
Comparison of Access Methods for Time-Evolving Data
BETTY SALZBERG

Northeastern University

AND

VASSILIS J. TSOTRAS

University of California, Riverside

This paper compares different indexing techniques proposed for supporting efficient
access to temporal data. The comparison is based on a collection of important
performance criteria, including the space consumed, update processing, and query
time for representative queries. The comparison is based on worst-case analysis,
hence no assumptions on data distribution or query frequencies are made. When a
number of methods have the same asymptotic worst-case behavior, features in the
methods that affect average case behavior are discussed. Additional criteria
examined are the pagination of an index, the ability to cluster related data
together, and the ability to efficiently separate old from current data (so that
larger archival storage media such as write-once optical disks can be used). The
purpose of the paper is to identify the difficult problems in accessing temporal data
and describe how the different methods aim to solve them. A general lower bound
for answering basic temporal queries is also introduced.

Categories and Subject Descriptors: H.2.2 [Database Management]: Physical
Design; Access methods; H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing—Indexing methods

General Terms: Management, Performance

Additional Key Words and Phrases: Access methods, I/O performance, structures,
temporal databases

1. INTRODUCTION

Conventional database systems capture
only a single logical state of the modeled
reality (usually the most current). Us-

ing transactions, the database evolves
from one consistent state to the next,
while the previous state is discarded
after a transaction commits. As a result,
there is no memory with respect to prior

Betty Salzberg’s work was supported by NSF grants IRI-9303403 and IRI-9610001. Vassilis Tsotras’
work was performed while the author was with the Department of Computer Science, Polytechnic
University, Brooklyn, NY 11201; it was supported by NSF grants IRI-9111271, IRI-9509527, and by the
New York State Science and Technology Foundation as part of its Center for Advanced Technology
program.
Authors’ addresses: B. Salzberg, College of Computer Science, Northeastern University, Boston, MA
02115; email: salzberg@ccs.neu.edu; V. J. Tsotras, Department of Computer Science and Engineering,
University of California, Riverside, Riverside, CA 92521; email: tsotras@cs.ucr.edu.
Permission to make digital / hard copy of part or all of this work for personal or classroom use is granted
without fee provided that the copies are not made or distributed for profit or commercial advantage, the
copyright notice, the title of the publication, and its date appear, and notice is given that copying is by
permission of the ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to
lists, requires prior specific permission and / or a fee.
© 1999 ACM 0360-0300/99/0600–0158 $5.00

ACM Computing Surveys, Vol. 31, No. 2, June 1999

states of the data. Such database sys-
tems capture a single snapshot of real-
ity (also called snapshot databases), and
are insufficient for those applications
that require the support of past, cur-
rent, or even future data. What is
needed is a temporal database system
[Snodgrass and Ahn 1986]. The term
“temporal database” refers in general to
a database system that supports some
time domain, and is thus able to man-
age time-varying data. (Note that this
definition excludes user-defined time,
which is an uninterpreted time domain
directly managed by the user and not by
the database system.)

Research in temporal databases has
grown immensly in recent years [Tso-
tras and Kumar 1996]. Various aspects
of temporal databases have been exam-
ined [Ozsoyoglu and Snodgrass 1995],
including temporal data models, query
languages, access methods, etc. Proto-
type efforts appear in Böhlen [1995]. In
this paper we provide a comparison of
proposed temporal access methods, i.e.,
indexing techniques for temporal data.
We attempt to identify the problems in
the area, together with the solutions
given by each method.

A taxonomy of time in databases was

developed in Snodgrass and Ahn [1995].
Specifically, transaction time and valid
time have been proposed. Transaction
and valid time are two orthogonal time
dimensions. Transaction time is defined
as the time when a fact is stored in the
database. It is consistent with the
transaction serialization order (i.e., it is
monotonically increasing), and can be
implemented using the commit times of
transactions [Salzberg 1994]. Valid time
is defined as the time when a fact be-
comes effective (valid) in reality. De-
pending on the time dimension(s) sup-
ported, there are three kinds of
temporal databases: transaction-time,
valid-time, and bitemporal [Dyreson et
al. 1994].

A transaction-time database records
the history of a database activity rather
than real-world history. As such, it can
“rollback” to one of its previous states.
Since previous transaction times cannot
be changed (every change is stamped
with a new transaction time), there is
no way to change the past. This is use-
ful for applications in auditing, billing,
etc. A valid-time database maintains
the entire temporal behavior of an en-
terprise as best known now. It stores
our current knowledge about the enter-
prise’s past, current, or even future be-
havior. If errors are discovered in this
temporal behavior, they are corrected
by modifying the database. When a cor-
rection is applied, previous values are
not retained. It is thus not possible to
view the database as it was before the
correction. A bitemporal database com-
bines the features of the other two
types. It more accurately represents re-
ality and allows for retroactive as well
as postactive changes.

The tuple-versioning temporal model
[Lorentzos and Johnson 1988; Navathe
and Ahmed 1987] is used in this paper.
Under this model, the database is a set
of records (tuples) that store the ver-
sions of real-life objects. Each such
record has a time-invariant key (surro-
gate) and, in general, a number of time-
variant attributes; for simplicity, we as-
sume that each record has exactly one

CONTENTS

1. Introduction
2. Problem Specification
3. Items for comparison

3.1 Queries
3.2 Access Method Costs
3.3 Index Pagination and Data Clustering
3.4 Migration of Past Data to Another Location
3.5 Lower Bounds on I/O Complexity

4. Efficient Method Design For Transaction/Bitemporal
Data
4.1 The Transaction Pure-Timeslice Query
4.2 The Transaction Pure-Key Query
4.3 The Transaction Range-Timeslice Query
4.4 Bitemporal Queries
4.5 Separating Past from Current Data and Use of

WORM disks
5. Method Classification and Comparison

5.1 Transaction-Time Methods
5.2 Valid-Time Methods
5.3 Bitemporal Methods

6. Conclusions

Comparison of Access Methods for Time-Evolving Data • 159

ACM Computing Surveys, Vol. 31, No. 2, June 1999

time-varying attribute. In addition, it
has one or two intervals, depending on
which types of time are supported. Each
interval is represented by two at-
tributes: start_time and end_time.

Accurate specification of the problem
that needs to be solved is critical in the
design of any access method. This is
particularly important in temporal da-
tabases, since problem specification de-
pends dramatically on the time dimen-
sion(s) supported. Whether valid and/or
transaction times are supported directly
affects the way records are created or
updated. In the past, this resulted in
much confusion in the design of tempo-
ral access methods. To exemplify the
distinct characteristics of the transac-
tion and valid time dimensions, we use
a separate abstraction to describe the
central underlying problem for each
kind of temporal database.

The query performance of the meth-
ods examined is compared in the con-
text of various temporal queries. In or-
der to distinguish among the various
kinds of queries, we use a general tem-
poral query classification scheme [Tso-
tras et al. 1998]. The paper also intro-
duces lower bounds for answering basic
temporal queries. Each lower bound as-
sumes a disk-oriented environment and
describes the minimal I/O for solving
the query if space consumption is kept
minimal. We also show access methods
that achieve a matching upper bound
for a temporal query.

Among the methods discussed, the
ones that support transaction time (ei-
ther in a transaction time or in a bitem-
poral environment) assume a linear
transaction-time evolution [Ozsoyoglu
and Snodgrass 1995]. This implies that
a new database state is created by up-
dating only the current database state.
Another option is the so-called branch-
ing transaction time [Ozsoyoglu and
Snodgrass 1995], where evolutions can
be created from any past database
state. Such branched evolutions form a
tree-of-evolution that resembles the ver-
sion-trees found in versioning environ-
ments. A version-tree is formed as new

versions emanate from any previous
version (assume that no version merg-
ing is allowed). There is however a dis-
tinct difference that makes branched
evolutions a more difficult problem. In a
version-tree, every new version is
uniquely identified by a successive ver-
sion number that can be used to access
it directly [Driscoll et al. 1989; Lanka
and Mays 1991]. In contrast, branched
evolutions use timestamps. These time-
stamps enable queries on the evolution
on a given branch. However, times-
tamps are not unique. The same time
instant can exist as a timestamp in
many branches in a tree-of-evolution
simply because many updates could
have been recorded at that time in var-
ious branches. We are aware of only two
works that address problems related to
indexing branching transaction time,
namely Salzberg and Lomet [1995] and
Landau et al. [1995]. In the ongoing
work of Salzberg and Lomet [1995], ver-
sion identifiers are replaced by (branch
identifier, timestamp) pairs. Both a tree
access method and a forest access
method are proposed for these branched
versions. Landau et al. [1995] provides
data structures for (a) locating the rela-
tive position of a timestamp on the evo-
lution of a given branch and (b) locating
the same timestamp among sibling
branches. Clearly, more work is needed
in this area.

Other kinds of temporal, in particular
time-series, queries have recently ap-
peared: [Agrawal and Swami 1993; Fa-
loutsos et al. 1994; Jagadish et al. 1995;
Seshadri et al. 1996; Motakis and Za-
niolo 1997]. A pattern and a time-series
(an evolution) are given, and the typical
query asks for all times that a similar
pattern appeared in the series. The
search involves some distance criterion
that qualifies when a pattern is similar
to the given pattern. The distance crite-
rion guarantees no false dismissals
(false alarms are eliminated afterwards).
Whole pattern-matching [Agrawal et al.
1993] and submatching [Faloutsos et al.
1994] queries have been examined. Such
time-series queries are reciprocal in

160 • B. Salzberg and V. J. Tsotras

ACM Computing Surveys, Vol. 31, No. 2, June 1999

nature to the temporal queries addressed
here (which usually provide a time in-
stant and ask for the pattern at that
time), and are not covered in this paper.

The rest of the paper is organized as
follows: Section 2 specifies the basic
problem underlying each of the three
temporal databases. We categorize a
method as transaction-time, valid-time,
and bitemporal, depending on which
time dimension(s) it most efficiently
supports. Section 3 presents the items
on which our comparison was based,
including the lower bounds. Section 4
discusses in more detail the basic char-
acteristics that a good transaction or
bitemporal access method should have.
The examined methods are presented in
Section 5. The majority falls in the
transaction-time category, which com-
prises the bulk of this paper (Section
5.1). Within the transaction-time cate-
gory, we further classify methods ac-
cording to what queries they support
more efficiently (key-only, time-only, or
time-key methods). A table summariz-
ing the worst-case performance charac-
teristics of the transaction-time meth-
ods is also included. For completeness,
we also cover valid-time and bitemporal
methods in Sections 5.2 and 5.3, respec-
tively. We conclude the paper with a
discussion on the remaining open prob-
lems.

2. PROBLEM SPECIFICATION

The following discussion is influenced
by Snodgrass and Ahn [1986], where the
differences between valid and transac-
tion times were introduced and illus-

trated by various examples. Here we
attempt to identify the implications for
access method design from support of
each time dimension.

To visualize a transaction-time data-
base, consider first an initially empty
set of objects that evolves over time as
follows. Time is assumed to be discrete
and is described by a succession of con-
secutive nonnegative integers. Any
change is assumed to occur at a time
indicated by one of these integers. A
change is the addition or deletion of an
object or the value change (modifica-
tion) of the object’s attribute. A real life
example is the evolution of the employ-
ees in a company. Each employee has a
surrogate (ssn) and a salary attribute.
The changes include additions of new
employees (as they are hired or re-
hired), salary changes or employee dele-
tions (as they retire or leave the compa-
ny). Since an attribute value change can
be represented by the artificial deletion
of the object, followed by the simulta-
neous rebirth of the object with the
modified attribute, we may concentrate
on object additions or deletions. Such an
evolution appears in Figure 1. An object
is alive from the time it is added in the
set and until (if ever) it is deleted from
the set. The state of the evolving set at
time t, namely s~t!, consists of all the
alive objects at t. Note that changes are
always applied to the most current state
s~t!, i.e., past states cannot be changed.

Assume that the history of the above
evolution is to be stored in a database.
Since time is always increasing and the
past is unchanged, a transaction time

Figure 1. An example evolution where changes occur in increasing time order. The evolution is
depicted at time t10. Lines ending in ’.’ correspond to objects that have not yet been deleted. At t10,
state s~t9! 5 $a, f, g% is updated by the addition of object e to create state s~t10! 5 $a, f, g, e%.

Comparison of Access Methods for Time-Evolving Data • 161

ACM Computing Surveys, Vol. 31, No. 2, June 1999

database can be utilized with the im-
plicit updating assumption: that when
an object is added or deleted from the
evolving set at time t, a transaction
updates the database system about this
change at the same time, i.e., this trans-
action has commit timestamp t.

When a new object is added on the
evolving set at time t, a record repre-
senting this object is stored in the data-
base accompanied by a transaction-time
interval of the form @t, now!. now is a
variable representing the current trans-
action time, used because at the time
the object is born its deletion time is yet
unknown. If this object is later deleted
at time t9 the transaction-time interval
of the corresponding record is updated
to @t, t9!. Thus, an object deletion in the
evolving set is represented as a “logical”
deletion in the database (the record of
the deleted object is still retained in the
database, but with a different transac-
tion end_time).

Since a transaction-time database
system keeps both current and past
data, it is natural to introduce the no-
tion of a logical database state as a
function of time. We therefore distin-
guish between the database system and
the logical database state. (This is not
required in traditional database sys-
tems because there always exists ex-
actly one logical database state—the
current one.) The logical database state
at time t consists of those records whose
transaction time interval contains t.
Under the implicit updating assump-
tion, the logical database state is equiv-
alent to the state s~t! of the observed
evolving set. Since an object can be re-
born, there may be many records (or
versions) that are stored in the data-
base system representing the history of
the same object. But all these records
correspond to disjoint transaction-time
intervals in the object’s history, and
each such record can belong to a single
logical database state.

To summarize, an access method for a
transaction-time database needs to (a)

store its past logical states, (b) support
addition/deletion/modification changes
on the objects of its current logical
state, and (c) efficiently access and
query the objects in any of its states.

In general, a fact can be entered in
the database at a different time than
when it happened in reality. This im-
plies that the transaction-time interval
associated with a record is actually re-
lated to the process of updating the
database (the database activity), and
may not accurately represent the period
the corresponding object was alive in
reality.

A valid-time database has a different
abstraction. To visualize it, consider a
dynamic collection of interval-objects.
We use the term interval-object to em-
phasize that the object carries a valid-
time interval to represent the validity
period of some object property. (In con-
trast, and to emphasize that transac-
tion-time represents the database activ-
ity rather than reality, we term the
objects in the transaction-time abstrac-
tion as plain-objects.) The allowable
changes are the addition/deletion/ modi-
fication of an interval-object, but the
collection’s evolution (past states) is not
kept. An example of a dynamic collec-
tion of object-intervals appears in Fig-
ure 2.

As a real-life example, consider the
collection of contracts in a company.
Each contract has an identity (con-
tract_no), an amount attribute, and an
interval representing the contract’s du-
ration or validity. Assume that when a
correction is applied only the corrected
contract is kept.

A valid-time database is suitable for
this environment. When an object is
added to the collection, it is stored in
the database as a record that contains
the object’s attributes (including its val-
id-time interval). The time of the
record’s insertion in the database is not
kept. When an object deletion occurs,
the corresponding record is physically
deleted from the database. If an object
attribute is modified, its corresponding
record attribute is updated, but the pre-

162 • B. Salzberg and V. J. Tsotras

ACM Computing Surveys, Vol. 31, No. 2, June 1999

vious attribute value is not retained.
The valid-time database keeps only the
latest “snapshot” of the collection of in-
terval-objects. Querying a valid-time
database cannot give any information
on the past states of the database or
how the collection evolved. Note that
the database may store records with the
same surrogate but with nonintersect-
ing valid-time intervals.

The notion of time is now related to
the valid-time axis. Given a valid-time
point, interval-objects can be classified
as past, future, or current (alive), as
related to this point, if their valid-time
interval is before, after, or contains the
given point. Valid-time databases are
said to correct errors anywhere in the
valid-time domain (past, current, or fu-
ture) because the record of any interval-
object in the collection can be changed
independently of its position on the val-
id-time axis.

An access method for a valid-time da-
tabase should (a) store the latest collec-
tion of interval-objects, (b) support addi-
tion/deletion/modification changes to

this collection, and (c) efficiently query
the interval-objects contained in the col-
lection when the query is asked.

Reality is more accurately repre-
sented if both time dimensions are sup-
ported. The abstraction of a bitemporal
database can be viewed as keeping the
evolution (through the support of trans-
action-time) of a dynamic collection of
(valid-time) interval-objects. Figure 3
(taken from Kumar et al. [1998]) offers
a conceptual view of a bitemporal data-
base. Instead of a single collection of
interval-objects, there is a sequence of
collections indexed by transaction time.
If each interval-object represents a com-
pany contract, we can now represent
how our knowledge about such con-
tracts evolved. When an interval-object
is inserted in the database at transac-
tion-time t, a record is created with the
object’s surrogate (contract_no), at-
tribute (contract amount) and valid-
time interval (contract duration), and
an initial transaction-time interval [t,
now). The transaction-time interval
endpoint is changed to another transac-
tion time if this object is updated later.
For example, the record for interval-
object I2 has transaction-time interval
[t2, t4), since it was inserted in the data-
base at transaction-time t2 and “delet-
ed” at t4. Such a scenario occurs if at
time t4 we realize that a contract was
wrongly inserted at the database.

A bitemporal access method should (a)
store its past logical states, (b) support
addition/deletion/modification changes on
the interval-objects of its current logical
state, and (c) efficiently access and query
the interval-objects on any of its states.

Figure 3 is helpful in summarizing
the differences among the underlying
problems of the various database types.
A transaction-time database differs
from a bitemporal database in that it
maintains the history of an evolving set
of plain-objects instead of interval-ob-
jects. A valid-time database differs from
a bitemporal since it keeps only one
collection of interval-objects (the latest).
Each collection C~ti! can be thought of

Figure 2. Two states of a dynamic collection of
interval-objects. Only the valid-time intervals of
the objects are shown. The new collection (b) is
created from the previous collection (a) after de-
leting object I1 and adding object I2. Only the new
(latest) collection is retained.

