executing a query.
The optimal tree can be seen in Figure 3.
It is shown that executing a query over a node with 10 children

will lead to a 48% loss rate of data packets, while executing the
same query over a node with 30 children will lead to a 56% loss
rate [1]. These figures translate into an approximately three-fold
increase in energy demand due to inevitable re-transmissions of
data packets. Consequently, unbalanced query routing trees can
severely degrade the network health and efficiency.
In this paper we introduce a distributed algorithm, coined Mini-

mum HotSpot Query Routing Tree (MHS), for constructing an effi-
cient query routing tree in wireless sensor networks that minimizes
collisions during query execution. MHS deploys a distributed tree
balancing process, where the node degree is balanced for each tree
depth. In particular, MHS is based on letting nodes select parents

sequentially while “snooping” the wireless channel and counting

the degree of their candidate parent nodes. When the time comes to

select a parent, the node simply selects the parent with the minimum

degree.

The MHS algorithm provides balanced query routing trees with
the following desirable properties: i) they decrease collisions dur-
ing data transmission, ii) they decrease query response time, and iii)
they increase system lifetime and coverage. In addition, the cost for
running MHS is the lowest possible. MHS performs very close to
the optimal, especially in networks that resemble real world sen-
sor network layouts. We validate these claims in our experimental
evaluation section. In order to assess the efficiency of MHS, we
compare it against the ETC [1] algorithm and against a centralized
optimization algorithm COPT for balancing the query routing tree.
Our contributions can be summarized as follows:

• We define balance in a query routing tree taking into account
the communication restrictions in a network. This allows us

to decompose the tree construction problem into a set of sim-
pler subproblems (Balanced Assignment Problem).

• We propose a novel distributed algorithm (MHS) to approxi-
mate the balanced query routing tree construction solution.

• We proveMHS poses lower bound communication overhead.

• We show through simulations that MHS improves the bal-
ance of the resulting query routing tree significantly over the
previously proposed algorithm and for real world networks
even performs as good as the centralized algorithm.

We discuss related work in Section 2, present the system model
and define the balanced query routing tree problem (Section 3). In
Section 4 we analyze the problem, decompose it into simple sub-
problems and present our centralized algorithm. The description
of our distributed algorithm follows in Section 5, the experimental
evaluation in Section 6 and a short summary Section 7.

2. RELATEDWORK
In this section we present some popular techniques for minimiz-

ing energy consumption in wireless sensor networks, starting from
the Physical layer and moving up to the Application layer accord-
ing to the ISO/OSI communication stack [14].

Various Medium Access Control (MAC) layer algorithms exist
for minimizing collisions and wireless channel usage (e.g. [20, 21,
28]). However, none of these approaches considers the underlying
topology of the sensor network, inter-sensor relationships and high-
level query semantics. The MAC layer algorithms are orthogonal
to our problem, where we try to construct a query routing tree that
inherently has small chances of collisions in the first place.

Network layer mechanisms exist to discover optimal routing paths
for energy efficient delivery of messages through intermediate hosts
(e.g. [8, 25, 9]). Existing approaches make use of an a-priori es-
tablished query routing tree. Our work constructs a balanced tree
specific for a given query and is also able to exploit opportunistic
in-network processing on the nodes.

Transport layer works like [12, 23], propose techniques to ei-
ther minimize the on-time of the radio by synchronizing neighbor-
ing nodes for transmission and reception, or avoid dropped packets
and collisions by using small probe messages and snooping. These
proposals are orthogonal and can coexist with our algorithms.

In the Application layer various data acquisition frameworks (e.g.
[17, 18, 27, 15]) that aim at minimizing the data sent or the oper-
ating time of the transceiver. Works focusing solely on optimizing
the query routing tree structure are either centralized approxima-
tions [7] or assume that every sensor has the potential transmission
power to reach the sink node directly. Algorithms proposed in [9,
16, 32] alternate the leader node that will gather all the data and fi-
nally forward the query answer to the base-station in order to avoid
the hot-spots around the base-station.

A distributed algorithm to create a query routing tree without
the assumption that every node can transmit directly to the sink,
has been proposed in [26]. Their algorithm balances the data load
to be transmitted from one tree level to the next. The goal is to
balance the data received and relayed by each node in the network.
The energy savings by this work are mostly theoretical since they
do not deal with collisions occurring from many nodes trying to
communicate with the same parent. As shown by Andreou et al.
[1], the energy loss due to hot-spots in the tree can not be neglected.