Comparison of Access Methods for Time-Evolving Data • 163

ACM Computing Surveys, Vol. 31, No. 2, June 1999

on its own as a separate valid-time da-
tabase. A transaction-time database dif-
fers from a (traditional) snapshot data-
base in that it also keeps its past states
instead of only the latest state. Finally,
the difference between a valid-time and
a snapshot database is that the former
keeps interval-objects (and these inter-
vals can be queried).

Most of the methods directly support
a single time-dimension. We categorize
methods that take advantage of increas-
ing time-ordered changes as transac-
tion-time access methods, since this is
the main characteristic of transaction-
time. (The bulk of this paper deals with
transaction-time methods.) Few ap-
proaches deal with valid-time access
methods, and even fewer with the bi-
temporal methods category (methods
that support both time dimensions on
the same index).

3. ITEMS FOR COMPARISON

This section elaborates on the items
used in comparing the various access
methods. We start with the kinds of
queries examined and proceed with
other criteria.

3.1 Queries

From a query perspective, valid-time
and a transaction-time databases are
simply collections of intervals. Figures

1, 2(a), and 2(b) differ on how these
intervals were created (which is impor-
tant to the access method’s update and
space performance) and their meaning
(which is important to the application).
Hence, for single-time databases, (valid
or transaction) queries are of similar
form. First, we discuss queries in the
transaction-time domain, i.e., interval T
below corresponds to a transaction-time
interval and “history” is on the transac-
tion-time axis. The queries can be cate-
gorized into the following classes:

(I) Given a contiguous interval T, find
all objects alive during this inter-
val.

(II) Given a key range and a contigu-
ous time interval T, find the ob-
jects with keys in the given range
that are alive during interval T.

(III) Given a key range, find the history
of the objects in this range.

A special case of class (I) occurs when
interval T is reduced to a single trans-
action time instant t. This query is
termed the transaction pure-timeslice.
In the company employee example, this
query is “find all employees working at
the company at time t.” It is usually the
case that an access method that effi-
ciently solves the timeslice query is also

Figure 3. A conceptual view of a bitemporal database. The t-axis (v-axis) corresponds to transaction
(valid) times. Only the valid-time interval is shown from each interval-object. At transaction time t1 the
database recorded that interval-object I1 is added on collection C~t1!. At t5 the valid-time interval of
object I1 is modified to a new length.

164 • B. Salzberg and V. J. Tsotras

ACM Computing Surveys, Vol. 31, No. 2, June 1999

efficient for the more general interval
query; so we consider the timeslice
query as a good representative of class
(I) queries.

Similarly for class (II). Special cases
include combinations where the key
range, and/or the transaction time in-
terval, contain a single key and a single
time instant, respectively. For simplic-
ity, we consider the representative case
where the time interval is reduced to a
single transaction time instant; this is
the transaction range-timeslice query
(“find the employees working at the
company at time t and whose ssn be-
longs in range K”).

From class (III), we chose the special
case where the key range is reduced to a
single key, as in: “find the salary history
of employee with ssn k.” This is the
transaction pure-key query. If employee
k ever existed, the answer would be the
history of salaries of that employee, else
the answer is empty. In some methods,
an instance of an employee object must
be provided in the query and its previ-
ous salary history found (this is because
these methods need to include a time
predicate in their search). This special
pure-key query (termed the pure-key
with time predicate) is of the form: “find
the salary history of employee k who
existed at time t.”

The range and pure timeslices and
pure key with time predicate correspond
to “range” queries in Rivest’s categori-
zation [Rivest 1976], since being “alive”
corresponds to two range queries,
namely start.time # t and end.time .
t. The pure-key without time predicate

is an example of the “exact-match”
query, as all objects with the given key
should be retrieved.

When no key range is specified, query
class (I) can be thought as a special case
of class (II), and class (III) a special case
of (II) when no interval is specified
(rather, all times in history are of inter-
est). As some of the proposed methods
are better suited for answering queries
from a particular class, we discuss all

three classes separately. We indicate
when an access method, as originally
presented, does not address queries
from a given class, but feel that such
queries could be addressed with a slight
modification that does not affect the
method’s behavior.

Similarly, we can define the valid-
time pure-timeslice for valid-time data-
bases (“find all contracts valid at time
v”), valid-time range-timeslice (“find all
contracts with numbers in range K and
which are valid at v”), etc. A bitemporal
database enables queries in both time
dimensions: “find all contracts that
were valid on v 5 January 1, 1994, as
recorded in the database at transaction
time t 5 May 1, 1993.” From all con-
tracts in the collection C~t! for t 5 May
1, 1993, the query retrieves only the
contracts that would be valid on Jan. 1,
1994.

The selection of the above query
classes is definitely not complete, but
contains basic, nontrivial queries. In
particular, classes (I) and (II) relate to
intersection-based queries, i.e., the an-
swer consists of objects whose interval
contains some query time point or in
general intersects a query interval. De-
pending on the application, other que-
ries may be of importance. For example,
find all objects with intervals before or
after a query time point/interval, or all
objects with intervals contained in a
given interval [Bozkaya and Ozsoyoglu
1995; Nascimento et al. 1996], etc.

A three-entry notation, namely key/
valid/ transaction [Tsotras et al. 1998],
to distinguish among the various tempo-
ral queries, will be used alternatively.
This notation specifies which object at-
tributes are involved in the query and
in what way. Each entry is described as
a “point,” “range,” “ *,” or “-”. A “point”
for the key entry means that the user
has specified a single value to match the
object key; a “point” for the valid or
transaction entry implies that a single
time instant is specified for the valid or
transaction-time domain. A “range” in-

Comparison of Access Methods for Time-Evolving Data • 165

ACM Computing Surveys, Vol. 31, No. 2, June 1999

dicates a specified range of object key
values for the key entry, or an interval
for the valid/transaction entries. A “*”
means that any value is accepted in this
entry, while “-” means that the entry is
not applicable for this query. For exam-
ple, “*/-/point” denotes the transaction
pure-timeslice query, “range/point/-” is
the valid range timeslice query, and
“point/-/*” is the transaction pure-key
query. In a bitemporal environment, the
query “find all the company contracts
that were valid on v 5 January 1,1994,
as recorded in the database during
transaction time interval T : May 1–
May 20, 1993” is an example of a “*/
point/range” query. As presented, the
three-entry notation deals with inter-
section queries, but can easily be ex-
tended through the addition of extra
entry descriptions to accommodate be-
fore/after and other kinds of temporal
queries.

3.2 Access Method Costs

The performance of an access method is
characterized by three costs: (1) the
storage space to physically store the
data records and the structures of the
access method, (2) the update process-
ing time (the time to update the meth-
od’s data structures as a result of a
change), and (3) the query time for each
of the basic queries.

An access method has two modes of
operation: in the Update mode, data is
inserted, altered, or deleted while in the
Query mode queries are specified and
answered using the access method. For
a transaction-time access method, the
input for an update consists of a time
instant t and all the changes that oc-
curred in the data in that instant. A
change is further specified by the
unique key of the object it affects and
the kind of change (addition, deletion,
or attribute modification). The access
method’s data structure(s) will then be
updated to include the new change. In-
put to a bitemporal access method
where the time of the change is speci-

fied along with the changes and the
affected interval-object(s) is performed
similarly. The input to a valid-time ac-
cess method simply contains the
changes and the interval-object(s) af-
fected.

For a transaction or a bitemporal
method, the space is a function of n, the
total number of changes in the evolu-
tion, i.e., n is the summation of inser-
tions, deletions, and modification up-
dates. If there are 1,000 updates to a
database with only one record, n is
1,000. If there are 1,000 insertions to an
empty database and no deletions or
value modifications, n is also 1,000.
Similarly, for 1,000 insertions followed
by 1,000 deletions, n is 2,000. Note that
n corresponds to the minimal informa-
tion needed for storing the evolution’s
past. We assume that the total number
of transaction instants is also O~n!. This
is a natural assumption, since every
real computer system can process a pos-
sibly large but limited number of up-
dates per transaction instant.

In a valid-time method, space is a
function of l, the number of interval-
objects currently stored in the method,
i.e., the size of the collection. For exam-
ple, in both Figures 2(a) and 2(b), l is
seven.

A method’s query time is a function of
the answer size a. We use a to denote
the answer size of a query in general.

Since temporal data can be large (es-
pecially in transaction and bitemporal
databases), a good solution should use
space efficiently. A method with fast
update processing can be utilized even
with a quickly changing real-world ap-
plication. In addition, fast query times
will greatly facilitate the use of tempo-
ral data.

The basic queries that we examine
can be considered as special cases of
classical problems in computational ge-
ometry, for which efficient in-core (main
memory) solutions have been provided
[Chiang and Tamassia 1992]. It should
be mentioned that general computa-

166 • B. Salzberg and V. J. Tsotras

ACM Computing Surveys, Vol. 31, No. 2, June 1999

tional geometry problems support physi-
cal deletions of intervals. Hence, they are
more closely related to the valid-time da-
tabase environment. The valid pure-time-
slice query (“*/point/-”) is a special case of
the dynamic interval management prob-
lem. The best in-core bounds for dynamic
interval management are given by the
priority-search tree data structure in Mc-
Creight [1985], yielding O~l! space,
O~log l! update processing per change,
and O~log l 1 a! query time (all loga-
rithms are base-2). Here l is the number
of intervals in the structure when the
query/update is performed. The range-
timeslice query is a special case of the
orthogonal segment intersection problem,
for which a solution using O~l log l!
space, O~~log l!loglog l! update process-
ing, and O~~log l!loglog l 1 a! query
time is provided in Mehlhorn[1984]; an-
other solution that uses a combination of
the priority-search tree [McCreight 1985]
and the interval tree [Edelsbrunner 1983]
yields O~l! space, O~log l! update pro-
cessing, and O~log2l 1 a! query time.

The problems addressed by transac-
tion or bitemporal methods are related
to work on persistent data structures
[Driscoll et al. 1989]. In particular,
Driscoll et al. [1989] shows how to take
an in-core “ephemeral data structure”
(meaning that past states are erased
when updates are made) and convert it
to a “persistent data structure” (where
past states are maintained). A “fully
persistent” data structure allows up-
dates to all past states. A “partially
persistent” data structure allows up-
dates only to the most recent state. Due
to the properties of transaction time
evolution, transaction and bitemporal
access methods can be thought of as
disk extensions of partially persistent
data structures.

3.3 Index Pagination and Data Clustering

In a database environment the cost of a
computation is not based on how many
main memory slots are accessed or how

many comparisons are made (as the
case with in-core algorithms), but in-
stead on how many pages are trans-
ferred between main and secondary
memory. In our comparison this is very
crucial, as the bulk of data is stored in
secondary storage media. So it is natu-
ral to use an I/O complexity cost [Kanel-
lakis et al. 1993] that measures the
number of disk accesses for updating
and answering queries. The need to use
I/O complexity for secondary storage
structures is also recognized in the “the-
ory of indexability” [Hellerstein et al.
1997]. Index pagination and data clus-
tering are two important aspects when
considering the I/O complexity of query
time. How well the index nodes of a
method are paginated is dealt with by
the process of index pagination. Since
the index is used as a means to search
for and update data, its pagination
greatly affects the performance of the
method. For example, a B1-tree is a
well-paginated index, since it requires
O~logBr! page accesses for searching or
updating r objects, using pages of size
B. The reader should be careful with the
notation: logBr is itself an O~log2r!
function only if B is considered a con-
stant. For an I/O environment, B is
another problem variable. Thus, logBr
represents a log2B speedup over log2r,
which, for I/O complexity, is a great
improvement. Transferring a page takes
about 10 msec on the fastest disk
drives; in contrast, comparing two inte-
gers in main memory takes about 5
nsec. Accessing pages also uses CPU
time. The CPU cost of reading a page
from the disk is about 2,000 instruc-
tions [Gray and Reuter 1993].

Data clustering can also substantially
improve the performance of an access
method. If data records that are “logi-
cally” related for a given query can also
be stored physically close, then the
query is optimized as fewer pages are
accessed. Consider for example an ac-
cess method that can cluster data in
such a way that answering the transac-

Comparison of Access Methods for Time-Evolving Data • 167

ACM Computing Surveys, Vol. 31, No. 2, June 1999

tion pure-timeslice query takes
O~logBn 1 a/B! page accesses. This
method is more I/O efficient than an-
other method that solves the same
query in O~logBn 1 a! page accesses.
Both methods use a well-paginated in-
dex (which corresponds to the logarith-
mic part of the query). However, in the
second method, each data record that
belongs to the answer set may be stored
on a separate page, thus requiring a
much larger number of page accesses
for solving the query.

Data can be clustered by time dimen-
sion only, where data records “alive” for
the same time periods are collocated, or
by both time and key range, or by key
range only. Note that a clustering strat-
egy that optimizes a given class of que-
ries may not work for another query
class; for example, a good clustering
strategy for pure-key queries stores all
the versions of a particular key in the
same page; however, this strategy does
not work for pure-timeslice queries be-
cause the clustering objective is differ-
ent.

Clustering is in general more difficult
to maintain in a valid-time access
method because of its dynamic behav-
ior. The answer to a valid-time query
depends on the collection of interval-
objects currently contained in the access
method; this collection changes as valid-
time updates are applied. Even though
some good clustering may have been
achieved for some collection, it may not
be as efficient for the next collection
produced after a number of valid-time
updates. In contrast, in transaction or
bitemporal access methods, the past is
not changed, so an efficient clustering
can be retained more easily, despite up-
dates.

Any method that clusters data (a pri-
mary index) and uses, say, O~logBn 1
a/B! pages for queries can also be used
(less efficiently) as a secondary index by
replacing the data records with pointers
to pages containing data records, thus
using O~logBn 1 a! pages for queries.
The distinction between methods used

as primary indexes and methods used
as secondary indexes is one of efficiency,
not of algorithmic properties.

We use the term “primary index” to
mean that the index controls the physi-
cal placement of data only. For example,
a primary B1-tree has data in the
leaves. A secondary B1-tree has only
keys and references to data pages
(pointers) in the leaves. Primary in-
dexes need not be on the primary keys
of relations. Many of the methods do
expect a unique nontime varying key for
each record; we do not attempt to dis-
cuss how these methods might be modi-
fied to cluster records by nonunique
keys.

3.4 Migration of Past Data to Another
Location

Methods that support transaction time
maintain all their past states, a prop-
erty that can easily result in excessive
amounts of data (even for methods that
support transaction time in the most
space-efficient way). In comparing such
methods, it is natural to introduce two
other comparison considerations: (a)
whether or not past data can be sepa-
rated from the current data, so that the
smaller collection of current data can be
accessed more efficiently, and (b)
whether data is appended sequentially
to the method and never changed, so
that write-once read-many (WORM) de-
vices could be used.

For WORMs, one must burn into the
disk an entire page with a checksum
(the error rate is high, so a very long
error-correcting code must be appended
to each page). Thus, once a page is
written, it cannot be updated. Note that
since WORM devices are themselves
random access media, any access
method that can use WORM devices can
also be used with magnetic disks(only).
There are no access methods restricted
to the use of WORMs.

3.5 Lower Bounds on I/O Complexity

We first establish a lower bound on the
I/O complexity of basic transaction-time

168 • B. Salzberg and V. J. Tsotras

ACM Computing Surveys, Vol. 31, No. 2, June 1999

queries. The lower bound is obtained
using a comparison-based model in
a paginated environment, and applies
to the transaction pure-timeslice (“*/-/
point”), range-timeslice (“range/-/
point”), and pure-key (with time predi-
cate or a “point/-/range”) query. Any
method that attempts to solve such a
query in linear (O~n/B!) space needs at
least V~logBn 1 a/B! I/Os to solve it.

Since a corresponds to the query an-
swer size, to provide the answer, no
method can do better than O~a/B! I/Os;
a/B is the minimal number of pages to
store this answer. Note that the lower
bound discussion assumes that a query
may ask for any time instant in the set
of possible time instants. That is, all
time instants (whether recent or past)
have the same probability of being in
the query predicate. This fact separates
this discussion from cases where que-
ries have special properties (for exam-
ple, if most queries ask for the most
recent times). While this does not affect
the answer part (a/B) of the lower
bound, it does affect the logarithmic
search part ~logBn!. We could probably
locate the time of interest faster if we
knew that this instant is among the
most recent times. Under the above
equal query probability assumption, we
proceed with the justification for the
logarithmic part of the lower bound.
Since the range-timeslice query is more
general than the pure-timeslice query,
we first show that the pure-timeslice
problem is reduced to the “predecessor”
problem for which a lower bound is then
established [Tsotras and Kangelaris
1995]. A similar reduction can be
proved for the pure-key query with time
predicate.

The predecessor problem is defined as
follows: Given an ordered set P of N
distinct items, and an item k, find the
largest member of set P that is less than
or equal to k. For the reduction of the
pure-timeslice problem, assume that set
P contains integers t1 , t2 , . . . , tN
and consider the following real-world

evolution: at time t1, a single real-world
object with name ~oid!t1 is created and
lives until just before time t2, i.e., the
lifespan of object t1 is @t1, t2!. Then,
real-world object t2 is born at t2 and
lives for the interval @t2, t3!, and so on.
So at any time instant ti the state of the
real-world system is a single object with
name ti. Hence the N integers corre-
spond to n 5 2N changes in the above
evolution. Consequently, finding the
whole timeslice at time t reduces to
finding the largest element in set P that
is less or equal to t, i.e., the predecessor
of t inside P.

We show that in the comparison-
based model and in a paginated envi-
ronment, the predecessor problem needs
at least V~logBN! I/Os. The assumption
is that each page contains B items, and
there is no charge for a comparisons
within a page. Our argument is based
on a decision tree proof. Let the first
page be read and assume that the items
read within that page are sorted (sort-
ing inside one page is free of I/Os). By
exploring the entire page using compar-
isons, we can only get B 1 1 different
answers concerning item k. These corre-
spond to the B 1 1 intervals created by
B items. No additional information can
be retrieved. Then, a new page is re-
trieved that is based on the outcome of
the previous comparisons on the first
page, i.e., a different page is read every
B 1 1 outcomes. In order to determine
the predecessor of k, the decision tree
must have N leaves (since there are N
possible predecessors). As a result, the
height of the tree must be logBN. Thus
any algorithm that solves the paginated
version of the predecessor problem in
the comparison model needs at least
V~logBN! I/Os.