Andreou et al. [1] is the only work minimizing collisions by bal-
ancing the query routing tree, to the best of our knowledge. They
aim at solving the same problem with the same assumptions. Their

algorithm, called ETC, constructs an initial temporal unbalanced
tree and then lets nodes communicate back and forth in order to
reorganize and balance the tree. ETC adds significant communica-
tion overhead in order to balance the tree. A bigger downfall for
ETC is that it is based on the global branching factor of the tree,
which in many network topologies results in a badly balanced tree.
We propose a distributed algorithm (MHS) that constructs a query

routing tree with minimum hot-spots (balanced tree). This trans-
lates in a reduced number of packet collisions during query exe-
cution. MHS has significantly reduced overhead for constructing a
tree and the resulting tree deviates far less from the optimally bal-
anced tree when compared to ETC as is shown in our experiments.

3. SYSTEMMODEL
In this section we formalize our system model and the basic ter-

minology that will be utilized in the subsequent sections. We give
formal definitions and proposition that we use in our algorithms
and use to define the balanced tree construction problem.
Let V denote a set of n sensing devices {v1, v2, ..., vn} in a

wireless sensor network. Now let G = (V,E) denote the network
graph that represents the implicit network edges E of the nodes in
V . The edges in E are implicit, because there is no explicit con-
nection between adjacent sensor nodes, but nodes are considered
neighbors if they are within communication range (i.e., a funda-
mental assumption underlying the operation of a radio network).
We assume that nodes can pose continuous queries over the sen-

sor network. The sensor node that issues the continuous query Q
is called querying node and is denoted as q. It actually supports
any type of continuous query (e.g. aggregate queries) as long as
the query produces a continuous result which is percolated to the
querying node. We will use the terms querying node and sink in-
terchangeably throughout the paper.
Assuming that the nodes have a restricted communication range

data will have to travel over a multi-hop path toward the querying
node. In this case a routing tree T is created connecting every node
over a multi-hop path with the sink. The querying node q is the
root of this tree and receives the information needed to answer the
query. We will denote as dv the depth of v in this tree.
In this work we want to construct shortest-path (minimum height)

trees in order to minimize query execution latency. Given a wire-
less sensor network, represented as a graphG = (V,E), and a sink
node q, we know in advance that the depth dv of node v will be
equal to the shortest hop distance from v to q in G. We can thus
define the subset of nodes Vd ⊆ V that are at depth d.

Definition 1. Given a tree T = (V,A) and an edge (u, v) ∈ A,
the node at the smaller depth (min{du, dv}) is called parent, and
the other is called child. We say that parent u adopted child v. Note
that since we deal with trees there can be only one parent per child.

Definition 2. Given a graph G(V,E) and a tree construction re-
quest T = (V,A), the set of candidate parents Pc ⊆ V of node
c ∈ V is Pc = {p|(c, p) ∈ E and dp = dc − 1}.

To minimize collisions during query execution, we need to min-
imize the number of children (degree) of a node in the tree T . In
order to minimize the degrees of all nodes we need to balance the
degrees between the nodes, keeping all degrees at a balanced min-
imum. In a minimum height tree the degrees of depth d can not
be balanced with degrees of a different depth d′, since each node
belongs to a predefined depth and has candidate parents only in the
immediate smaller depth. This lets us divide the definition and the
problem of balancing into pair of tree depths.

Definition 3. A balanced tree T is a tree where at each depth d
the variation of the degrees of depth d is the minimum possible.

The node degree variation of a set of nodes measures how differ-
ent their degrees are. Formally, we use the Coefficient of Variation
(COV) in order to express this variation. Generally, COV is used as
a normalized measure of dispersion of a distribution. It is defined
as the ratio of the standard deviation (σ) to the mean (µ): σ

µ
. The

coefficient of variation is useful because the deviation of data must
always be understood in the context of the mean of the data. It is
thus very suitable for comparing data of widely different means.

For ease of exposition consider the following directed tree T =
(V,E) with V = {s1, s2, s3, s4} and E = {(s2, s1), (s3, s1),
(s4, s2)}, where the pairs in the E set represent the edges of the
tree. Node A is the root of the tree and has two children s2 and
s3. In other words, node A is at depth zero and has degree1 =
2. The mean value of degrees in this depth is µ = degree1 and

the standard deviation σ is σ =
√

(degree1 − µ)2 = 0 Thus
COV = 0 thus the tree in depth zero is perfectly balanced. At
depth zero the tree is always perfectly balanced since there is only
one parent at this depth: the root. Similarly, for depth one µ =

(degree2 + degree3)/2, σ =

√

(degree2−µ)2+(degree3−µ)2

2
=

0.5 and COV = σ
µ
= 1. Note that COV can not be always zero

depending on the connections in the network. The formal definition
of our (balanced tree construction problem):

Definition 4. Given a networkG = (V,E) and a sink, construct
a minimum height tree T = (V,A)withA ⊆ E that minimizes the
coefficient of variation COVd for each depth 1 ≤ d ≤ height(T).