If there were a faster than O~logBn
1 a/B! method for the pure-timeslice
problem using O~n/B! space, then we

Comparison of Access Methods for Time-Evolving Data • 169

ACM Computing Surveys, Vol. 31, No. 2, June 1999

would have invented a method that
solves the above predecessor problem in
less than O~logBN! I/Os.

Observe that we have shown the
lower bound for the query time of meth-
ods using linear space, irrespective of
update processing. If the elements of set
P are given in order, one after the other,
O~1! time (amortized) per element is
needed in order to create an index on
the set that would solve the predecessor
problem in O~logBN! I/Os (more accu-
rately, since no deletions are needed, we
only need a fully paginated, multilevel
index that increases in one direction). If
these elements are given out of order,
then O~logBN! time is needed per inser-
tion (B-tree index). In the transaction
pure timeslice problem, (“*/-/point”)
time is always increasing and O~1! time
for update processing per change is
enough and clearly minimal. Thus we
call a method I/O optimal for the trans-
action pure-timeslice query if it achieves
O~n/B! space and O~logBn 1 a/B!
query time using constant updating.

Similarly, for the transaction range-
timeslice problem (“range/-/point”), we
call a method I/O optimal if it achieves
O~logBn 1 a/B! query time, O~n/B!
space and O~logBm! update processing
per change. m is the number of alive
objects when the update takes place.
Logarithmic processing is needed be-
cause the range-timeslice problem re-
quires ordering keys by their values.
Changes arrive in time order, but out of
key order, and there are m alive keys on
the latest state from which an update
has to choose.

For the transaction pure-key with
time predicate, the lower bound for
query time is V~logBn 1 a/B!, since the
logarithmic part is needed to locate the
time predicate in the past and a/B I/Os
are required to provide the answer in
the output.

The same lower bound holds for bi-
temporal queries, since they are at least
as complex as transaction queries. For

example, consider the “*/point/point”
query specified by a valid time v and a
transaction time t. If the valid-time in-
terval of each interval object extends
from 2` to ` in the valid-time domain,
finding all interval objects that at t,
where intersecting v, reduces to finding
all interval-objects in collection C~t!
(since all of them would contain the
valid instant v). However, this is the
“*/-/point” query.

Since from a query perspective a valid
and a transaction-time database are
both collections of intervals, a similar
lower bound applies to the correspond-
ing valid-time queries (by replacing n by
l, the number of interval-objects in the
collection). For example, any algorithm
solving the “*/point/-” query in O~l/B!
space needs at least V~logBl 1 a/B!
I/Os query time.

4. EFFICIENT METHOD DESIGN FOR
TRANSACTION/BITEMPORAL DATA

Common to all methods that support
the transaction time axis is the problem
of how to efficiently store large amounts
of data. We first consider the transac-
tion pure-timeslice query and show why
obvious solutions are not efficient. We
also discuss the transaction pure-key
and range-timeslice queries. Bitemporal
queries follow. The problem of separat-
ing past from current data (and the use
of WORM disks) is also examined.

4.1 The Transaction Pure-Timeslice Query

There are two straightforward solutions
to the transaction pure-timeslice query
(“*/-/point”) which, in our comparison,
serve as two extreme cases; we denote
them the “copy” and “log” approaches.

The “copy” approach stores a copy of
the transaction database state s~t!
(timeslice) for each transaction time
that at least one change occurred. These
copies are indexed by time t. Access to a
state s~t! is performed by searching for

170 • B. Salzberg and V. J. Tsotras

ACM Computing Surveys, Vol. 31, No. 2, June 1999

time t on a multilevel index on the time
dimension. Since changes arrive in or-
der, this multilevel index is clearly pag-
inated. The closest time that is less or
equal to t is found with O~logBn! page
accesses. An additional O~a / B! I/O
time is needed to output the copy of the
state, where a denotes the number of
“alive” objects in the accessed database
state. The major disadvantage of the
“copy” approach is with the space and
update processing requirements. The
space used can in the worst case be
proportional to O~n2/B!. This happens
if the evolution is mainly composed of
“births” of new objects. The database
state is thus enlarged continuously. If
the size of the database remains rela-
tively constant, due to deletions and
insertions balancing out, and if there
are p records on average, the space used
is O~np/B!.

Update processing is O~n/B! per
change instant in a growing database
and O~p/B! per change instant in a
nongrowing database, as a new copy of
the database has to be stored at each
change instant. The “copy” approach
provides a minimal query time. How-
ever, since the information stored is
much more than the actual changes, the
space and update requirements suffer.

A variant on the copy approach stores
a list of record ADDRESSES that are
“alive” each time at least one change
occurs. The total amount of space used
is smaller than if the records them-
selves were stored in each copy. How-
ever, the asymptotic space used is still
O~n2/B! for growing databases and
O~np/B! for databases whose size does
not increase significantly over time.
This means most records have O~n! ref-
erences in the index. “n” does not have
to be very large before the index is
several times the size of the record col-
lection. In addition, by changing from a
primary to a secondary unclustered
structure, O~a!, not O~a/B!, pages must
be accessed to output the copy of the a

alive records (after the usual O~logBn!
accesses to find the correct list).

In the remainder of this paper, we
will not consider any secondary indexes.
In order to make a fair comparison,
indexes that are described as secondary
by their authors will be treated as if
they were primary indexes. Secondary
indexes never cluster data in disk
pages, and thus always lose out in
query time. Recall that by “primary”
index we mean only an index that dic-
tates the physical location of records,
not an index on “primary key.” Second-
ary indexes can only cluster references
to records, not the records themselves.

In an attempt to reduce the quadratic
space and linear updating of the “copy”
approach, the “log” approach stores only
the changes that occur in the database
timestamped by the time instant on
which they occurred. Update processing
is clearly reduced to O~1! per change,
since this history management scheme
appends the sequence of inputs in a
“log” without any other processing. The
space is similarly reduced to the mini-
mal O~n/B!. Nevertheless, this
straightforward approach will increase
the query time to O~n/B!, since in order
to reconstruct a past state, the whole
“log” may have to be searched.

Combinations of the two straightfor-
ward approaches are possible; for exam-
ple, a method could keep repeated time-
slices of the database state and “logs” of
the changes between the stored time-
slices. If repeated timeslices are stored
after some bounded number of changes,
this solution is equivalent to the “copy”
approach, since it is equivalent to using
different time units (and therefore
changing only the constant in the space
complexity measure). If the number of
changes between repeated timeslices is
not bounded, the method is equivalent
to the “log” approach, as it corresponds
to a series of logs. We use the two
extreme cases to characterize the per-
formance of the examined transaction-
time methods. Some of the proposed
methods are equivalent to one of the

Comparison of Access Methods for Time-Evolving Data • 171

ACM Computing Surveys, Vol. 31, No. 2, June 1999

two extremes. However, it is possible to
combine the fast query time of the first
approach with the space and update
requirements of the second.

In order for a method to answer the
transaction pure-timeslice (“*/-/point”)
query efficiently, data must at least be
clustered according to its transaction
time behavior. Since this query asks for
all records “alive” at a given time, this
clustering can only be based on the
transaction time axis, i.e., records that
exist at the same time should be clus-
tered together, independently of their
key values. We call access methods that
cluster by time only, (transaction) time-
only methods. There are methods that
cluster by both time and key; we call
them (transaction) time-key methods.
They optimize queries that involve both
time and key predicates, such as
the transaction range-timeslice query
(“range/-/point”). Clustering by time
only can lead to constant update pro-
cessing per change; thus a good time-
only method can “follow” its input
changes “on-line.” In contrast, cluster-
ing by time and key needs some loga-
rithmic updating because changes ar-
rive in time order but not in key order;
some appropriate placement of change
is needed based on the key it (the
change) is applied on.

4.2 The Transaction Pure-Key Query

The “copy” and “log” solutions could be
used for the pure-key query (“point/-/*”).
But they are both very inefficient. The
“copy” method uses too much space, no
matter what query it is used for. In
addition, finding a key in a timeslice
implies either that one uses linear
search or that there is some organiza-
tion on each timeslice (such as an index
on the key). The “log” approach requires
running from the beginning of the log to
the time of the query, keeping the most
recent version of the record with that
key. This is still in O~n/B! time.

A better solution is to store the his-
tory of each key separately, i.e., cluster
data by key only. This creates a (trans-

action) key-only method. Since at each
transaction time instant there exists at
most one “alive” version of a given key,
versions of the same key can be linked
together. Access to a key’s (transaction-
time) history can be implemented by a
hashing function (which must be dy-
namic hashing, as it has to support the
addition of new keys) or a balanced mul-
tiway search tree (B-tree). Hashing pro-
vides constant access (in the expected
amortized sense), while the B-tree pro-
vides logarithmic access. Note that
hashing does not guarantee against
pathological worst cases, while the B-
tree does. Hashing cannot be used to
obtain the history for a range of keys (as
in the general class (III) query). After
the queried key is identified, its whole
history can be retrieved (forward or
backward reconstruction using the list
of versions).

The list of versions of each key can be
further organized in a separate array
indexed by transaction time to answer a
pure-key query with time predicate
(“point/-/range”). Since updates are ap-
pended at the end of such an array, a
simple paginated multilevel index can
be implemented on each array to expe-
dite searching. Then a query of the form
“provide the history of key k after (be-
fore) time t” is addressed by first finding
k (using hashing or the B-tree) and then
locating the version of k that is closest
to transaction time t using the multi-
level index on k’s versions. This takes
O~logBn! time (each array can be O
~n/B! large).

The above straightforward data clus-
tering by key is only efficient for class
III queries, but is not efficient for any of
the other two classes. For example, to
answer a “*/-/point” query, each key
ever created in the evolution must be
searched for being “alive” at the query
transaction time, and it takes logarith-
mic time to search each key’s version
history.

172 • B. Salzberg and V. J. Tsotras

ACM Computing Surveys, Vol. 31, No. 2, June 1999

4.3 The Transaction Range-Timeslice
Query

If records that are “logically” related for
a given query can also be stored physi-
cally close, then the query is optimized
as fewer pages are accessed. Therefore,
to answer a “range/-/point” query effi-
ciently, it is best to cluster by transac-
tion time and key within pages. This is
very similar to spatial indexing; but it
has some special properties.

If the time-key space is partitioned
into disjoint rectangles, one for each
disk page, and only one copy of each
record is kept, long-lived records
(records with long transaction-time
intervals) have to be collocated with
many short-lived ones that cannot all fit
on the same page. We cannot partition
the space in this way without allowing
duplicate records. So we are reduced to
either making copies (data duplication),
allowing overlap of time-key rectangles
(data bounding), or mapping records
represented by key (transaction)
start_time and end_time, to points in
three-dimensional space (data mapping)
and using a multidimensional search
method.

Time-key spaces do not have the “den-
sity” problem of spatial indexes. Density
is defined as the largest overlap of spa-
tial objects at a point. There is only one
version of each key at a given time, so
time-key objects (line segments in time-
key space) never overlap. This makes
data duplication a more attractive op-
tion than spatial indexing, especially if
the amount of duplication can be lim-
ited as in Eaton [1986], Lomet and Sal-
zberg [1990], Lanka and Mays [1991],
Becker et al. [1996], and Varman and
Verma [1997].

Data bounding may force single-point
queries to use backtracking, since there
is not a unique path to a given time-key
point. In general, for the data-bounding
approach, temporal indexing has worse
problems than spatial indexing because
long-lived records are likely to be com-
mon. In a data-bounding structure, such
a record is stored in a page with a long

time-span and some key range. Every
timeslice query in that timespan must
access that page, even though the long-
lived record may be the only one alive at
search time (the other records in the
page are alive in another part of the
timespan). The R-tree-based-methods
use data bounding [Stonebraker 1987;
Kolovson and Stonebraker 1989; 1991].

The third possibility, data mapping,
maps a record to three (or more) coordi-
nates—transaction start_time, end-
_time, and key(s)—and then uses a mul-
tiattribute point index. Here records
with long transaction-time intervals are
clustered with other records with long
intervals because their start and end
times are close. If they were alive at
nearby times, records with short trans-
action-time intervals are clustered with
other records with short intervals. This
is efficient for most queries, as the long-
lived records are the answers to many
queries. The pages with short-lived
records effectively partition the answers
to different queries; most such pages
are not touched for a given timeslice
query. However, there are special prob-
lems because many records may still be
current and have growing lifetimes (i.e.,
transaction-time intervals extending to
now). This approach is discussed fur-
ther at the end of Section 5.1.3.

Naturally, the most efficient methods
for the transaction range-timeslice
query are the ones that combine the
time and key dimensions. In contrast,
by using a (transaction) time-only
method, the whole timeslice for the
given transaction time is first recon-
structed and then the records with keys
outside the given range are eliminated.
This is clearly inefficient, especially if
the requested range is a small part of
the whole timeslice.

4.4 Bitemporal Queries

An obvious approach is to index bitem-
poral objects on a single time axis
(transaction or valid time) and use a
single time access method. For example,
if a transaction access method is uti-

Comparison of Access Methods for Time-Evolving Data • 173

ACM Computing Surveys, Vol. 31, No. 2, June 1999

lized, a bitemporal “*/point/point” query
is answered in two steps. First all bi-
temporal objects existing at transaction
time t are found. Then the valid time
interval of each such object is checked
to see if it includes valid time v. This
approach is inefficient because very few
of the accessed objects may actually sat-
isfy the valid-time predicate.

If both axes are utilized, an obvious
approach is an extended combination of
the “copy” and “log” solutions. This ap-
proach stores copies of the collections
C~t! (Figure 3) at given transaction-time
instants and a log of changes between
copies. Together with each collection
C~t!, an access method (for example an
R-tree [Guttman 1984]) that indexes the
objects of this C~t! is also stored. Con-
ceptually it is like storing snapshots of
R-trees and the changes between them.
While each R-tree enables efficient
searching on a stored collection C~t!, the
approach is clearly inefficient because
the space or query time increases dra-
matically, depending on the frequency
of snapshots.

The data bounding and data mapping
approaches can also be used in a bitem-
poral environment. However, the added
(valid-time) dimension provides an ex-
tra reason for inefficiency. For example,
the bounding rectangle of a bitemporal
object consists of two intervals (Figure
4; taken from Kumar et al. [1998]). A
“*/point/point” query is translated into

finding all rectangles that include the
query point (ti, vj) An R-tree [Guttman
1984] could be used to manage these
rectangles. However, the special charac-
teristics of transaction time (many rect-
angles may extend up to now) and the
inclusion of the valid-time dimension
increase the possibility of extensive
overlap, which in turn reduces the R-
tree query efficiency [Kumar et al.
1998].

4.5 Separating Past from Current Data
and Use of WORM disks

In transaction or bitemporal databases,
it is usually the case that access to
current data is more frequent than to
past data (in the transaction-time
sense). In addition, since the bulk of
data in these databases is due to the
historical part, it is advantageous to use
a higher capacity, but slower access me-
dium, for the past data such as optical
disks. First, the method should provide
for natural separation between current
and past data. There are two ways to
achieve this separation: (a) with the
“manual” approach a process will vac-
uum all records that are “dead” (in the
transaction-time sense) when the pro-
cess is invoked (this vacuuming process
can be invoked at any time); (b) with the
“automated” approach, where such
“dead” records are migrated to the opti-
cal disk due directly to the evolution
process (for example during an update).
The total I/O involved is likely to be
smaller than in a manual method, since
it is piggybacked on I/O, which, in any
case, is necessary for index mainte-
nance (such as splitting a full node).

Even though write-many read-many
optical disks are available,WORM opti-
cal disks are still the main choice for
storing large amounts of archival data;
they are less expensive, have larger ca-
pacities, and usually have faster write
transfer times. Since the contents of
WORM disk blocks cannot be changed
after their initial writing (due to added
error-correcting code), data that is to be
appended on a WORM disk should not

Figure 4. The bounding-rectangle approach for
bitemporal queries (the key dimension is not
shown). The evolution of Figure 3 is depicted as of
(transaction) time t . t5. Modification of interval
I1 at t5 ends the initial rectangle for I1 and inserts
a new rectangle from t5 to now.

174 • B. Salzberg and V. J. Tsotras

ACM Computing Surveys, Vol. 31, No. 2, June 1999

be allowed to change in the future.
Since on the transaction axis the past is
not changed, past data can be written
on the WORM disk.

We emphasize again that methods
that can be used on WORM disks are
not “WORM methods”—they can also be
used on magnetic disks. Thus the ques-
tion of separation of past and current
records can be considered regardless of
the availability of WORM disks.

5. METHOD CLASSIFICATION AND
COMPARISON

This section provides a concise descrip-
tion of the methods we examine. Since it
is practically impossible to run simula-
tions for all methods on the same collec-
tions of data and queries, our analysis is
based on worst-case performance. Vari-
ous access method proposals provide a
performance analysis that may have
strong assumptions about the input
data (uniform distribution of data
points, etc.), and it may very well be
that under those constraints the pro-
posed method works quite well. Our
purpose, however, is to categorize the
methods without any assumption on the
input data or the frequency of queries.
Obviously, the worst-case analysis may
penalize a method for some very un-
likely scenarios; to distinguish against
likely worst cases, we call such scena-
rios pathological worst cases. We also
point out some features that may affect
average-case behavior without neces-
sarily affecting worst-case behavior.