4. CENTRALIZED ALGORITHM
We present a centralized algorithm, COPT, to solve the prob-

lem from Definition 4. COPT aids at grasping the intuition behind
our distributed algorithm, presented later on, and also serves as the
ground truth in our experimental evaluation. COPT makes use of
a routine that solves a smaller subproblem called Balanced Assign-
ment Problem. As described in the previous section, we can con-
nect nodes only of neighboring depths. Balancing the tree T would
thus mean balancing each tree depth d individually.

Assignment problems have been studied as early as 1865 by Ja-
cobi [10] and exist in various disciplines. The assignment of each
node in Vd+1 of depth d+1 to some node in Vd of depth d is a type
of assignment problem [2]. In literature a similar problem to the
one defined in Definition 4 has been studied, that only minimizes
the maximum degree of the nodes in Vd. Given a bipartite graph
G = (Vd+1, Vd, C) the proposed algorithms return an assignment
A ⊆ C such that max{degree(v), ∀v ∈ Vd} is minimized. Such
algorithms are proposed in [2, 6, 5, 4].

Our subproblem of finding a balanced assignment between Vd

and Vd+1 is defined as follows:

Definition 5. Balanced Assignment Problem: Given the bipar-
tite graph G = (U,W,C) with bipartition (U,W) we are looking
for an assignment A ⊆ C such that COVW is minimized.

Note, that in our tree construction efforts we deal with sets of
nodes of consecutive tree levels, thus we could substitute U =
Vd+1 and W = Vd. For the next few paragraphs we need two
more notations: Given a set of edges E and a set of nodes V ,
nodes(V,E) denotes all the nodes v ∈ V incident to the edges
in E and edges(E, V) denotes the edges e ∈ E incident to nodes
in V .

We proposeMax_Degree that adapts theCardinality algorithm
proposed by Chang and Ho [4] to serve as a routine in our so-
lution to the Balanced Assignment problem. Max_Degree for-
mally it solves the following problem: Given a bipartite graph
G = (U,W,E) and a partial assignment Apart return an assign-
ment A ⊆ E with Apart ⊆ A, such that max{degree(v), ∀v ∈
W − node(W,Apart)} is minimized. We repeat Max_Degree
for each node in W that can reduce its degree further. The node
of W that forces Max_Degree to terminate is identified and the
edges to its children are put inside the partial result Apart. In each
repetition of the Max_Degree process we feed the partial result
of the previous call. Next we present the algorithm in Algorithm 1.

Algorithm 1 . Max_Degree

Input: bipartite graph G(U,W,E) with bipartition (U,W) and a
partial solution Apart

Output: new Apart for next iteration
1: A← Apart

2: maxDegree← 0;
3: U ′ ← U − nodes(U,Apart);
4: C′ ← C ∩ edges(C,U ′) ⊲ process unconnected children
5: v ← nil;
6: for all s ∈ U ′ do

7: set all vertices in U ′ andW unscanned;
8: erase labels of all vertices in U ′ andW ;
9: label s by “start”;
10: flag ← true;
11: while flag is true do
12: if there is a labeled and unscanned vertex i then
13: if i ∈ U then

14: identify all edges (i, j) ∈ C;
15: label each unlabeled node j by “i”;
16: mark i as scanned;
17: else if i ∈W and degree(i) ≥ maxDegree then
18: identify all edges (j, i) ∈ A;
19: label each j by “i”;
20: mark i as scanned;
21: else if i ∈W and degree(i) ≤ maxDegree then
22: Path← backtrack from i to s following labels;
23: A← (A− Path) ∪ (Path−A);
24: mark i as scanned;
25: end if

26: else

27: find edge (s, t) ∈ C′ with t ∈W and degree(t) =
maxDegree;

28: A← A+ (s, t);
29: v ← t;
30: maxDegree← maxDegree+ 1;
31: flag ← false;
32: end if

33: end while

34: end for

35: Y ← all(i, v) ∈ A; ⊲ A
is the solution to the assignment problem where the maximum
degree of the nodes not in Apart is minimized

36: Apart ← Apart + Y ;
37: output(Apart);

Due to lack of space we focus mainly on the changes made to
the initial Cardinality algorithm to get Max_Degree. For details
on Cardinality please see the work of Chang and Ho [4]. The main
change is in the input and the output. The input is a partial solution
Apart containing already some edges e ∈ C. The output of Car-

dinality is the edge list A constructed during the for-loop (Lines 6
- 34). Instead, the solution of Max_Degree, denoted as Apart,
only uses the input partial solution augmented by the edges from
A that connect to node v (Lines 35 - 36). Node v is the node that
forced the last increase in themaxDegree variable in Lines 29-30.

The next step is to present the Balanced Assignment Approxi-

mation (BAA) shown in Algorithm 2. It uses the Max_Degree
algorithm as a subroutine and uses it to minimize the degree of ev-
ery node in set W until no more degree can be decreased. After
every call to the routine, the outputApart is fed as input to the next
routine call. The routine just minimizes the degree of the nodes
u /∈ Apart. The Max_Degree routine is called iteratively until
degree(u) = 1, ∀u /∈ Apart. BAA performs the task of mini-
mizing the variation of the node degrees better than Cardinality.
Starting from the parent with maximum minimum degree and min-
imizing its degree, forces the nodes with lower degrees to share the
assignments with the high degree nodes. BAA calls Cardinality
|W | times and in every run i it iterates |C| − i nodes in the worst
case. The complexity of Cardinality is O(|U ||C|) [4] thus the
time complexity of BAA is bound above by (O(|W ||U |log|C|)).

Algorithm 2 . BAA

Input: bipartite graph G = (U,W,C)
Output: assignment A ⊆ C such that COVW is minimized
1: reducedDegree← inf
2: Apart ← 0
3: while degree(u) > 1, ∀u /∈ Apart do

4: Apart ←Max_Degree(G,Apart)
5: end while

Our centralized algorithm (COPT) solves the Balanced Assign-

ment problem for each set of neighboring depths Vd and Vd+1.
Combining the solution for each depth gives us a the query rout-
ing tree. A good upper bound for the complexity of COPT given
a graph G = (V,E) is O(|V |2log|E|). Although COPT is very
easy to implement in a distributed fashion, its high communication
cost makes it unattractive. In each loop of Max_Degree we scan
a node. In a distributed implementation of BAA this would trans-
late into a message between two nodes passing the process control
to the next node. Thus, the number of messages exchanged in a
decentralized version of COPT would be O(|V |2log|E|). Sending
all the needed information to the sink q and perform the algorithm
centrally, as presented above, would require only O(|V |). We only
use COPT as ground truth to compare our distributed algorithm
against in our evaluation in Section 6.

5. DISTRIBUTED ALGORITHM
We propose Minimum Hot-Spot (MHS), a distributed algorithm

that creates a balanced query routing tree connecting all nodes of
the network. First we show how this problem can be broken down
per tree depth in section 5.1 and determine the minimum possible
communication cost needed to construct a tree. In section 5.2 we
describe how to solve the subproblem per tree depth and in section
5.3 we present the whole MHS process.

5.1 Problem Breakdown
As in the centralized version and as explained in Section 3 op-

timal balancing between tree depths can be done independently.
Nodes of depth d interact with nodes in depth d + 1 to deter-
mine parent-child connections. At the end we combine the parent-
children assignments of each tree depth to get the final balanced
tree.

Given a graph G = (V,E) and a querying node r, we have a set
of nodes Vd at distance d from r, a set of nodes Vd+1 at distance d+
1 from r, and the subset of edges C ∈ E connecting Vd and Vd+1.
We solve the Balanced Assignment problem (Definition 5) for Vd

and Vd+1 using the minimum amount of messages exchanged.
The minimum number of messages needed to connect a child

to a parent is a request from the child and an acknowledgement
from the parent. Thus the minimum number of messages to connect
two bipartite sets is 2 ∗ |C|. The minimum amount of message
guarantees the minimum possible overhead for constructing a tree.
Our distributed algorithm,MHS, only needs this minimum number
of messages. This is made possible using our novel method called
sequential greedy parent selection.

5.2 Sequential Greedy Parent Selection
For every pair of node sets Vd and Vd+1 we propose sequen-

tial greedy parent selection for solving the Balanced Assignment

problem. Sequential greedy parent selection makes the child nodes
perform the parent selection sequentially. The order in which the
children pick their parent greatly affects the quality of the outcome.
We order the children in ascending order of their number of can-

didate parents, since some nodes have many choices and some oth-
ers only one. Nodes with more candidate parents should pick a
parent at a later timepoint. This way we avoid forcing a node, with
only a few candidate parents, choose between two parents that al-
ready have too many children. Making the children select parents
in sequential order also has a positive side effect: collisions are
reduced during the tree construction process.
To implement the above in a distributed environment we implic-

itly define time-slots. Time-slot i is reserved for children that have
i number of candidate parents. For nodes that belong to the same
time-slot we add a small random timeout that shifts their parent se-
lection inside their time-slot. We do not need to achieve absolute
order or absolute uniform spread inside a given timeslot. Formally,
the time-point t, where node v will select one of its candidate par-
ents from set P ∈ Vd to connect to, is given by

t = timeslotsize ∗ (|P |+ timeslotsize ∗ rand) (1)

where rand is a random number in the range (0, 1). The value
of timeslotsize is a network parameter and is not query-specific.
Too large values would add to query latency and very small values
would not exploit the sequential parent selection intuition. times-
lotsize is set in respect to the time needed to communicate a unit
of data between two neighboring nodes (timeunit), the size of an
acknowledgement message (ack_size) and the density of the net-
work, i.e., average number of neighbors per node (avg_neigh). In
particular,

timeslotsize = 2 ∗ timeunit ∗ ack_size ∗ avg_neigh
After defining the order of parent selection comes the actual se-