We first describe transaction-time ac-
cess methods. These methods are fur-
ther classified as key-only, time-only,
and time-key, based on the way data is
clustered. Among the key-only methods,
we study reverse chaining, accession
lists, time sequence arrays, and C-lists.
Among time-only methods, we examine
append-only tree, time-index and its
variants (monotonic B-tree, time-in-
dex1), the differential file approach,
checkpoint index, archivable time index,
snapshot index, and the windows
method. In the time-key category, we

present the POSTGRES storage system
and the use of composite indexes, seg-
ment-R tree, write-once B-tree, time-split
B-tree, persistent B-tree, multiversion B-
tree, multiversion access structure, and
the overlapping B-tree. A comparison
table (Table II) is included at the end of
the section with a summary of each
method’s worst-case performance. We
then proceed with the valid-time access
methods, where we discuss the meta-
block tree, external degment tree, exter-
nal interval tree, and the MAP21 meth-
ods. The bitemporal category describes
M-IVTT, the bitemporal interval tree,
and bitemporal R-tree.

5.1 Transaction-Time Methods

In this category we include methods
that assume that changes arrive in in-
creasing time order, a characteristic of
transaction time. This property greatly
affects the update processing of the
method. If “out of order” changes (a
characteristic of valid-time) are to be
supported, the updating cost becomes
much higher (practically prohibitive).

5.1.1 Key-Only Methods. The basic
characteristic of transaction key-only
approaches is the organization of evolv-
ing data by key (surrogate), i.e., all ver-
sions that a given key assumes are
“clustered” together logically or physi-
cally. Such organization makes these
methods more efficient for transaction
pure-key queries. In addition, the ap-
proaches considered here correspond to
the earliest solutions proposed for time-
evolving data.

Reverse chaining was introduced in
Ben-Zvi [1982] and further developed in
Lum et al. [1984]. Under this approach,
previous versions of a given key are
linked together in reverse chronological
order. The idea of keeping separate
stores for current and past data was
also introduced. Current data is as-
sumed to be queried more often, so by
separating it from past data, the size of
the search structure is decreased and
queries for current data become faster.

Comparison of Access Methods for Time-Evolving Data • 175

ACM Computing Surveys, Vol. 31, No. 2, June 1999

Each version of a key is represented
by a tuple (which includes the key, at-
tribute value, and a lifespan interval)
augmented with a pointer field that
points to the previous version (if any) of
this key. When a key is first inserted
into a relation, its corresponding tuple
is put into the current store with its
previous-version pointer being null.
When the attribute value of this key is
changed, the version existing in the cur-
rent store is moved to the past store,
with the new tuple replacing it in the
current store. The previous-version
pointer of the new tuple points to the
location of the previous version in the
past store. Hence a chain of past ver-
sions is created out of each current key.
Tuples are stored in the past store with-
out necessarily being clustered by key.

Current keys are indexed by a regular
B1-tree (“front” B1-tree). The chain of
past versions of a current key is ac-
cessed by following previous-version
pointers starting from the current key.
If a current key is deleted, it is removed
from the B1-tree and is inserted in a
second B1-tree (“back” B1-tree), which
indexes the latest version of keys that
are not current. The past version chain
of the deleted key is still accessed from
its latest version stored in the “back”
B1-tree. If a key is “reborn” it is rein-
serted in the “front” B1-tree. Subse-
quent modifications of this current key
create a new chain of past versions. It is
thus possible to have two chains of past
versions, one starting from its current
version and one from a past version, for
the same key. Hence queries about the
past are directed to both B1-trees. If the
key is deleted again later, its new chain
of past versions is attached to its previ-
ous chain by appropriately updating the
latest version stored in the “back” B1-
tree.

Clearly, this approach uses O~n/B!
space, where n denotes the number of
changes and B is the page size. The
number of changes corresponds to the
number of versions for all keys ever
created. When a change occurs (such as

a new version of key or the deletion of
key), the “front” B1-tree (current store)
has first to be searched to locate the
current version of key. If it is a deletion,
the “back” B1-tree is also searched to
locate the latest version of key, if any.
So the update processing of this method
is O~logBn!, since the number of differ-
ent keys can be similar to the number of
changes.

To find all previous versions of a
given key, the “front” B1-tree is first
searched for the latest version of key; if
a key is in the current store, its pointer
will provide access to recent past ver-
sions of the key. Since version lists are
in reverse chronological order, we have
to follow such a list until a version
number (transaction timestamp) that is
less or equal to the query timestamp is
found. The “back” B1-tree is then
searched for older past versions. If a
denotes all past versions of a key, the
query time is O~logBn 1 a!, since ver-
sions of a given key could in the worst
case be stored in different pages. This
can be improved if cellular chaining,
clustering, or stacking is is used [Ahn
and Snodgrass 1988]. If each collection
of versions for a given key is clustered
in a set of pages but versions of distinct
keys are never on the same page, query
time is O~logBn 1 a/B! but space utili-
zation is O~n! pages (not O~n/B!, as the
versions of a key may not be enough to
justify the use of a full page.

Reverse chaining can be further im-
proved by the introduction of accession
lists [Ahn and Snodgrass 1988]. An ac-
cession list clusters all version numbers
(timestamps) of a given key together.
Each timestamp is associated with a
pointer to the accompanying tuple,
which is stored in the past store (or to a
cluster of tuples). Thus, instead of
searching a reverse chain until a given
timestamp is reached, we can search an
index of the chain’s timestamps. As
timestamps are stored in chronological
order on an accession list, finding the
appropriate version of a given key takes

176 • B. Salzberg and V. J. Tsotras

ACM Computing Surveys, Vol. 31, No. 2, June 1999

O~logBn 1 logBa!. The space and up-
date processing remain as before.

While the above structure can be effi-
cient for a transaction pure-key query,
answering pure- or range-timeslice que-
ries is problematic. For example, to an-
swer a “*/-/point” query that is satisfied
only by some keys, we have to search
the accession lists of all keys ever cre-
ated.

Another early approach proposed the
use of time sequence arrays (TSAs)
[Shoshani and Kawagoe 1986]. Concep-
tually, a TSA is a two-dimensional ar-
ray with a row for each key ever cre-
ated; each column represents a time
instant. The ~x, y! entry stores the
value of key x at time y. Static (the data
set has been fully collected) and dy-
namic (the data set is continuously
growing , as in a transaction-time envi-
ronment) data are examined. If this
structure is implemented as a two-di-
mensional array, query time is minimal
(just access the appropriate array en-
try), but update processing and space
are prohibitive (O~n! and O~n2!, respec-
tively). We could implement each row as
an array, keeping only those values
where there was a change; this is con-
ceptually the same solution as reverse
chaining with accession lists. A solution
based on a multidimensional partition-
ing scheme is proposed in Rotem and
Segev [1987], but the underlying as-
sumption is that the whole temporal
evolution is known in advance, before
the partitioning scheme is implemented.

The theoretically optimal solution for
the transaction pure-key query with
time predicate is provided by the C-lists
of Varman and Verma [1997]. C-lists
are similar to accession lists, in that
they cluster the versions of a given key
together. There are two main differ-
ences. First, access to each C-list is pro-
vided through another method, the mul-
tiversion access structure (MVAS in
short; MVAS is discussed later with the
time-key methods) [Varman and Verma
1997]. Second, maintenance is more
complicated: splitting/ merging C-list

pages is guided by page splitting/merg-
ing MVAS (for details, see Varman and
Verma [1997]). If there are m “alive”
keys in the structure, updating takes
O~logBm!. The history of key k before
time t is found in O~logBn 1 a/B! I/Os,
which is optimal. C-lists have an advan-
tage in that they can be combined with
the MVAS structure to create a method
that optimally answers both the range-
timeslice and pure-key with time predi-
cate queries. However, the method
needs an extra B1-tree, together with
double pointers between the C-lists and
MVAS, which adds implementation
complexity.

5.1.2 Time-OnlyMethods. Mosttime-
only methods timestamp changes (addi-
tions, deletions, etc.) by the transaction
time they occurred and append them in
some form of a “history log.” Since no
clustering of data according to keys is
made, such methods optimize “*/-/point”
or “*/-/range” queries. Because changes
arrive in chronological order, ideally a
time-only method can provide constant
update processing (as the change is sim-
ply appended at the end of the “history
log”); this advantage is important in
applications where changes are fre-
quent and the database has to “follow”
these changes in an on- line fashion. For
efficient query time, most methods use
some index on the top of the “history
log” that indexes the (transaction) time-
stamps of the changes. Because of the
time-ordered changes, the cost of main-
taining this (paginated) index on the
transaction time-axis is minimal, amor-
tized O~1! per change.

While organizing data by only its time
behavior provides for very fast updat-
ing, it is not efficient for answering
transaction range-timeslice queries. In
order to use time-only methods for such
queries, one suggestion is to employ a
separate key index, whose leaves point
to predefined key “regions” [Elmasri et
al. 1993; Gunadhi 1993]. A key region
could be a single key or a collection of
keys (either a subrange of the key space

Comparison of Access Methods for Time-Evolving Data • 177

ACM Computing Surveys, Vol. 31, No. 2, June 1999

or a relation). The history of each “re-
gion” is organized separately, using an
individual time-only access method
(such as the time index or the append-
only tree). The key index will direct a
change of a given key to update the
method that keeps the history of the
key’s region. However, after the region
is found, the placement of this key in
the region’s access method is based on
the key’s time behavior only (and no
longer on the key itself).

To answer transaction range-time-
slice queries, we have to search the
history of each region that belongs to
the query range. Thus the range-time-
slice is constructed by creating the indi-
vidual timeslices for every region in the
query range. If R is the number of re-
gions, the key index adds O~R/B! space
and O~logBR! update processing to the
performance of the individual historical
access methods. The query time for the
combination of the key index and the
time-only access methods is o~Mf~ni, t,
ai!!, where M is the number of regions
that fall in the given query range and
f~ni, t, ai! is the time needed in each
individual region ri~i 5 1, ..., m! to
perform a timeslice query for time t (ni

and ai correspond to the total number of
changes in ri and the number of “alive”
objects from ri at the time t, respective-
ly). For example, if the time-index [El-
masri et al. 1990] is used as the access
method in each individual region, then
f~ni, t, ai! 5 O~logBni 1 ai/B!.

There are three drawbacks to this ap-
proach: (1) If the query key range is a
small subset of a given region, the
whole region’s timeslice is recon-
structed, even if most of its objects may
not belong to the query range and thus
do not contribute to the answer. (2) If
the query key range contains many re-
gions, all these regions have to be
searched, even if they may contribute
no “alive” objects at the transaction
time of interest t. (3) For every region
examined, a logarithmic search, at best,

is performed to locate t among the
changes recorded in the region. To put
this in perspective, imagine replacing a
multiattribute spatial search structure
with a number of collections of records
from predefined key ranges in one at-
tribute and then organizing each key
range by some other attribute.

To answer general pure-key queries of
the form “find the salary history of em-
ployee named k,” an index on the key
space can be utilized. This index keeps
the latest version of a key, while key
versions are linked together. Since the
key space is separate from the time
space, such an index is easily updated.
In some methods this index has the
form of a B1-tree, and is also facilitated
for transaction range-timeslice queries
(such as the surrogate superindex used
in the AP-tree [Gunadhi and Segev
1993] and the archivable time index
[Verma and Varman 1994]) or it has the
form of a hashing function, as in the
snapshot index [Tsotras and Kangelaris
1995]. A general method is to link
records to any one copy of the most
recent distinct past version of the
record. We continue with the presenta-
tion of various time-only methods.

Append-Only Tree. The append-
only tree (AP-Tree) is a multiway
search tree that is a hybrid of an ISAM
index and a B1-tree. It was proposed as
a method to optimize event-joins [Segev
and Gunadhi 1989; Gunadhi and Segev
1993]. Here we examine it as an access
method for the query classes of section
3.1. Each tuple is associated with a
(start_time, end_time) interval. The ba-
sic method indexes the start_times of
tuples. Each leaf node has entries of the
form: ~t, b! where t is a time instant
and b is a pointer to a bucket that
contains all tuples with start_time
greater than the time recorded in the
previous entry (if any) and less than or
equal to t. Each nonleaf node indexes
nodes at the next level (Figure 5).

In the AP-tree, insertions of new
tuples arrive in increasing start_time

178 • B. Salzberg and V. J. Tsotras

ACM Computing Surveys, Vol. 31, No. 2, June 1999

order; on this basis, we consider it a
transaction-time method. It is also as-
sumed that the end_times of tuples are
known when a tuple is inserted in the
access method. In that case the update
processing is O~1!, since the tuple is
inserted (“appended”) on the rightmost
leaf of the tree. (This is somewhat simi-
lar to the procedure used in most com-
mercial systems for loading a sorted file
to a multilevel index [Salzberg 1988],
except that insertions are now succes-
sive instead of batched.) If end_times
are not known at insertion but are up-
dated later (as in a transaction-time
environment), the index has to be
searched for the record that is updated.
If the start_time of the updated record
is given in the input, then this search is
O~logBn!. Otherwise, we could use a
hashing function that stores the alive
objects only, and for each such object it
points to a position in the AP-tree (this
is not discussed in the original paper).

To answer a transaction pure-time-
slice query for time t, the AP-tree is
first searched for the leaf that contains
t. All intervals on the “right” of this leaf
have start_times that are larger than t,
and thus should not be searched fur-
ther. However, all intervals on the left
of this leaf (i.e., the data file from the
beginning until t) have to be checked for
“containing” t. Such a search can be as
large as O~n/B!, since the number of

intervals in the tree is proportional to
the number of changes in the evolution.
Of course, if we assume that the queries
are randomly distributed over the entire
transaction-time range, half of the leaf
nodes, on average, must be searched.
The space is O~n/B!.

For answering transaction pure-key
and range-timeslice queries, the nested
ST-tree has been proposed [Gunadhi
and Segev 1993]. This method facili-
tates a separate B1-tree index (called
surrogate superindex) on all the keys
(surrogates) ever inserted in the data-
base. A leaf node of such a tree contains
entries of the form (key, (p1, p2), where
p1 is a pointer to an AP-tree (called the
time subindex) that organizes the evolu-
tion of the particular key and p2 is a
pointer to the latest version of a key.
This approach solves the problem of up-
dating intervals by key (just search the
surrogate superindex for the key of the
interval; then this key’s time subindex
will provide the latest version of this
interval, i.e., the version to be updated).
The ST-tree approach is conceptually
equivalent to reverse chaining with an
index on each accession list (however,
due to its relation to the AP-tree, we
include it in the time-only methods).

Update processing is now O~logBS!,
where S denotes the total number of
keys (surrogates) ever created (S is it-
self O~n!). Note that there may be key

Figure 5. The append-only tree. Leaves include the start_time fields of intervals only. Each leaf points
to file pages, with records ordered according to the start_time field. New records are added only at the
rightmost leaf of the tree. It is assumed that both endpoints are known for the intervals in this figure.

Comparison of Access Methods for Time-Evolving Data • 179

ACM Computing Surveys, Vol. 31, No. 2, June 1999

histories with just one record. For the
space to remain O~n/B!, unused page
portions should be shared by other key
histories. This implies that the versions
of a given key may reside in separate
pages. Answering a pure key query then
takes O~logBS 1 a! I/Os. The given key
can be found with a logarithmic search
on the surrogate superindex, and then
its a versions are accessed but, at worst,
each version may reside in a distinct
page. For a transaction range-timeslice
query whose range contains K keys
(alive or not at t), the query time is
O~KlogBn! because each key in the
range has to be searched. When the
range is the whole key space, i.e., to
answer a transaction pure-timeslice
query for time t, we have to perform a
logarithmic search on the time subindex
of each key ever created. This takes
time O~SlogBn!.

The basic AP-tree does not separate
past from current data, so transferring
to a write-once optical disk may be prob-
lematic. We could start transferring
data to the write-once medium in
start_time order, but this could also
transfer long-lived tuples that are still
current (alive), and may be updated
later. The ST-tree does not have this
problem because data are clustered by
key; the history of each key represents
past data that can be transferred to an
optical medium.

If the AP-tree is used in a valid-time
environment, interval insertions, dele-
tions, or updates may happen anywhere
in the valid-time domain. This implies
that the index will not be as compact as
in the transaction domain where
changes arrive in order, but it would
behave as a B-Tree. If, for each update,
only the key associated with the up-
dated interval is provided, the whole
index may have to be searched. If the
start_time of the updated interval is
given, a logarithmic search is needed.
Since the M l valid intervals are sorted
by start_time, a “*/point/-” query takes
O~l/B! I/Os. For “range/point/-” queries,

the ST-tree must be combined with a
B-tree as its time subindex. Updates are
logarithmic (by traversing the surrogate
superindex and the time subindex). A
valid range timeslice query whose range
contains K keys takes O~KlogBl! I/Os,
since every key in the query range must
be searched for being alive at the valid
query time.

Time Index. The time index, pro-
posed in Elmasri et al. [1990; 1991], is a
B1-tree-based access method on the
time axis. In the original paper the
method was proposed for storing valid-
times. But it makes the assumption
that changes arrive in increasing time
order and that physical deletions rarely
occur. Since these are basic characteris-
tics of the transaction-time dimension,
we consider the time-index to be in the
transaction-time category. There is a
B1-tree that indexes a linearly-ordered
set of time points, where a time point
(also referred to as an indexing point in
Elmasri et al. [1990]) is either the time
instant where a new version is created
or the next time instant after a version
is deleted. Thus, a time point corre-
sponds to the time instant of a change
(for deletions it is the next time instant
after the deletion). Each entry of a leaf
node of the time index is of the form
(t, b), where t is a time point and b is a
pointer to a bucket. The pointer of a
leaf’s first entry points to a bucket that
holds all records that are “alive” (i.e., a
snapshot) at this time point; the rest of
the leaf entries point to buckets that
hold incremental changes (Figure 6). As
a result, the time index does not need to
know in advance the end_time of an
object (which is an advantage over the
AP-tree).

The time index was originally pro-
posed as a secondary index; but we shall
treat it as a primary index here, in
order to make a fair comparison to other
methods, as explained in Section 4.1.
This makes the search estimates com-
petitive with the other methods without
changing the worst-case asymptotic
space and update formulas.