lection. To get a balanced assignment the nodes select the candidate
parent with the least children. They send an adoption request to the
chosen parent. A node that receives an adoption request always
accepts it and sends back an adoption acknowledgement. The num-
ber of children a node has adopted is, thus, equal to the number of
adoptions acknowledgments this node sent out.
Information about how many children a parent has is constructed

using snooping. Node v ∈ Vd+1 needs to estimate the number of
children of its candidate parents. Every time a candidate parent of
v transmits an adoption acknowledgment, node v snoops this mes-
sage and increases the counter for this candidate parent. Obviously,
the nodes that are early in the selection order will not have sufficient
information to make a sophisticated selection, but remember that

those nodes have a limited amount of choices. The nodes choosing
parent last have almost complete information about their candidate
parent and have a larger pool of candidate parents to choose from.
Note that using snooping, the process of counting children per can-
didate parent does not impose any communication overhead.

5.3 Constructing an MHS Tree
Everything starts as soon as a node r receives a query Q. Node

r creates a tree construction request tcr(Q, u, d(u)) containing the
query Q, the neighbor node u who forwarded the tree construc-
tion request, and the shortest hop distance d(u) from u to node r.
Initially u = r and d(u) = 0.

Every node v stores its distance to the root d(v) and the set of
candidate parents in a heap we callCandidate Parent Heap (CPH).
This heap is populated during the dissemination of the tree con-
structions requests, where node v can tell its neighbors and what
neighbor is 1 hop closer to the root using the received tcrs. The
top element of the heap is the parent with the least number of adop-
tions. Note that the heap does not hold duplicates. We describe
the MHS algorithm in an event-driven fashion: events followed by
actions.

Algorithm 3 . MHS - query dissemination

Event: node i receives a tree construction request tcr(Q, u, d(u))
Actions:

1: if d(i) = ∅ then
2: d(i)← d(u) + 1
3: CPH ← u
4: broadcast(tcr(Q, i, d(i)))
5: else if d(u) ≤ d(i)− 2 then

6: d(i)← d(u) + 1
7: CPH ← ∅
8: CPH ← u
9: broadcast(tcr(Q, i, d(i)))
10: else if d(n) = d(i)− 1 then

11: CPH ← u
12: end if

With every tree construction request tcr(Q, u, d(u)) received,
node i checks whether it received the same request before (Step 1
Algorithm 3). If not, it sets its depth d(i), adds the node u to its
candidate parent heap CPH and forwards the updated tree con-
struction request (Steps 2-4). Otherwise, node i checks whether
u is closer to the root than the nodes already in the CPH (Step
5). In this case, it clears the CPH and adds the new node u. It
also updates its own distance to the root d(i) and re-forwards the
tree construction request with the updated information (Steps 6-9).
Otherwise, if the tree construction request comes from a different
parent node, it adds it to the candidate parent heapCPH (Step 11).

Algorithm 4 . MHS - request adoption

Event: node i receives no more tree construction messages
Actions:

1: p← CPH.pop()
2: t← calculateAdoptionT imeout()
3: broadcast_after_timeout(t, ar(i, p))

When a node i stops receiving tree construction requests (Algo-
rithm 4), it pops the first entry p of the candidate parent heapCPH ,
which is the parent with the least number of adoptions (Step 1) so
far. Node i then calculates the timeout t to wait before sending an
adoption request ar(i, p) to p (Step 2-3). In section 5.2 and Equa-

0 1 2 3

4 5 6 7

8 9 10 11

12 q 14 15

0 1 2 3

4 5 6 7

8 9 11

q12 14 15

Figure 4: An MHS solution.

COVMHS = 3.01

0 1 2 3

4 5 6 7

8 9 10 11

12 q 14 15

0 1 2 3

5 7

9 10 11

q 14 15

Figure 5: An ETC solution.

COVETC = 4.67

tion 1 we describe how the timeout t is calculated. A candidate
parent p that receives an adoption request ar(u, p) always sends
back an adoption acknowledgement to the requesting node u.
When a node i receives an adoption acknowledgement aack(p, u)

and i is the intended receiver (i = u) , it sets its parent to p . Oth-
erwise, if the acknowledgement comes from one of its candidate
parents, it increments its number of adoptions in the CPH .
For example consider the 4x4 grid network in Figure 4 (grey and

black lines). For each depth d the node set Vd is V1 = {9, 12, 14},
V2 = {5, 8, 10, 15}, V3 = {1, 4, 6, 11}, V4 = {0, 2, 7} and
V5 = {3}. The candidate parent list Pv of each node v ∈ V
is P0 = {1, 4}, P1 = {5}, P2 = {1, 6}, P3 = {2, 7}, P4 =
{5, 8}, P5 = {9}, P6 = {5, 10}, P7 = {6, 11}, P8 = {9, 12},
P10 = {9, 11}, P11 = {10, 15}, P15 = {14}. According to
the size of their candidate parent list every node will have a se-
lection time-point in the time-slot timeslot_1 = {1, 5, 9, 12, 14},
timeslot_2 = {0, 2, 3, 4, 6, 7, 8, 10, 11}. Notice, nodes of depth
one (9, 12, 14) do not take part in the parent selection process. The
random parameter inside Equation 1 could cause any sequence in-
side a time-slot. Assume that the final selection sequence inside
timeslot_2 is 11, 6, 0, 2, 3, 4, 7, 8, 10.
The solution T given by MHS is shown in Figure 4. The de-

viation of the node degrees for T is COVMHS = 3.01, whereas
for COPT it is COVCOPT = 2.43 (Figure 3). For COPT node
6 connects to node 10, whereas for MHS it connects to 5. This is
caused by the randomness of the intra-slot sequence of parent se-
lection (Equation 1). Had node 6 been randomly set to select and
connect to a candidate parent first, it would have connected to 10.
Then 11 would be forced to connect to 5 giving an even better so-
lution. Node degrees forMHS are degreesMHS ={1, 1, 2, 1, 2, 1,
0, 1, 1, 1, 0, 0, 1, 0}.

6. EXPERIMENTAL EVALUATION
We show with experiments that our algorithm MHS improves

upon previous work for creating a query routing tree with mini-
mum hot-spots. We run experiments for various network layouts
and identify the cases where our algorithm prevails. Our efficiency
metrics include the balance of the tree, the maximum energy spent
per node and the total energy spent in the network. We compare
against our centralized algorithm COPT, and a previously proposed
distributed algorithm summarized in the next paragraph.

6.1 Energy-driven Tree Construction
Andreou et al [1] propose ETC, which is a 2 step process where

an arbitrary tree is created first and then it is reorganized into a
near-balanced tree. In the first step (Discovery Phase) we want to
get the the total number of sensors n and the height of the routing
tree h at the sink q. When variables n and h are received, the sink
calculates a uniform Optimal Branching Factor (β).
To get h and n at the sink an arbitrary query routing tree T ′ is

constructed using the First-Heard-From (FHF) approach. During
the construction, each node vi also records its level li in the tree.
A node vi also maintains a child node list children and an candi-
date parent list. When the initial tree is done, the sink queries the
network for the total number of sensors n and the height of the tree
h = lmax. They also send their candidate parent lists to their cur-
rent parent under T ′. The nodes reply over the initial tree back to
the sink and when variables n and h are received, the sink calcu-
lates the optimal branching factor β = h

√
n for the whole tree.

In the second step (Balancing Phase) the sink disseminates the
β value to the n nodes using the initial tree T ′. Upon receiving β,
each sensor conducts a number of local rearrangements to its local
topology in order to create a near-balanced topology. In particular,
when a node vi receives β it tries to reassign as many of its children
needed such that degreevi ≤ β. It uses the candidate parent lists
from its children received during the Discovery Phase to choose a
new parent newParent for its children, making sure not all are
reassigned to the same new parent. Each child vj that receives a
parent reassignment tries to connect to the newly assigned parent
newParent. Notice that if a node newParent can not accommo-
date the connect request from a child vj , then vj has to report back
to the current parent vi and vi has to pick a new parent from the
candidate parent list. This procedure is repeated until completion
or until the alternative parents are exhausted, where the a different
child is chosen for parent reassignment. If no child can be reas-
signed then they all stay connected to their current parent vi.

As an example consider 4x4 grid network. ETC first constructs
an arbitrary initial tree T ′ using the First Heard From technique.
In our example it is the tree shown in Figure 2. Then the querying
node q collects information to compute β which in this case is β =
3.06. The node degrees for T ′ are degreesT ′ ={0, 3, 1, 0, 2, 2,
0, 0, 2 , 1, 0, 0, 1 , 0} since all degrees are less than β no node
reassigns any of its children and the resulting tree T for the ETC

algorithm (Figure 5) is the same as T ′ giving COVETC = 4.67.

6.2 Experimental Setup
We run all the experiments on an Intel Core2 Duo 2.5Ghz pro-

cessor with 3GB RAM running Ubuntu Linux. To simulate a WSN
and to implement our algorithms we used the SensorSim wireless
sensor network simulation framework together with the composi-
tional discrete event simulator J-Sim [11].

We use three layouts: grid, grid with diagonal and random. For
the random layout we randomly place n nodes in a 1000x1000 area,
set their communication range to 2 ∗ 1000/√n, and make sure
the network is connected, resulting in a sparse connected graphs.
This emulates a real world WSN application where nodes are usu-
ally placed randomly and obstacles, failures and transmission range
variations prevent any predefined structured layout.