180 • B. Salzberg and V. J. Tsotras

ACM Computing Surveys, Vol. 31, No. 2, June 1999

Since in a transaction environment
changes occur in increasing time order,
new nodes are always added on the
rightmost leaf of the index. This can
produce a more compact index than the
B1 tree in the original paper. The new
index is called the monotonic B1-tree
[Elmasri et al. 1993] (the monotonic B1-
tree insertion algorithm is similar to
that of the AP-tree).

To answer a transaction pure-time-
slice query for some time t, we have to
search the time index for t; this leads to
a leaf node that “contains” t. The past
state is reconstructed by accessing all
the buckets of entries of this leaf node
that contain timestamps that are less or
equal to t. If we assume that the num-
ber of changes that can occur at each
time instant is bounded (by some con-
stant), the query time of the time index
is O~logBn 1 a/B!. After the appropri-
ate leaf node is found in logarithmic
time, the answer a is reconstructed by
reading leaf buckets. The update pro-
cessing and space can be as large as

O~n/B! and O~n2/B!, respectively.
Therefore, this method is conceptually
equivalent to the “copy” approach of
Section 4.1 (the only difference is that
copies are now made after a constant
number of changes).

Answering a transaction range-time-
slice query with the time index requires
reconstructing the whole timeslice for
the time of interest and then selecting
only the tuples in the given range. To
answer range-timeslice queries more ef-
ficiently, the two-level attribute/time in-
dex (using predefined key regions) was
proposed in Elmasri et al. [1990]. As-
suming that there are R predefined key
regions (and R is smaller than n), the
update processing and space remain
O~n/B! and O~n2/B!, respectively—
since most of the changes can happen to
a single region. Answering a “*/-/point”
query means creating the timeslices for
all R ranges, even if a range does not
contribute to the answer. Thus the
pure-timeslice query time is propor-
tional to (

i51

R logBni 1 ai /B, where ni

and ai correspond to the total number of
changes in individual region ri and the
number of “alive” objects from ri, respec-
tively, at time t. This can be as high as
O~RlogBn 1 a!, since each region can
contribute a single tuple to the answer.
Similarly, for “range/-/point” queries the
query time becomes O~MlogBn 1 a!,
where M is the number of regions that
fall in the given query range (assuming
that the query range contains a number
of regions, otherwise a whole region
timeslice has to be created).

Pure-key queries are not supported,
as record versions of the same object are
not linked (for example, to answer a
query of the form: “find all past versions
of a given key,” we may have to search
the whole history of the range to find
where this key belongs).

In Elmasri et al. [1993], it is sug-
gested we move record versions to opti-
cal disk when their end times change to
a time before now. This is under the

Figure 6. The time index. Each first leaf entry
holds a full timeslice, while the next entries keep
incremental changes.

Comparison of Access Methods for Time-Evolving Data • 181

ACM Computing Surveys, Vol. 31, No. 2, June 1999

assumption that the time index is being
used as a secondary index and that each
record version is only located in one
place. So the leaf buckets contain lists
of addresses of record versions.

In order to move full pages of data to
the optical disk, a buffer is used in the
magnetic disk to collect records as their
end times are changed. An optical disk
page is reserved for the contents of each
buffer page. When a record version is
placed in a buffer page, all pointers to it
in the time index must be changed to
refer to its new page in the optical disk.
This can require O~n/B! update pro-
cessing, as a record version pointer can
be contained in O~n/B! leaves of the
time index. A method for finding point-
ers for particular record versions within
the lists of addresses in the leaf’s first
entry, in order to update them, is not
given.

Index leaf pages can be migrated to
the optical disk only when all their
pointers are references to record ver-
sions on the optical disk or in the mag-
netic disk buffer used to transfer record
versions to optical disk. Since each in-
dex leaf page contains the pointers to all
record versions alive at the time the
index page was created, it is likely that
many index pages may not qualify for
moving to optical disk because they con-
tain long-lived records.

It is suggested in Elmasri et al. [1993]
that long-lived records inhibiting the
movement of index pages also be kept in
a magnetic buffer and assigned an opti-
cal address, so that the index leaf page
can be moved. When all the children of
an internal index page have been moved
to the optical disk, an internal index
page can also be moved. However, the
number of long-lived record versions
can also be O~n!. Thus the number of
empty optical pages waiting for long-
lived object versions to die and having
mirror buffers on magnetic disk is
O~n/B!.

In an attempt to overcome the high
storage and update requirements, the
time index1 [Kourmajian et al. 1994]

has been proposed. There are two new
structures in the time index1: the SCS
and the SCI buckets. In the original
time index, a timeslice is stored for the
first timestamp entry of each leaf node.
Since sibling leaf nodes may share
much of this timeslice, in the time in-
dex1, odd-even pairs of sibling nodes
store their common parts of the time-
slice in a shared SCS bucket. Even
though the SCS technique would in
practice save considerable space (about
half of what was used before), the as-
ymptotic behavior remains the same as
the original time index.

Common intervals that span a num-
ber of leaf nodes are stored together on
some parent index node (similar to the
segment tree data structure [Bentley
1977]). Each index node in the time
index1 is associated with a range, i.e.,
the range of time instants covered by its
subtree. A time interval I is stored in
the highest internal node v such that I
covers v’s range and does not cover the
range of v’s parent. All such intervals
are kept in the SCI bucket of an index
node.

By keeping the intervals in this way,
quadratic space is dramatically re-
duced. Observe that an interval may
now be stored in, at most, logarithmic
many internal nodes (due to the seg-
ment tree property [Mehlhorn 1984]).
This implies that the space consumption
of the time index1 is reduced to
O~~n/B!logBn! space. The authors men-
tion in the paper that in practice there
is no need to associate SCI buckets to
more than two-levels of index nodes.
However, if no SCI buckets are used at
the higher levels, asymptotic behavior
remains similar to the original time in-
dex.

In addition, it is not clear how up-
dates are performed when SCI buckets
are used. In order to find the actual
SCIs where a given interval is to be
stored, both endpoints of the interval
should be known. Otherwise, if an inter-
val is initially inserted as (t, now), it
has to be found and updated when, at a

182 • B. Salzberg and V. J. Tsotras

ACM Computing Surveys, Vol. 31, No. 2, June 1999

later time, the right endpoint becomes
known. This implies that some search
structure is needed in each SCI, which
would, of course, affect the update be-
havior of the whole structure. Finally,
the query time bound remains the same
for the time index1 as for the original
time index.

If the original time-index (using the
regular B1 tree) is used in a valid-time
environment, physical object deletions
anywhere in the (valid) time domain
should be supported. However, a de-
leted object should be removed from all
the stored (valid) snapshots. If the de-
leted object has a long valid-time inter-
val, the whole structure may have to be
updated, making such deletions very
costly. Similarly, objects can be added
anywhere in the valid domain, implying
that all affected stored snapshots have
to be updated.

Differential File Approach. While
the differential file approach [Jensen et
al. 1991;1992] does not propose the cre-
ation of a new index, we discuss it, since
it involves an interesting implementa-
tion of a database system based on
transaction time. In practice, an index
can be implemented on top of the differ-
ential file approach, however, here we
assume no such index exists. Changes
that occur for a base relation r are
stored incrementally and timestamped
on the relation’s log; this log is itself
considered a special relation, called a
backlog. In addition to the attributes of
the base relation, each entry of the
backlog contains a triplet: (time, key,
op). Here time corresponds to the (com-
mit) time of the transaction that up-
dated the database about a change that
was applied on the base relation tuple
with key surrogate; op corresponds to
the kind of change that was applied on
this tuple (addition, deletion, or modifi-
cation operations).

As a consequence of the use of times-
tamps, a base relation is a function of
time; thus r~t! is a timeslice of the base
relation at time t. A timeslice of a base
relation can be stored or computed.

Storing a timeslice can be implemented
as either a cache (where pointers to the
appropriate backlog entries are used) or
as materialized data (where the actual
tuples of the timeslice are kept). Using
the cache avoids storing (probably) long
attributes, but some time is needed to
reconstruct the full timeslice (Figure 7).

A timeslice can be fixed (for example,
r~t1!) or time-dependent (r~now 2 t1!).
Time-dependent stored base relations
have to be updated; this is done eagerly
(changes directly update such relations)
or lazily (when the relation is re-
quested, the backlog is used to bring it
up in the current state). An eager cur-
rent (r~now!) timeslice is like a snap-
shot relation, that is, a collection of all
current records.

A time-dependent base relation can
also be computed from a previous stored
timeslice and the set of changes that
occurred in between. These changes cor-
respond to a differential file (instead of
searching the whole backlog). Differen-
tial files are also stored as relations.

For answering “*/-/point” queries, this
approach can be conceptually equiva-
lent to the “log” or “copy” methods, de-
pending on how often timeslices are
stored. Consider, for example, a single
base relation r with backlog br: if time-
slices are infrequent or the distance
(number of changes) between timeslices
is not fixed, the method is equivalent to
the “log” approach where br is the his-
tory log. The space is O~n/B! and up-
date processing is constant (amortized)
per change, but the reconstruction can
also be O~n/B!. Conversely, if timeslices
are kept with fixed distance, the method
will behave similarly to the “copy” ap-
proach.

In order to address “range/-/point”
queries, we have to produce the time-
slice of the base relation and then check
all of the tuples of this timeslice for
being in the query range. Similarly, if
the value of a given key is requested as
of some time, the whole relation must
first be reconstructed as of that time.
The history (previous versions) of a key

Comparison of Access Methods for Time-Evolving Data • 183

ACM Computing Surveys, Vol. 31, No. 2, June 1999

is not kept explicitly, as versions of a
given key are not connected together.

Checkpoint Index. The checkpoint
index was originally proposed for the
implementation of various temporal op-
erators (temporal joins, parallel tempo-
ral joins, snapshot/interval operators,
etc.) [Leung and Muntz 1992a; 1992b;
1993]. Here we take the liberty of con-
sidering its behavior as if it was used as
an access method for transaction-time
queries. Timeslices (called checkpoints)
are periodically taken from the state of
an evolving relation. If the query opera-
tor is a join, checkpoints from two rela-
tions are taken. Partial relation check-
points based on some key predicate
have also been proposed. For simplicity,
we concentrate on checkpointing a sin-
gle relation.

The checkpoint index assumes that
object intervals are ordered by their
start_time. This is a property of the
transaction-time environment (Figure
1). A stream processor follows the evolu-
tion as time proceeds. When a check-
point is made at some (checkpoint) in-
stant t, the objects alive at t are stored

in the checkpoint. A separate structure,
called the data stream pointer (DSP),
points to the first object born after t.
Conceptually, the DSP provides access
to an ordered (by interval start_time)
list of objects born between checkpoints.
The DSP is needed, since some of these
objects may end before the next check-
point, and thus would not be recorded
otherwise. The checkpoint time instants
are indexed through a B1-tree-like
structure (Figure 8).

The performance of the checkpoint in-
dex for pure-timeslice queries depends
on how often checkpoints are taken. At
one extreme, if very few checkpoints are
taken, the space remains linear O~n/B!.
Conversely, if checkpoints are kept
within a fixed distance, the method be-
haves similarly to the “copy” approach.
In general, the DSP pointer may be
“reset” backwards in time to reduce the
size of a checkpoint (which is an optimi-
zation issue).

When an object is deleted, its record
has to be found to update the end_time.
The original presentation of the check-
point index implicitly assumes that the

Figure 7. Differential file approach.

184 • B. Salzberg and V. J. Tsotras

ACM Computing Surveys, Vol. 31, No. 2, June 1999

object end_times are known (since the
whole evolution or stream is known).
However, a hashing function on alive
objects can be used to solve this problem
(as with the AP-tree). The checkpoint
index resembles the differential file and
the time indexes, in that all of them
keep various timeslices. However, in-
stead of simply storing the changes be-
tween timeslices, the checkpoint index
keeps the DSP pointers to actual object
records. Hence, in the checkpoint index,
an update to an interval end_time can-
not simply be added at the end of a log,
but it has to update the corresponding
object’s record.

To address range-timeslice queries
with the checkpoint index, the timeslice
of the base relation is first produced and
then all of the tuples of this timeslice
are checked for being in the query
range. The history (previous versions) of
a given key is not kept explicitly be-
cause versions of the same key are not
connected together.

The checkpoint index could use a
transfer policy to an optical medium
similar to the one for the time index.

Archivable Time Index. The ar-
chivable time index [Verma and
Varman 1994] does not directly index
actual transaction time instants, but
does index version numbers. The trans-
action time instant of the first change
takes version number 0, and successive
changes are mapped to consecutive ver-
sion numbers. An interval is repre-
sented by the version numbers corre-
sponding to its start and end times. A

special structure is needed to transform
versions to timestamps and vice versa.
For the rest, we use the terms time
instant and version number synony-
mously.

Let Tc denote the current time. The
method partitions records to current
and past records. For the current
records (those with unknown end_time),
a conventional B1-tree structure is
used to index the start_time of their
transaction intervals. For past records
(records whose end_time is less or equal
to Tc), a more complex structure, PVAS,
is used. Conceptually, the PVAS can be
viewed as a logical binary tree of size 2a

(Tc # 2a). Each node in the tree repre-
sents a segment of the transaction time
space. At Tc, only some of the nodes of
the tree have been created; new nodes
are dynamically added on the right path
of the tree as time increases. A node
denoted by segment @i, j# where i , j
has span~ j 2 1!. The root is denoted
@0,2a#. The left child of node @i, j# is
node @i, ~i 1 j!/ 2# and its right child is
node @~i 1 j!/ 2, j#. Hence, the span of a
node is the sum of the span of its two
children. The span of a leaf node is two.
Figure 9 (from Verma and Varman
[1994]) shows an example of the PVAS
tree at Tc 5 55 with a 5 6. Node seg-
ments appear inside the nodes.

Past records are stored in the nodes of
this tree. Each record is stored in ex-
actly one node: the lowest node whose
span contains the record’s interval. For

Figure 8. The checkpoint index. The evolution at Figure 1 is assumed.

Comparison of Access Methods for Time-Evolving Data • 185

ACM Computing Surveys, Vol. 31, No. 2, June 1999

example, a record with interval [3,16] is
assigned to node [0,16]. The nodes of the
binary tree are partitioned into three
disjoint sets: passive, active, and future
nodes. A node is passive if no more
records can ever be stored in that node.
It is an active node if it is possible for a
record with intervals ending in Tc to be
stored there. It is a future node if it can
only store records whose intervals end
after Tc, i.e., in the future. Initially, all
nodes begin as future nodes at Tc 5 0,
then become active, and finally, as time
proceeds, end up as passive nodes. Node
@i, j# becomes Tc 5 ~i 1 j!/ 2 active if it
is a leaf, or at Tc 5 ~i 1 j!/ 2 1 1 oth-
erwise. For example, in Figure 9, for Tc

5 55, node [48,64] belongs to the future
nodes. This is because any record with
interval contained in [48,55] will be
stored somewhere in its left subtree.
The only records that can be stored in
[48,64] have intervals ending after time
55, so they are future records. Future
nodes need not be kept in the tree be-
fore becoming active.

Each interval assigned to a PVAS
node is stored in two lists, one that
stores the intervals in increasing start-
_time order and one that stores them in
increasing end_time order. This is simi-
lar to the interval tree [Edelsbrunner
1983]. In Verma and Varman [1994], a
different structure is used to implement
these lists for the active and passive
nodes by exploiting the fact that passive

nodes do not get any new intervals after
they become passive. In particular, all
passive node lists can be stored in two
sequential files (the IFILE and the
JFILE), a property that provides for
good pagination and record clustering.
Two dynamic structures, the ITREE (a
B-tree structure) and JLISTS (a collec-
tion of lists) are used for the active node
lists.

The PVAS logical binary tree and its
accompanied structures can be effi-
ciently placed in pages (details in
Verma and Varman [1994]) occupying
O~n/B! space. Since the structure does
not index record keys, the update as-
sumes that the start_time of the up-
dated record is known; then updating is
O~logBn!. As with most of the other
time-only methods, if updates are pro-
vided by the record key only, a hashing
function can be used to find the
start_time of the record before the up-
date proceeds on the PVAS.

To answer a transaction pure-time-
slice query, both the CVAS and the
PVAS are searched. Since the CVAS is
ordered on start_times, a logarithmic
search will provide the current records
born before query time t. Searching the
PVAS structure is more complicated.
The search follows a single path down
the logical binary tree, and the lists of
nodes whose span contains t are
searched sequentially. Searching each
list provides a clustered answer, but

[0,64]

[0,32]
[32,64]

[16,32][0,16] [32,48] [48,64]

[48,56]

[54,56]

[52,56]

.

Passive

Passive

active

active

active

active

active

future

future
[3,16]

Interval stored
at this node

Figure 9. The PVAS binary tree. The current logical time is 55.

186 • B. Salzberg and V. J. Tsotras

ACM Computing Surveys, Vol. 31, No. 2, June 1999

there may be O~log2n! binary nodes
whose lists are searched. Since every
list access may be a separate I/O, the
query time becomes O~log2n 1 a/B!.

Since no record keys are indexed, the
method as presented above cannot effi-
ciently answer pure-key queries. For
transaction range-timeslice queries, the
whole timeslice should first be com-
puted. Answering pure-key and range-
timeslice queries [Verma and Varman
1994] assumes the existence of another
index for various key regions, similarly
to the time-index.

Snapshot Index. The snapshot in-
dex [Tsotras and Kangelaris 1995]
achieves the I/O-optimal solution to the
transaction pure-timeslice problem.
Conceptually it consists of three data
structures: a multilevel index that pro-
vides access to the past by time t; a
multilinked structure among the leaf
pages of the multilevel index that facil-
itates the creation of the query answer
at t; and a hashing function that pro-
vides access to records by key, used for
update purposes. A real-world object is
represented by a record with a time
invariant id (object id), a time-variant
(temporal) attribute, and a semiclosed
transaction-time interval of the form
[start_time, end_time). When a new ob-
ject is added at time t, a new record is
created with interval @t, now# and
stored sequentially in a data page. At
any given instant there is only one data
page that stores (accepts) records, called
the acceptor page. When an acceptor
page becomes full, a new acceptor page
is created. Acceptor pages are added at
the end of a linked list (list L) as they
are created. Up to now, the snapshot
index resembles a linked “log” of pages
that keeps the object records.