We present the performance of each algorithm in Section 6.3,
and then the overhead that is needed to construct this tree, i.e. the
energy consumed in 6.4. Note that the x-axis of every figure rep-
resents the square root of the number of nodes in the network. For
x = 9 the network size is n = 81 and for x = 27 n = 729.

6.3 Quality of Query Routing Tree
As described theoretically in Section 3 and experimentally in [1],

we save on energy when we construct a balanced query routing tree.
The performance of an algorithms is defined by how balanced the
resulting query routing tree is. The balance of the tree is given
by the coefficient of variation COV of the degrees of the nodes
(Section 3). Smaller COV values signify a better balanced tree.

In the structured layouts (Figures 7a,b and 6a,b) ETC performs
better with increasing network size, whereasMHS the performance

(a) Grid network

(b) Grid with diagonals network

(c) Random network

Figure 6: Balance of Tree

(a) Grid network

(b) Grid with diagonals network

(c) Random network

Figure 7: Balance of Tree

(a) Grid network

(b) Grid with diagonals network

(c) Random network

Figure 8: Maximum energy

(a) Grid network

(b) Grid with diagonals network

(c) Random network

Figure 9: Total energy

stays almost constant. In structured layouts each node has ap-
proximately the same amount of possible parents. When the num-
ber of candidate parents varies greatly (e.g. random layout), ETC
performs poorly deteriorating with network size (Figures 6(c) and
7(c)), while MHS is almost optimal. Experiments showing how
much energy we save during query execution can be found in [1].

6.4 Tree Construction Overhead
To simulate the energy, we set: 0.66 Watt power consumption

for transmission, 0.395 Watt power consumption for reception, and
19.2 kbps data rate. We record the maximum energy for each node
(Figure 8) and the total energy consumed in the network (Figure 9).
The maximum energy per node (Fig. 8) stays almost constant

with network size. This is attributed to the distributed nature of
MHS and ETC. The total energy (Fig. 9) scales nicely with network
size. Note that the network size is increased exponentially, thus the
total energy scales linear to the network size for MHS and ETC.
For comparison, we also show the energy needed to construct our

query routing tree using our centralized optimal COPT algorithm.
This corresponds to collecting the needed information centrally at
the sink, running COPT, disseminating the solution back to the net-
work and letting the nodes connect to their predefined parent. The
high cost of COPT makes it unattractive. Note that the values for
the COPT algorithm are shown in bold text on top of the white bars,
since the bars did not fit.

7. CONCLUSIONS
We present a novel distributed algorithm (MHS) that constructs

a query routing tree that minimizes collisions during query execu-
tion. It was shown in previous work that minimizing collisions dur-
ing query execution saves significant amount of energy [1]. In the
same paper it is shown that balancing the node degrees of a query
routing tree significantly reduces collisions during query execution.

We address the inefficiencies of the previously proposed algo-
rithm and propose a simpler, purely distributed, parameter-free,
cheaper and more efficient algorithm. Our resulting query trees
are optimally balanced, guarantee minimum collisions and mini-
mum latency for query execution and allow for opportunistic in-
network processing. MHS poses the minimum possible communi-
cation overhead to the network and is parameter-free as opposed
to previously proposed algorithms. Our proposed algorithm can be
used for acquiring data from the nodes of any distributed systems
where the main objective is to minimize the communication cost.

Acknowledgments

This work was partly supported by the SensorGrid4Env andMODAP

European Commission projects, and the University of Cyprus by a

Startup Grant of the second author.

8. REFERENCES

[1] P. Andreou, A. Pamboris, D. Zeinalipour-Yazti, P. K.
Chrysanthis, and G. Samaras. Etc: Energy-driven tree
construction in wireless sensor networks. In Mobile Data

Management, pages 513–518, 2009.

[2] R. E. Burkard, M. Dell’Amico, and S. Martello. Assignment
Problems. SIAM, Philadelphia, 2009.

[3] A. T. Campbell, S. B. Eisenman, N. D. Lane, E. Miluzzo,
R. A. Peterson, H. Lu, X. Zheng, M. Musolesi, K. Fodor, and
G.-S. Ahn. The rise of people-centric sensing. IEEE Internet

Computing, 12:12–21, 2008.

[4] G. J. Chang and P.-H. Ho. The β-assignment problem in
general graphs. Comput. Oper. Res., 24(8):757–765, 1997.

[5] R. S. Chang and R. C. T. Lee. On a scheduling problem
where a job can be executed only by a limited number of
processors. Comput. Oper. Res., 15(5):471–478, 1988.

[6] Y. L. Chen and Y. H. Chin. Scheduling unit-time jobs on
processors with different capabilities. Comput. Oper. Res.,
16(5):409–417, 1989.

[7] H. Dai and R. Han. A node-centric load balancing algorithm
for wireless sensor networks. In Global Telecommunications
Conference, volume 1, pages 548– 552, December 2003.

[8] B. Das and V. Bharghavan. Routing in ad-hoc networks using
minimum connected dominating sets. pages 376–380, 1997.