There are three main differences from
a regular log: the use of the hashing
function, the in-place deletion updates,
and the notion of page usefulness. The
hashing function is used for updating
records about their “deletion.” When a
new record is created, the hashing func-

tion will store the id of this record,
together with the address of the accep-
tor page that stores it. Object deletions
are not added at the and of the log.
Rather, they are represented by chang-
ing the end_time of the corresponding
deleted record. This access is facilitated
by the hashing function. All records
with end_time equal to now are termed
“alive” else they are called “deleted.”

As pointed out in Section 4.1, time-
only methods need to order their data
by time only, and not by time and key.
Since data arrives ordered by time, a
dynamic hashing function is enough for
accessing a record by key (membership
test) when updating it. Of course, hash-
ing cannot guarantee against pathologi-
cal worst cases (i.e., when a bad hashing
function is chosen). In those cases, a
B1tree on the keys can be used instead
of hashing, leading to logarithmic
worst-case update.

A data page is defined useful for: (i)
all time instants for which it was the
acceptor page, or (ii) after it ceased be-
ing the acceptor page, for all time in-
stants for which the page contains at
least u z B “alive” records. For all other
instants, the page is called nonuseful.
The useful period [u.start_time, u.end-
_time) of a page forms a “usefulness”
interval for this page. The u.start_time
is the time instant the page became an
acceptor page. The usefulness parame-
ter u ~0 , u # 1! is a constant that
tunes the behavior of the snapshot in-
dex. To answer a pure-timeslice about
time t, the snapshot index will only
access the pages useful at t (or, equiva-
lently, those pages that have at least
u z B records alive at t) plus at most
one additional page that was the accep-
tor page at t. This single page may
contain less than u z B records from the
answer.

When a useful data page becomes
nonuseful, its “alive” records are copied
to the current acceptor page (this is like
a time-split [Easton 1986; Lomet and
Salzberg 1989]). In addition, based on

Comparison of Access Methods for Time-Evolving Data • 187

ACM Computing Surveys, Vol. 31, No. 2, June 1999

its position in the linked list L, a non-
useful data page is removed from L and
is logically placed under the previous
data page in the list. This creates a
multilinked structure that resembles a
forest of trees of data pages, and is
called the access forest (Figure 10). The
root of each tree in the access forest lies
in list L. The access forest has the fol-
lowing properties: (a) u.start_time fields
of the data pages in a tree are organized
in a preorder fashion; (b) the usefulness
interval of a page includes all the corre-
sponding intervals of the pages in its
subtree; (c) the usefulness intervals
@di, ei# and @di11, ei11# of two consecutive
children under the same parent page
may have one of two orderings: di , ei

, di11 , ei11 or di , di11 , ei , ei11.

Finding the timeslice as of a given
time t is reduced to finding the data
pages that were useful at time t. This is
equivalent to the set-history problem of
Tsotras and Gopinath [1990] and Tso-
tras et al. [1995]. The acceptor page as
of t is found through the multilevel in-
dex that indexes the u.start_time fields
of all the data pages. That is, all data
pages are at the leaves of the multilevel
index (the link list and the access forest
are implemented among these leaf pag-
es). Since time is increasing, the multi-
level index is “packed” and increases
only through its right side. After the
acceptor data page at t is located, the
remaining useful data pages at t are
found by traversing the access forest.
This traversing can be done very effi-

Figure 10. A schematic view of the access forest for a given collection of usefulness intervals: (a) the
usefulness interval of each data page at time 80; an open interval at time t 5 80 represents a data page
that is still useful at that time; (b) the access forest at time t 5 79 (in this figure now corresponds to
time 79). Each page is represented by a tuple, ,page-id, page-usefuleness.period.. Page TP denotes the
top of list L, while the current acceptor page is always at the end of L. (c) The access forest at time t
5 80. At that time page E became nonuseful (because some record deletion reduced the number of

“alive” records in E below the uB threshold). As a result it is removed from L and placed (together with
its subtree) under the previous page in the list, page D. The multilevel index is not shown.

188 • B. Salzberg and V. J. Tsotras

ACM Computing Surveys, Vol. 31, No. 2, June 1999

ciently using access forest properties
[Tsotras and Kangelaris 1995].

As a result, the snapshot index solves
the “*/-/point” query optimally: O~logBn
1 a/B! I/Os for query time, O~n/B!
space, and O~1! update processing per
change (in the expected amortized
sense, assuming the use of a dynamic
hashing function instead of a B-tree [Di-
etzfelbinger et al. 1988]). The number of
useful pages depends on the choice of
parameter u. Larger u means faster
query time (fewer accessed pages) and
savings in additional space (which re-
mains linear to n/B). Since more space
is available, the answer could be con-
tained in a smaller number of useful
pages.

Migration to a WORM disk is possible
for each data page that becomes non-
useful. Since the parent of a nonuseful
page in the access forest may still be a
useful page, an optical disk page must
be reserved for the parent. Observe,
however, that the snapshot index uses a
“batched” migration policy that guaran-
tees that the “reserved” space in the
optical disk is limited to a controlled
small fraction of the number of pages
already transferred to the WORM.

Different versions of a given key can
be linked together so that pure-key que-
ries of the form “find all versions of a
given key” are addressed in O~a! I/Os,
where a now represents the number of
such versions. Since the key space is
separate from the transaction time
space, the hashing function used to ac-
cess records by key can keep the latest
version of a key, if any. Each key ver-
sion when updated can be linked to its
previous version; thus each record rep-
resenting a key contains an extra
pointer to the record’s previous version.
If, instead of a hashing function, a B-
tree is used to access the key space, the
bound becomes O~logBS 1 a! where S
is the number of different keys ever
created.

For answering “range/-/point” queries,
the snapshot index has the same prob-

lem as the other time-only methods: the
whole timeslice must first be computed.
In general, this is the trade-off for fast
update processing.

Windows Method. Recently, Ra-
maswamy [1997] provided yet another
solution to the “*/-/point” query, i.e., the
windows method. This approach has the
same performance as the Snapshot In-
dex. It is a paginated version of a data-
structure presented in Chazelle [1986],
which optimally solved the pure time-
slice query in main memory. Ra-
maswamy [1994] partitions time space
into contiguous “windows” and associ-
ates with each window a list of all inter-
vals that intersect the window’s inter-
val. Windows are indexed by a B-tree
structure (similar to the multilevel in-
dex of the snapshot index).

To answer a pure timeslice query, the
appropriate window that contains this
timeslice is first found and then the
window’s list of intervals is accessed.
Note that the “windows” of Ramaswamy
[1997] correspond to one or more consec-
utive pages in the access-forest of Tso-
tras and Kangelaris [1995].

As with the snapshot index, some ob-
jects will appear in many windows
(when a new window is created it gets
copies of the “alive” objects from the
previous one), but the space remains
O~n/B!. The windows method uses the
B-tree to also access the objects by key,
hence updating is amortized O~logBn!.
If all copies of a given object are linked
as proposed in the previous section, all
versions of a given key can be found in
O~logBn 1 a! I/Os.

5.1.3 Time-Key Methods. To answer
a transaction range-timeslice query effi-
ciently, it is best to cluster data by both
transaction time and key within pages.
The “logically” related data for this
query are then colocated, thus minimiz-
ing the number of pages accessed. Meth-
ods in this category are based on some
form of a balanced tree whose leaf pages
dynamically correspond to regions of the
two-dimensional transaction time-key

Comparison of Access Methods for Time-Evolving Data • 189

ACM Computing Surveys, Vol. 31, No. 2, June 1999

space. While changes still occur in in-
creasing time order, the corresponding
keys on which the changes are applied
are not in order. Thus, there is a loga-
rithmic update processing per change so
that data is placed according to key
values in the above time-key space.

An example of a page containing a
time-key range is shown in Figure 11.
Here, at transaction time instant 5, a
new version of the record with key b is
created. At time 6, a record with key g
is inserted. At time 7, a new version of
the record with key c is created. At time
8, both c and f have new versions and
record h is deleted. Each line segment,
whose start and end times are repre-
sented by ticks, represents one record
version. Each record version takes up
space in the disk page.

There have been two major approach-
es: methods based on variants of R-trees
[Stonebraker 1987; Kolovson and Stone-
braker 1989; 1991] and methods based
on variants of B1-trees [Easton 1986;
Lomet and Salzberg 1989; Lanka and
Mays 1991; Manolopoulos and Kapetan-
akis 1990; Becker et al. 1996; Varman
and Verma 1997]. Utilizing R-tree-
based methods provides a strong advan-
tage, in that R-trees [Guttman 1984;
Sellis et al. 1987; Beckmann et al. 1990;
Kamel and Faloutsos 1994] can repre-
sent additional dimensions on the same
index (in principle such a method could
support both time dimensions on the

same index). A disadvantage of the R-
tree-based methods is that they cannot
guarantee a good worst-case update and
query time performance. However, such
worst cases are usually pathological
(and do not happen often). In practice,
R-trees have shown good average-case
performance. Another characteristic of
R-tree-based methods is that the
end_time of a record’s interval is as-
sumed known when the record is in-
serted in the method, which is not a
property of transaction time.

R-Tree-Based Methods. The POST-
GRES database management system
[Stonebraker 1987] proposed a novel
storage system in which no data is ever
overwritten. Rather, updates are turned
into insertions. POSTGRES timestamps
are timestamps of committed transac-
tions. Thus, the POSTGRES storage
system is a transaction-time access
method.

The storage manager accommodates
past states of the database on a WORM
optical disk (archival system), in addi-
tion to the current state that is kept on
an ordinary magnetic disk. The assump-
tion is that users will access current
data more often than past data, thus
the faster magnetic disk is more appro-
priate for recent data. As past data
keeps increasing, the magnetic disk will
eventually be filled.

As data becomes “old” it migrates to
the archival system by means of an

Figure 11. Each page is storing data from a time-key range.

190 • B. Salzberg and V. J. Tsotras

ACM Computing Surveys, Vol. 31, No. 2, June 1999

asynchronous process, called the vac-
uum cleaner. Each data record has a
corresponding interval (Tmin, Tmax),
where Tmin and Tmax are the commit
times of the transactions that inserted
and (logically) deleted this record from
the database. When the vacuum cleaner
operates, it transfers data whose end
time is before some fixed time to the
optical disk. The versions of data that
reside on an optical disk page have sim-
ilar end times (Tmax), but may have
widely varying start times (Tmin).
Thus, pages on the optical disk are as in
Figure 12.

If such a page is accessed for a query
about some “early” time t, it may con-
tribute only a single version to the an-
swer, i.e., the answer would not be well
clustered among pages.

Since data records can be accessed by
queries that may involve both time and
key predicates, a two-dimensional
R-tree [Guttman 1984] access method
has been proposed for archival data.
POSTGRES assumes that this R-tree is
a secondary access method. Pointers to
data records are organized according to
their key value in one dimension and to
their intervals (lifespans) in the other
dimension.

The data are written sequentially to
the WORM device by the vacuuming
process. It is not possible to insert new
records in a data page on a WORM
device that already contains data. So it
is not possible to have a primary R-tree
with leaves on the optical disk without
changing the R-tree insertion algo-
rithm. However, we make estimates

based on a primary R-tree, in keeping
with our policy of Section 4.1.

For current data, POSTGRES does
not specify the indexing in use. What-
ever it is, queries as of any past time
before the most recent vacuum time
must access both the current and the
historical components of the storage
structure. Current records are stored
only in the current database and their
start times can be arbitrarily far back in
the past.

For archival data, (secondary) indexes
spanning the magnetic and optical disk
are proposed (combined media or com-
posite indexes). There are two advan-
tages in allowing indexes to span both
media: (a) improved search and insert
performance as compared to indexes
that are completely on the optical me-
dium (such as the write-once balanced
tree [Easton 1986] and the allocation
tree [Vitter 1985]); and (b) reduced cost
per bit of disk storage as compared to
indexes entirely contained on magnetic
disk. Two combined media R-tree in-
dexes are proposed in Kolovson and
Stonebraker [1989]; they differ on the
way index blocks are vacuumed from
the magnetic to the archival medium.

In the first approach, the R-tree is
rooted on the magnetic disk, and when-
ever its size on the magnetic disk ex-
ceeds some preallocated threshold, the
vacuuming process starts moving some
of the leaf pages to the archival me-
dium. These pages refer to records that
have already been moved to the optical
disk. Each such record has Tmax less
than some time value. For each leaf
page, the maximum Tmax is recorded.
The pages with smallest maximum
Tmax refer to data that was transferred
longest ago. These are the pages that
are transferred. Following the vacuum-
ing of the leaf nodes, the process recur-
sively vacuums all parent nodes that
point entirely to children nodes that
have already been stored on the archive.
The root node, however, is never a can-
didate for vacuuming.

The second approach (dual R-tree)
maintains two R-trees, both rooted on

Figure 12. A page storing data with similar end
times.

Comparison of Access Methods for Time-Evolving Data • 191

ACM Computing Surveys, Vol. 31, No. 2, June 1999

the magnetic disk. The first is entirely
stored on the magnetic disk, while the
second is stored on the archival disk,
except for its root (in general, except
from the upper levels). When the first
tree gains the height of the second tree,
the vacuuming process vacuums all the
nodes of the first tree, except its root, to
the optical disk. References to the
blocks below the root of the first tree are
inserted in the root of the second tree.
Over time, there will continue to be two
R-trees, the first completely on the mag-
netic disk and periodically archived.
Searches are performed by descending
both R-trees.

In analyzing the use of the R-tree as a
temporal index, we speak of records
rather than pointers to records. In both
approaches, a given record is kept only
once, therefore the space is clearly lin-
ear to the number of changes (the num-
ber of data records in the tree is propor-
tional to n). Since the height of the trees
is O~logBn!, each record insertion needs
logarithmic time. While, on the average,
searching an R-tree is also logarithmic,
in the (pathological) worst case this
searching can be O~n/B!, since the
whole tree may have to be traversed due
to the overlapping regions.

Figure 13 shows the general R-tree
method, using overlapping rectangles of
time-key space.

R-trees are best suited for indexing
data that exhibits a high degree of nat-
ural clustering in multiple dimensions;
then the index can partition data into
rectangles so as to minimize both the
coverage and the overlap of the entire
set of rectangles (i.e., rectangles corre-
sponding to leaf pages and internal
nodes). Transaction time databases,
however, may consist of data whose at-
tribute values vary independently of
their transaction time intervals, thus
exhibiting only one-dimensional cluster-
ing. In addition, in an R-tree that stores
temporal data, page splits cause a good
deal of overlap in the search regions of
the nonleaf nodes. It was observed that
for data records with nonuniform inter-

val lengths (i.e., a large proportion of
“short” intervals and a small proportion
of “long” intervals), the overlapping is
clearly increased, affecting the query
and update performance of the index.

Figure 14 shows how long-lived
records inhibit the performance of
structures that keep only one copy of
each record and which keep time-key
rectangles. The problem is that a long-
lived record determines the length of
the time range associated with the page
in which it resides. Then, even if only
one other key value is present, and
there are many changes to the record
with the other key value in that time

Figure 13. An example of data bounding as used
in R-tree based methods.

192 • B. Salzberg and V. J. Tsotras

ACM Computing Surveys, Vol. 31, No. 2, June 1999

range, overlap is required. For example,
in Figure 14, the eleventh record ver-
sion (shown with a dotted line) belongs
to the time-key range of this page but it
cannot fit since the page has already
ten record versions. It will instead be
placed in a different page whose rectan-
gle has to overlap this one. The same
example also illustrates that the num-
ber of leaf pages to be retrieved for a
timeslice can be large ~O~a!! since only
a few records may be “alive” (contain
the given time value in their interval)
for any one page.

In an attempt to overcome the above
problems, the segment R-tree (SR-tree)
was proposed [Kolovson and Stone-
braker 1991; Kolovson 1993]. The SR-
tree combines properties of the R-tree
and the segment tree, a binary tree data
structure proposed in Bentley [1977] for
storing line segments. A Segment Tree
stores the interval endpoints on the leaf
nodes; each internal node is associated
with a “range” that contains all the
endpoints in its subtree. An interval I is
stored in the highest internal node v
such that I covers v’s range and does
not cover the range of v’s parent. Ob-
serve that an interval may be stored in
at most logarithmic many internal
nodes; thus the space is no longer linear
[Mehlhorn 1984].

The SR-tree (Figure 15) is an R-tree
where intervals can be stored in both

leaf and nonleaf nodes. An interval I is
placed to the highest level node X of the
tree such that I spans at least one of the
intervals represented by X’s child
nodes. If I does not span X, spans at
least one of its children but is not fully
contained in X, then I is fragmented.

Using this idea, long intervals will be
placed in higher levels of the R-Tree,
thus the SR-Tree tends to decrease the
overlapping in leaf nodes (in the regular
R-Tree, a long interval stored in a leaf
node will “elongate” the area of this
node thus exacerbating the overlap
problem). One risks having large num-
bers of spanning records or fragments of
spanning records stored high up in the
tree. This decreases the fan-out of the
index as there is less room for pointers
to children. It is suggested to vary the
size of the nodes in the tree, making
higher-up nodes larger. “Varying the
size” of a node means that several pages
are used for one node. This adds some
page accesses to the search cost.

As with the R-tree, if the record is
inserted at a leaf (because it did not
span anything), the boundaries of the

Figure 14. The effect of long-lived records on
overlapping.

Figure 15. The SR-tree.

Comparison of Access Methods for Time-Evolving Data • 193

ACM Computing Surveys, Vol. 31, No. 2, June 1999

space covered by the leaf node in which
it is placed may be expanded. Expan-
sions may be needed on all nodes on the
path to the leaf that contains the new
record. This may change the spanning
relationships, since records may no
longer span children that have been ex-
panded. In this case, such records are
reinserted in the tree, possibly being
demoted to occupants of nodes they pre-
viously spanned. Splitting nodes may
also cause changes in spanning relation-
ships, as they make children smaller—
former occupants of a node may be pro-
moted to spanning records in the
parent.

Similarly with the segment tree, the
space used by the SR-tree is no longer
linear. An interval may be stored in
more than one nonleaf nodes (in the
spanning and remnant portions of this
interval). Due to the use of the segment-
tree property, the space can be as much
as O~~n/B!logBn!. Inserting an interval
still takes logarithmic time. However,
due to possible promotions, demotions,
and fragmentation, insertion is slower
than in the R-tree. Even though the
segment property tends to reduce the
overlapping problem, the (pathological)
worst-case performance for the deletion
and query times remains the same as
for the R-tree organization. The aver-
age-case behavior is again logarithmic.

To improve the performance of their
structure, the authors also proposed the
use of a skeleton SR-tree, which is an
SR-tree that prepartitions the entire do-
main into some number of regions. This
prepartition is based on some initial
assumption about the distribution of
data and the number of intervals to be
inserted. Then the skeleton SR-tree is
populated with data; if the data distri-
bution is changed, the structure of the
skeleton SR-tree can be changed, too.

An implicit assumption made by all
R-tree-based methods is that when an
interval is inserted, both its Tmin and
Tmax values are known. In practice,
however, this is not true for “current”
data. One solution is to enter all such

intervals as (Tmin, now), where now is
a variable representing the current
time. A problem with this approach is
that a “deletion” update that changes
the now value of an interval to Tmax is
implemented by a search for the inter-
val, a deletion of the (Tmin, now) inter-
val, and a reinsertion as (Tmin, Tmax)
interval. Since searches are not guaran-
teed for worst-case performance, this
approach could be problematic. The de-
letion of (Tmin, now) is a physical dele-
tion, which implies the physical deletion
of all remnant portions of this interval.
A better solutionis to keep the current
records in a separate index (probably a
basic R-tree). This avoids the above de-
letion problem, but the worst-case per-
formance remains as before.

The pure-key query is addressed as a
special case of a range time-interval
query, where the range is limited to a
key and the time-interval is the whole
time axis. Hence, all pages that contain
the key in their range are accessed.
However, if this key never existed, the
search may go through O~n/B! pages in
(pathological) worst case. If this key has
existed, the search will definitely find
its appearances, but it may also access
pages that do not contain any appear-
ances of this key.

If the SR-tree is used as a valid-time
method, then physical deletion of any
stored interval should be supported effi-
ciently. As above, the problem with
physical deletions emanates from keep-
ing an interval in many remnant seg-
ments, all of which have to be found and
physically deleted. Actually, the origi-
nal SR-tree paper [Kolovson and Stone-
braker 1991] assumes that physical de-
letions do not happen often.

Write-Once B-Tree. The write-once
B-tree, or WOBT, proposed in Easton
[1986], was originally intended for a
database that resided entirely on
WORMs. However, many variations of
this method (the time-split B-tree
[Lomet and Salzberg 1989]; the persis-
tent B-tree [Lanka and Mays 1991]; the
multiversion B-tree [Becker et al. 1996];

194 • B. Salzberg and V. J. Tsotras

ACM Computing Surveys, Vol. 31, No. 2, June 1999

and the multiversion access structure
[Varman and Verma 1997]) have been
proposed which may use both a WORM
and a magnetic disk, or only a magnetic
disk. The WOBT itself can be used ei-
ther on a WORM or on a magnetic disk.
The WOBT is a modification of the B1-
tree, given the constraints of a WORM.

The WORM characteristics imply that
once a page is written, no new data can
be entered or updated in the page (since
a checksum is burned into the disk). As
a result, each new index entry occupies
an entire page; for example, if a new
index entry takes 12 bytes and a page is
1,024 bytes, 99% of the page is empty.
Similarly, each new record version is an
entire page. Tree nodes are collections
of pages—for example, a track on a disk.
Record versions contain their transac-
tion start times only. A new version
with the same key is placed in the same
node. Its start time is the end time of
the previous version. Nodes represent a
rectangle in the transaction time-key
space. The nodes partition that space—
each time-key point is in exactly one
node.

When a node fills up, it can be split by
(current) transaction time or split first
by current transaction time and then by
key. The choice depends on how many
records in the node are current versions
at the time of the split. The old node is
left in place. (There is no other choice.)
The record versions “alive” at the cur-
rent transaction time are copied to a
new node, or two new nodes if it is also
split by key. There is space for new
versions in the new nodes. Deletions of
records are handled in the only possible
way: a node deletion record is written in
a current node and it contains the end
time. When the current node is split,
the deleted record is not copied. This
design enables some clustering of the
records in nodes by time and key (after
a node split, “alive” records are stored
together in a page) but most of the
space of most of the optical disk pages is
empty (because most new entries occupy
whole pages).

When a root node splits, a new root is
created. Addresses of consecutive roots
and their creation times are held in a
“root log” that has the form of a vari-
able-length append-only array. This ar-
ray provides access to the appropriate
root of the WOBT by time.

If the WOBT is implemented on a
magnetic disk, space utilization is im-
mediately improved, as it is not neces-
sary to use an entire page for one entry.
Pages can be updated, so they can be
used for nodes. Space utilization is
O~n/B! and range queries are O~logBn
1 a/B!, if one disregards record dele-
tion. These bounds are for using the
method exactly as described in this pa-
per, except that each node of the tree
will be a page on a magnetic disk. In
particular, the old node in a split is not
moved. Current records are copied to a
new node or to two new nodes. Since
deletions are simply handled with a de-
letion record (which is “seen” by the
method as another updated value), the
search algorithm is not able to avoid
searching pages that may be full of “de-
leted” records. So if deletions are fre-
quent, pages that do not contribute to
the answer may be accessed.

Since all the B1-tree-based transac-
tion-time methods search data records
by both transaction time and key, or by
transaction time only, answering a
pure-key query with the WOBT (or the
time-split B-tree, persistent B-tree, and
multiversion B-tree) requires that a
given version (instance) of the key
whose previous versions are requested
should also be provided by the query.
That is, a transaction time predicate
should be provided in the pure-key
query as, for example, in “find the pre-
vious salary history of employee A who
was alive at t.”

Different versions of a given key can
be linked together so that the pure-key
query (with time predicate) is addressed
by the WOBT in O~logBn 1 a! I/Os.
The logarithmic part is spent finding
the instance of employee A in version t

Comparison of Access Methods for Time-Evolving Data • 195

ACM Computing Surveys, Vol. 31, No. 2, June 1999

and then its previous a versions are
accessed using a linked structure. Basi-
cally, the WOBT (and the time-split B-
tree, persistent B-tree, and the multi-
version B-tree) can have backwards
links in each node to the previous his-
torical version. This does not use much
space, but for records that do not
change over many copies, one needs to
go back many pages before getting more
information. To achieve the bound
above, each record needs to keep the
address of the last different version of
that record.

If such addresses are kept in records,
the address of the last different version
for each record is available at the time
the data node does a time split. Then
these addresses can be copied to the
new node with their respective records.
A record whose most recent previous
version is in the node that is split must
add that address. A record that is the
first version with that key must have a
special symbol to indicate this fact. This
simple algorithm can be applied to any
method that does time splits.

To answer the general pure-key query
“find the previous salary history of em-
ployee A” requires finding if A was ever
an employee. The WOBT needs to copy
“deleted” records when a time split oc-
curs, which implies that the WOBT
state carries the latest record for all
keys ever created. However, this in-
creases space consumption. Otherwise,
if “deleted” records are not copied, all
pages including this key in their key
space may have to be searched.

The WOBT used on a magnetic disk
still makes copies of records where it
does not seem necessary. The WOBT
always makes a time split before mak-
ing a key split. This creates one histori-
cal page and two current pages where
previously there was only one current
page. A B-tree split creates two current
pages where there was only one. No
historical pages are created. It seems
like a good idea to be able to make pure
key splits as well as time splits or time-

and-key splits. This would make the
space utilization better.

Time Split B-Tree. The time-split
B-tree (or TSB-tree) [Lomet and Sal-
zberg 1989; 1990; 1993] is a modifica-
tion of the WOBT that allows pure key
splits and keeps the current data in an
erasable medium such as a magnetic
disk and migrates the data to another
disk (which could be magnetic or opti-
cal) when a time split is made. This
partitions the data in nodes by transac-
tion time and key (like the WOBT), but
is more space efficient. It also separates
the current records from most of the
historical records. In addition, the TSB-
tree does not keep a “root log.” Instead,
it creates new roots as B1-trees do, by
increasing the height of the tree when
the root splits.

When a data page is full and there are
fewer than some threshold value of
alive distinct keys, the TSB-tree will
split the page by transaction time only.
This is the same as what the WOBT
does, except now times other than the
current time can be chosen. For exam-
ple, the split time for a data page could
be the “time of last update,” after which
there were only insertions of records
with new keys and no updates creating
new versions of already existing
records. The new insertions, after the
time chosen for the split, need not have
copies in the historical node. Time splits
in the WOBT and in the TSB-trees are
illustrated in Figure 16.

Time splitting, whether by current
time or by time of last update, enables
an automatic migration of older ver-
sions of records to a separate historical
database. This is to be contrasted with
POSTGRES’ vacuuming, which is “man-
ual” and is invoked as a separate back-
ground process that searches through
the database for dead records.

It can also be contrasted with meth-
ods that reserve optical pages for pages
that cannot yet be moved and maintain
two addresses (a magnetic page address
and an optical page address) for search-
ing for the contents. TSB-tree migration

196 • B. Salzberg and V. J. Tsotras

ACM Computing Surveys, Vol. 31, No. 2, June 1999

takes place when a time split is made.
The current page retains the current
contents and the historical records are
written sequentially to the optical disk.
The new optical disk address and the
time of the split are posted to the parent
in the TSB-tree. As with B1-tree node
splitting, only the node to be split, the
newly allocated node, and the parent
are affected (also, but rarely, a full par-
ent may require further splitting). Since
the node is full and is obtaining new
data, a split must be made anyway,
whether or not the new node is on an
optical disk. (This migration to an ar-
chive can also be used for media recov-
ery, as illustrated in Lomet and Sal-
zberg [1993].)

Time splitting by other than the cur-
rent transaction time has another ad-
vantage. It can be used in distributed
databases where the commit time of a
transaction is not known until the com-
mit message is sent from the coordina-
tor. In such a database, an updated
record of a PREPARED cohort may or
may not have a commit time before the
time when an overflowing page contain-
ing it must be split. Such a page can
only be split by a time before the time

voted by the cohort as the earliest time
it may commit (see Salzberg [1994] and
Lomet [1993] for details).

Full data pages with a large number
of distinct keys currently “alive” are
split by key only in the TSB-tree. The
WOBT splits first by time and then by
key. Similar to the WOBT, space usage
for the TSB-tree is O~n/B!. The con-
stant factor in the asymptotic bound is
smaller for the TSB-tree, since it makes
fewer copies of records. Key splitting for
the WOBT and the TSB-tree is shown in
Figure 17.

An extensive average-case analysis
using Markov chains, and considering
various rates of update versus inser-
tions of records with new keys, can be
found in Lomet and Salzberg [1990],
showing, at worst, two copies of each
record, even under large update rates.
The split threshold was kept at 2B/3.
(If more than 2B/3 distinct keys are in
the page, a pure key split is made.)

There is, however, a problem with
pure key splits. The decision on the key
splits is made on the basis of alive keys
at the time the key split is made. For
example, in Figure 17(b), the key split is

Figure 16. Time splitting in the WOBT and TSB-trees.

Comparison of Access Methods for Time-Evolving Data • 197

ACM Computing Surveys, Vol. 31, No. 2, June 1999

taken at time t 5 18, when there are six
keys alive, separated three per new
page. However, this key range division
does not guarantee that the two pages
will have enough alive keys for all pre-
vious times; at time t 5 15, the bottom
page has only one key alive.

Suppose we have a database where
most of the changes are insertions of
records with a new key. As time goes by,
in the TSB-tree, only key splits are
made. After a while, queries of a past
time will become inefficient. Every
timeslice query will have to visit every
node of the TSB-tree, since they are all
current nodes. Queries as of now, or of

recent time, will be efficient, since every
node will have many alive records. But
queries as of the distant past will be
inefficient, since many of the current
nodes will not contain records that were
“alive” at that distant past time.

In addition, as in the WOBT, the
TSB-tree merely posts deletion markers
and does not merge sparse nodes. If no
merging of current nodes is done, and
there are many record deletions, a cur-
rent node may contain few current
records. This could make current search
slower than it should be.

Thus the worst-case search time for
the TSB-tree can be O~n/B! for a trans-

Figure 17. Key splitting in the WOBT and TSB-tree.

198 • B. Salzberg and V. J. Tsotras

ACM Computing Surveys, Vol. 31, No. 2, June 1999

action (pure or range) timeslice. Pages
may be accessed that have no answers
to the query. Other modifications of
Easton [1986], discussed in the next
section, combined with the TSB-tree
modifications of the author above
should solve this problem. Basically,
when there are too few distinct keys at
any time covered by the time-key rect-
angle of a node to be split, it must be
split by time and then possibly by key.
Node consolidation should also be sup-
ported (to deal with pages lacking in
alive keys due to deletions).

Index nodes in the TSB-tree are
treated differently from data nodes. The
children of index nodes are rectangles in
time-key space. So making a time split
or key split of an index node may cause
a lower level node to be referred to by
two parents.

Index node splits in the TSB-tree are
restricted in ways that guarantee that
current nodes (the only ones where in-
sertions and updates occur) have only
one parent. This parent is a current
index node. Updates need never be
made in historical index nodes, which
like historical data nodes can be placed
on WORM devices.

A time split can be done at any time
before the start time of the oldest cur-
rent child. If time splits were allowed at
current transaction times for index
nodes, lower level current nodes would
have more than one parent.

A key split can be done at any current
key boundary. This also assures that
lower level current nodes have only one
parent. Index node splitting is illus-
trated in Figure 18.

Unlike the WOBT (or Lanka and
Mays [1991] or Becker et al. [1996]), the
TSB-tree can move the contents of the
historical node to another location in a
separate historical database without
updating more than one parent. No
node which might be split in the future
has more than one parent. If a node
does a time split, the new address of the
historical data from the old node can be
placed in its unique parent and the old
address can be used for the new current

data. If it does a key split, the new key
range for the old page can be posted
along with the new key range and ad-
dress.

As with the WOBT, pure-key queries
with time predicates are addressed in
O~logBn 1 a! I/Os, where a represents
the size of the answer.

Persistent B-Tree. Several meth-
ods [Lanka and Mays 1991; Becker et
al. 1996; Varman and Verma 1997] were
derived from a method by Driscoll et al.
[1989] for general main-memory resi-
dent linked data structures. Driscoll et
al. [1989] show how to take an “ephem-
eral data structure” (meaning that past
states are erased when updates are
made) and convert it to a “persistent
data structure” (where past states are

Figure 18. Index node splitting in the TSB-tree.

Comparison of Access Methods for Time-Evolving Data • 199

ACM Computing Surveys, Vol. 31, No. 2, June 1999

maintained). A “fully persistent” data
structure allows updates to all past
states. A “partially persistent” data
structure allows updates only to the
most recent state.

Consider the abstraction of a transac-
tion time database as the “history of an
evolving set of plain objects” (Figure 1).
Assume that a B1-tree is used to index
the initial state of this evolving set.
If this B1-tree is made partially persis-
tent, we have constructed an access
method that supports transaction range-
timeslice queries (“range/-/point”). Con-
ceptually, a range-timeslice query for
transaction time t is answered by tra-
versing the B1-tree as it was at t. Par-
tial persistence is nicely suited to trans-
action time, since only the most recent
state is updated. Note that the method
used to index the evolving set state af-
fects what queries are addressed. For
example, to construct a pure-timeslice
method, the evolving set state is repre-
sented by a hashing function that is
made partially persistent. This is an-
other way to “visualize” the approach
taken by the snapshot index.

Note that a fully persistent access
structure can be restricted to the par-
tially persistent case, which is the rea-
son for discussing Driscoll et al. [1989]
and Lanka and Mays [1991] in this sur-
vey.

Lanka and Mays [1991] provide a
fully persistent B1-tree. For our pur-
poses, we are only interested in the
methods presented in Lanka and Mays
[1991] when reduced to partial persis-
tence. Thus we call Lanka and Mays’
[1991] partially persistent method the
persistent B-tree. The multiversion B-
tree (or MVBT) of Becker et al. [1996]
and the MVAS of Varman and Verma
[1997] are also partially persistent B1-
trees. The Persistent B-tree and the
MVBT, MVAS support node consolida-
tion (that is, a page is consolidated with
another page if it becomes sparse in
alive keys due to frequent deletions). In
comparison, the WOBT and the TSB-
tree are partially persistent B1-trees,

which do not do node consolidation
(since they aim for applications where
data is mainly updated and infre-
quently deleted). Node consolidation
may result in thrashing (consolidating
and splitting the same page continual-
ly), which results in more space. The
MVBT, MVAS disallow thrashing, while
the persistent B-tree does not.

Driscoll et al. [1989]; Lanka and Mays
[1991]; Becker et al. [1996]; and
Varman and Verma [1997] speak of ver-
sion numbers rather than timestamps.
One important difference between ver-
sion numbers for partially persistent
data and timestamps is that times-
tamps as we have defined them are
transaction time instants when events
(changes) are stored. So timestamps are
not consecutive integers; but version
numbers can be consecutive integers.
This has an effect on search operations,
since Driscoll et al. [1989], Lanka and
Mays [1991], and Becker et al. [1996]
maintain an auxiliary structure called
root*, which serves the same purpose as
the “root log” of the WOBT.

In Driscoll et al. [1989], root* is an
array indexed on version numbers. Each
array entry has a pointer to the root of
the version in question. If the version
numbers are consecutive integers,
search for the root is O~1!. If time-
stamps are used, search is O~logBn!. In
Lanka and Mays [1991] and Becker et
al. [1996], root* only obtains entries
when a root splits. Although root* is
smaller than it would be if it had an
entry for each timestamp, search within
root* for the correct root is O~logBn!.