[9] W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan.
Energy-efficient communication protocol for wireless
microsensor networks. In HICSS Hawaii International
Conference on System Sciences, Washington, DC, 2000.

[10] J. C. G. Jacob. De investigando ordine systematis aequation-
um differentialum vulgarium cujuscunque. 5:193–216, 1890.

[11] J. Kacer. Discrete event simulations with j-sim. In
Intermediate Representation Engineering for virtual

machines, pages 13–18, Dublin, Ireland, 2002.

[12] S. Kim, R. Fonseca, P. Dutta, A. Tavakoli, D. Culler,
P. Levis, S. Shenker, and I. Stoica. Flush: a reliable bulk
transport protocol for multihop wireless networks. In
SenSys’07, pages 351–365, Sydney, Australia, 2007.

[13] S. Kim, S. Pakzad, D. E. Culler, J. Demmel, G. Fenves,
S. Glaser, and M. Turon. Health monitoring of civil
infrastructures using wireless sensor networks. In IPSN,
pages 254–263, Cambridge, Massachusetts, USA, 2007.

[14] J. F. Kurose and K. Ross. Computer Networking: A
Top-Down Approach Featuring the Internet. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2002.

[15] J. Li, A. Deshpande, and S. Khuller. On computing
compression trees for data collection in sensor networks.
CoRR, abs/0907.5442, 2009.

[16] S. Lindsey, C. S. Raghavendra, and K. M. Sivalingam. Data
gathering algorithms in sensor networks using energy
metrics. IEEE Parallel Distrib. Syst., 13(9):924–935, 2002.

[17] S. Madden, M. J. Franklin, J. Hellerstein, and W. Hong. Tag:
a tiny aggregation service for ad-hoc sensor networks. In In
OSDI, 2002.

[18] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong.
Tinydb: an acquisitional query processing system for sensor
networks. ACM Trans. Database Syst., 30(1):122–173, 2005.

[19] R. Murty, A. Gosain, M. Tierney, A. Brody, A. Fahad,
J. Bers, and M. Welsh. Citysense: A vision for an urban-scale
wireless networking testbed. In International Conference on

Technologies for Homeland Security, Waltham, MA, 2008.

[20] N. A. Pantazis, D. J. Vergados, D. D. Vergados, and

C. Douligeris. Energy efficiency in wireless sensor networks
using sleep mode tdma scheduling. Ad Hoc Networks,
7(2):322–343, 2009.

[21] S. Singh and C. S. Raghavendra. Pamas—power aware
multi-access protocol with signalling for ad hoc networks.
SIGCOMM Comput. Commun. Rev., 28(3):5–26, 1998.

[22] R. Szewczyk, E. Osterweil, J. Polastre, M. Hamilton, A. M.
Mainwaring, and D. Estrin. Habitat monitoring with sensor
networks. Communications ACM, 47(6):34–40, 2004.

[23] V. Tsaoussidis and H. G. Badr. Tcp-probing: Towards an
error control schema with energy and throughput
performance gains. In ICNP, pages 12–21, 2000.

[24] Voltree-Power-Incorporated. http://www.voltreepower.com/.

[25] Y. Xu, J. Heidemann, and D. Estrin. Geography-informed
energy conservation for ad hoc routing. InMobile computing

and networking, pages 70–84, New York, NY, USA, 2001.

[26] T. Yan, Y. Bi, L. Sun, and H. Zhu. Probability based dynamic
load-balancing tree algorithm for wireless sensor networks.
In Int. Conf. Networking and Mobile Computing, 2005.

[27] Y. Yao and J. Gehrke. Query processing in sensor networks.
In CIDR, Conf. on Innovative Data Systems Research, 2003.

[28] W. Ye, J. Heidemann, and D. Estrin. Medium access control
with coordinated adaptive sleeping for wireless sensor
networks. IEEE/ACM Trans. Netw., 12(3):493–506, 2004.

[29] D. Zeinalipour-Yazti, P. Andreou, P. K. Chrysanthis, and
G. Samaras. Mint views: Materialized in-network top-k
views in sensor networks. InMDM, pages 182–189, 2007.

[30] D. Zeinalipour-Yazti, S. Lin, V. Kalogeraki, D. Gunopulos,
and W. A. Najjar. Microhash: An efficient index structure for
flash-based sensor devices. In FAST, pages 31–44, 2005.

[31] P. Zhang, C. M. Sadler, S. A. Lyon, and M. Martonosi.
Hardware design experiences in zebranet. In SenSys, pages
227–238, Baltimore, MD, USA, 2004.

[32] Q. Zhang, Z. Xie, W. Sun, and B. Shi. Tree structure based
data gathering for maximum lifetime in wireless sensor
networks. In APWeb, Asia-Pacific Web Conference, pages
513–522, Shanghai, China, 2005. Springer.