The use of the root* structure (array)
in Lanka and Mays [1991] and Becker
et al. [1996] facilitates faster update
processing, as the most current version
of the B1-tree is separated from most of
the previous versions. The most current
root can have a separate pointer yield-
ing O~1! access to that root. (Each root
corresponds to a consecutive set of ver-
sions.) If the current version has size m,
updating is O~logBm!. Methods that do

200 • B. Salzberg and V. J. Tsotras

ACM Computing Surveys, Vol. 31, No. 2, June 1999

not use the root* structure have
O~logBn! update processing.

Driscoll et al. [1989] explains how to
make any ephemeral main-memory
linked structure persistent. Two main
methods are proposed: the fat node
method and the node copying method.
The fat node method keeps all the vari-
ations of a node in a variable-sized “fat
node.” When an ephemeral structure
wants to update the contents of a node,
the fat node method simply appends the
new values to the old node, with a nota-
tion of the version number (timestamp)
that does the update. When an ephem-
eral structure wants to create a new
node, a new fat node is created.

Lanka and Mays [1991] apply the fat
node method of Driscoll et al. [1989] to
the B1-tree. The fat nodes are collec-
tions of B1-tree pages, each correspond-
ing to a set of versions. Versions can
share B1-tree pages if the records in
them are identical for each member of
the sharing set. But versions with only
one different data record have distinct
B1-tree pages.

Pointers to lower levels of the struc-
ture are pointers to fat nodes, not to
individual pages within fat nodes. When
a record is updated, inserted, or deleted,
a new leaf page is created. The new leaf
is added to the old fat node. If the new
leaf contents overflows, the new leaf is
split, with the lower-value keys in the
old fat node and the higher value keys
in a new fat node. When a leaf splits,
the parent node must be updated to
search correctly for part of the new ver-
sion that is in the new fat node. When a
new page is added to a fat node, the
parent need not be updated.

Similarly, when index nodes obtain
new values because a fat node child has
a split, new pages are allocated to the
fat index node. When an index node
wants to split, the parent of the index
node obtains a new value. When roots
split, a new pointer is put in the array
root*, which allows access to the correct
(fat) root nodes.

Since search within a fat node means
fetching all the pages in the fat node
until the correct one is found (with the
correct version number), Lanka and
Mays [1991] suggest a version block: an
auxiliary structure in each fat node of
the persistent B-tree. The version block
indicates which page or block in the fat
node corresponds to which version num-
ber. Figure 19 shows the incremental
creation of a version block with its fat
node pages. In Figure 20, an update
causes this version block to split. The
version block is envisioned as one disk
page, but there is no reason it might not
become much larger. It may itself have
to take the form of a multiway access
tree (since new entries are always
added at the end of a version block).
Search in one version block for one data
page could itself be O~logBn!. For exam-
ple, if all changes to the database were
updates of one B1-tree page, the fat
node would have n B1-tree pages in it.

Although search is no longer linear
within the fat node, the path from the
root to a leaf is at least twice as many
blocks as it would be for an ephemeral
structure. The height of the tree in
blocks is at least twice what it would be
for an ephemeral B1-tree containing the
same data as one of the versions. Up-
date processing is amortized O~logBm!
where m is the size of the current B1-
tree being updated. Range timeslice
search is O~logBn~logBm 1 a/B!!. After
the correct root is found, the tree that
was current at the time of interest is
searched. This tree has height
O~logBm!, and searching each version
block in the path is O~logBn!. A similar
bound holds for the pure-timeslice
query. Space is O~n! (not O~n/B!), since
new leaf blocks are created for each
update.

To avoid creating new leaf blocks for
each update, the “fat field method” is
also proposed in Lanka and Mays [1991]
where updates can fit in a space of
nonfull pages. In the general full persis-
tence case, each update must be marked

Comparison of Access Methods for Time-Evolving Data • 201

ACM Computing Surveys, Vol. 31, No. 2, June 1999

with the version number that created it
and with the version numbers of all
later versions that delete it. Since we
are interested in partial persistence,
this corresponds to the start time and
the end time of the update. Fat fields
for the persistent B-tree are illustrated
in Figure 21.

When a page becomes full, the version
creating the overflow copies all informa-
tion relevant to that version to a new
node. The persistent B-tree then creates
a fat node and a version block. If the

new copied node is still overflowing, a
key split can be made and then informa-
tion must be posted to the parent node
regarding the key split and the new
version. Thus the Persistent B-tree of
Lanka and Mays [1991] does time splits
and time-and-key splits just as in the
WOBT. In this variation, space usage is
O~n/B!, update processing is amortized
O~logBm!, and query time (for both the
range and pure-timeslice queries) is
O~logBn~logBm 1 a/B!!. The update

Figure 19. Incremental creation of a fat node in the persistent B-tree.

202 • B. Salzberg and V. J. Tsotras

ACM Computing Surveys, Vol. 31, No. 2, June 1999

and query time characteristics remain
asymptotically the same as in the fat-
node method, since the fat-field method
still uses version blocks.

If a page becomes sparse from too
many deletions, a node consolidation al-
gorithm is presented. The version mak-
ing the last deletion copies all informa-
tion relative to that version to a new
node. Then a sibling node also has its
information relative to that version cop-
ied to the new node. If it is necessary,
the new node is then key-split.

Technically speaking, the possibility of
thrashing by continually consolidating
and splitting the same node could cause

space usage to become O~n!, not O~n/B!.
This could happen by inserting a record
in a node, causing it to time-and-key split,
then deleting a record from one of the
new current nodes and causing a node
consolidation, which creates a new full
current node, and so forth. A solution for
thrashing appears in Snodgrass and Ahn
[1985]. Basically, the threshold for node
consolidation is made lower than half the
threshold for node splitting. Since this is
a rather pathological scenario, we con-
tinue to assume that space usage for the
fat-fields variation of the persistent B-
tree is O~n/B!.

Figure 20. An example of a split on a fat node in the persistent B-tree.

Comparison of Access Methods for Time-Evolving Data • 203

ACM Computing Surveys, Vol. 31, No. 2, June 1999

To move historical data to another
medium, observe that time splitting by
current transaction time as performed
in the persistent B-tree means that
nodes cannot be moved once they are
created, unless all the parents (not just
the current ones) are updated with the
new address of the historical data. Only
the TSB-tree solves this problem by
splitting index nodes before the time of
the earliest start time of their current
children. Thus, in the TSB-tree, when a
current node is time-split, the historical
data can be moved to another disk. In

the TSB-tree, current nodes have only
one parent.

Fat nodes are not necessary for par-
tial persistence. This is observed in
Driscoll et al. [1989], where “node-copy-
ing” for partially persistent structures
is discussed.

The reason fat nodes are not needed
is that although alive (current) nodes
have many parents, only one of them is
current. So when a current node is cop-
ied or split, only its current parent has
to be updated. The other parents will
correctly refer to its contents as of a

Figure 21. The fat-field method of the persistent B-tree.

204 • B. Salzberg and V. J. Tsotras

ACM Computing Surveys, Vol. 31, No. 2, June 1999

previous version. The fact that new
items may have been added does not
affect the correctness of search. Since
nodes are always time– split (most re-
cent versions of copied items) by current
transaction time, no information is
erased when a time split is made.

Both approaches of the persistent B-
tree use a version block inside each fat
node. If the node in question is never
key-split (that is, all changes are ap-
plied to the same ephemeral B1-tree
node), a new version of block pages may
be created for this node, without updat-
ing the parent’s version block. Thus,
when answering a query, all encoun-
tered version blocks have to be searched
for time t. In comparison, the MVBT
and MVAS we discuss next use “node-
copying,” and so have better asymptotic
query time (O~logBn 1 a/B!).

Multiversion B-Tree and Multiver-
sion Access Structure. The multiver-
sion B-tree of Becker et al. [1996] and
the multiversion access structure of
Varman and Verma [1997] provide an-
other approach to partially persistent
B1-trees. Both structures have the
same asymptotic behavior, but the
MVAS improves the constant of MVBT’s
space complexity. We first discuss the
MVBT and then present its main differ-
ences with the MVAS.

The MVBT is similar to the WOBT;
however, it efficiently supports dele-
tions (as in Driscoll et al. [1989] and
Lanka and Mays [1991]). Supporting de-
letions efficiently implies use of node
consolidation. In addition, the MVBT
uses a form of node-copying [Driscoll et
al. 1989], and disallows thrashing.

As with the WOBT and the persistent
B-tree, it uses a root* structure. When
the root does a time-split, the sibling
becomes a new root. Then a new entry is
placed in the variable length array
root*, pointing to the new root. If the
root does a time-and-key split, the new
tree has one more level. If a child of the
root becomes sparse and merges with its
only sibling, the newly merged node be-
comes a root of a new tree.

Figures 21 and 22 illustrate some of
the similarities and differences between
the persistent B-tree, the MVBT, and
the WOBT. To better illustrate the sim-
ilarities, we picture the WOBT in Fig-
ure 22 with end times and start times in
each record version. In the original
WOBT, end times of records were calcu-
lated from the begin times of the next
version of the record with the same key.
If no such version was in the node, the
end time of the record was known to be
after the end time of the node.

In all three methods, if we have no
node consolidation, the data nodes are
exactly the same. In all three methods,
when a node becomes full, a copy is
made of all the records “alive”at the
time the version makes the update that
causes the overflow. If the number of
distinct records in the copy is above
some threshold, the copy is split into
two nodes by key.

The persistent B-tree creates a fat
node when a data node is copied. The
WOBT and the MVBT do not create fat
nodes. Instead, as illustrated in Figure
22, information is posted to the parent
of the overflowing data node. A new
index entry or two new index entries,
which describe the split, are created. If
there is only one new data node, the key
used as the lower limit for the overflow-
ing child is copied to the new index
entry. The old child pointer gets the
time of the copy as its end time and the
new child pointer gets the split time as
its start time. If there are two new
children, they both have the same start
time, but one has the key of the over-
flowing child and the other has the key
used for the key split.

A difference between the persistent
B-tree, the WOBT, the MVBT, on one
hand, and the TSB, on the other, is that
the TSB does not have root*. When the
only root in the TSB does a time split, a
new level is placed on the tree to con-
tain the information about the split.
When the root in the MVBT does a
time-split, root* obtains a new entry.
When the root in the (fat-field) persis-
tent B-tree does a time split, that root

Comparison of Access Methods for Time-Evolving Data • 205

ACM Computing Surveys, Vol. 31, No. 2, June 1999

fat node obtains a new page and a new
entry in the version block. (Only when
the root fat node requires a key split or
a merge, so that a new root fat node is
constructed, does root* obtain a new
entry in the Persistent B-tree.)

Another difference with the WOBT is
that the MVBT and the persistent B-
tree use a node consolidation algorithm.
When a node is sparse, it is consolidated
with a sibling by time- splitting (copy-
ing) both the sparse node and its sibling
and then combining the two copies, pos-
sibly key-splitting if necessary.

In addition, the MVBT disallows
thrashing (splitting and consolidating

the same node continually) by suggest-
ing that the threshold for splitting be
higher than twice the threshold for con-
solidating. The persistent B-tree does
not disallow thrashing. This is not an
issue with the WOBT, since it does no
node consolidation.

Search in root* for the correct root in
MBVT is O~logBn!. Although the exam-
ple illustrated in Figure 22 has a small
root*, there is no reason why this should
always be the case. We only need to imag-
ine a database with one data node with
records that are continually updated,
causing the root (which is also the data
node) to continually time-split. So if the

Figure 22. The multiversion B-tree and the write-once B-tree. (For simplicity of comparison, both the
end and start times appear in each record, which is not needed in the original WOBT).

206 • B. Salzberg and V. J. Tsotras

ACM Computing Surveys, Vol. 31, No. 2, June 1999

root* becomes too large, a small index has
to be created above it.

In MBVT, the transaction range time-
slice search (“range/-/point”) is O~logBn
1 a/B!, since search for the root is it-
self O~logBn!. The MVBT has O~logBm!
amortized update cost (where m now
denotes the size of the current B1-tree
on which the update is performed), and
O~n/B! space usage. Thus the MVBT
provides the I/O-optimal solution to the
transaction range timeslice problem.
The update cost is amortized due to the
updating needed to maintain efficient
access to the root* structure.

The WOBT is not optimal because
deletions of records can cause pages to
be sparsely populated as of some recent
time. Thus, transaction range-timeslice
searches may become inefficient. Inser-
tions in the WOBT and in the MVBT
are O~logBm!, since a special pointer
can be kept to the root of the tree con-
taining all current records (that are
O~m!).

The MVBT uses more space than the
WOBT, which in turn uses more space
than the TSB-tree. In order to guard
against sparse nodes and thrashing, the
MVBT policies create more replication
(the constant in the O~n/B! space
worst-case bound of the method is about
10.)

Probably the best variation of the
WOBT is to use some parameters to
decide whether to time-split, time-and-
key split, key-split, time-split and
merge, or time-split, merge and key-
split. These parameters depend on the
minimum number of versions alive at
any time in the interval spanned by the
page. All of the policies pit disk space
usage against query time. A pure key-
split creates one new page. A time-and-
key split creates two new pages: one
new historical page and one new cur-
rent page. The historical page will have
copies of the current records, so more
copies are made than when pure key
splits are allowed. Node consolidation
creates at least two new historical

pages. However, once a minimum num-
ber of records is guaranteed to be alive
for any given version in all pages,
range-timeslice queries are O~logBn 1

a/B! and space usage is O~n/B!. Differ-
ent splitting policies will affect the total
amount of space used and the average
number of copies of record versions
made.

The multiversion access structure
(MVAS) [Varman and Verma 1997] is
similar to the MVBT, but it achieves a
smaller constant on the space bound by
using better policies to handle the cases
where key-splits or merges are per-
formed. There are two main differences
in the MVAS policies. The first deals
with the case when a node becomes
sparse after performing a record dele-
tion. Instead of always consuming a
new page (as in the MVBT), the MVAS
tries to find a sibling with free space
where the remaining alive entries of the
time-split page can be stored. The condi-
tions under which this step is carried
out are described in detail in Varman
and Verma [1997]. The second differ-
ence deals with the case when the num-
ber of entries in a just time-split node is
below the prespecified threshold. If a
sibling page has enough alive records,
the MVBT copies all the sibling’s alive
records to the sparse time-split page,
thus “deleting” the sibling page. In-
stead, the MVAS copies only as many
alive records as needed from the sibling
page for the time-split page to avoid
violating the threshold. The above two
modifications reduce the extent of dupli-
cation, hence reducing the overall space.
As a result, the MVAS reduces the
worst-case storage bound of MVBT by a
factor of 2.

Since the WOBT, TSB-tree, persistent
B-tree, MVBT, and MVAS are similar in
their approach to solving range-time-
slice queries, we summarize their char-
acteristics in Table I. The issues of
time-split, key-split, time- and key-split,
sparse nodes, thrashing, and history mi-
gration are closely related.

Comparison of Access Methods for Time-Evolving Data • 207

ACM Computing Surveys, Vol. 31, No. 2, June 1999

The pure-key query is not addressed
in the work of Driscoll et al. [1989];
Lanka and Mays [1991]; and Becker et
al. [1996]; however, the technique that
keeps the address of any one copy of the
most recent distinct previous version of
the record with each record can avoid
going through all copies of a record. The
pure-key query (with time predicate) is
then addressed in O~logBn 1 a/B! I/Os,
just as proposed for the WOBT (where a
represents the number of different ver-
sions of the given key).

As discussed in Section 5.1.1, Varman
and Verma [1997] solve the pure-key
query (with time predicate) in optimal
query time O~logBn 1 a/B! using
C-lists. An advantage of the C-lists, de-
spite their extra complexity in mainte-
nance, is that they can be combined
with the main MVAS method.

Exodus and Overlapping B1-
Trees. The overlapping B1-tree
[Manolopoulos and Kapetanakis 1990;
Burton et al. 1985] and the Exodus
large storage object [Richardson et al.
1986] are similar. We begin here with a
B1-tree. When a new version makes an
update in a leaf page, copies are made of
the full path from the leaf to the root,
changing references as necessary. Each

new version has a separate root and
subtrees may be shared (Figure 23).

Space usage is O~nlogBn!, since new
pages are created for the whole path
leading to each data page updated by a
new version. Update processing is
O~logBm!, where m is the size of the
current tree being updated. Timeslice or
range-timeslice query time depends on
the time needed to find the correct root.
If nonconsecutive transaction time-
stamps of events are used, it is
O~logBn 1 a/B!.

Even though pure-key queries of the
form “find the previous salary history of
employee A who was alive at t” (i.e.,
with time predicate) are not discussed,
they can in principle be addressed in
the same way as the other B1-tree-
based methods by linking data records
together.

Multiattribute Indexes. Suppose
that the transaction start time, transac-
tion end time, and database key are
used as a triplet key for a multiat-
tribute point structure. If this structure
clusters records in disk pages by close-
ness in several attributes, one can ob-
tain efficient transaction pure-timeslice
and range-timeslice queries using only
one copy of each record.

Table I. Basic Characteristics of WOBT, TSB-Tree, Persistent B-Tree, MVBT, and MVAS

time split1 pure key
split2

time/key
split

sparse node
merge

prevent
thrashing3 root*4 history

migrate5

WOBT yes no yes no N.A. yes no
TSB-Tree yes yes no no N.A. no yes
Persistent B-Tree yes no yes yes no yes no
MVBT/MVAS yes no yes yes yes yes no

1. All methods time-split (copy) data and index nodes. The TSB-tree can time-split by other than
current time.
2. The TSB-Tree does pure key splits. The other methods do time-and-key splits. Pure key splits use less
total space, but risk poor performance on past-time queries.
3. Thrashing is repeated merging and splitting of the same node. Only the MBVT prevents thrashing by
choice of splitting and merging thresholds. Prevention of thrashing is not needed when there is no
merging.
4. The use of root* enables the current tree search to be more efficient by keeping a separate pointer to
its root. Past time queries must search within root*, so are not more efficient than methods without
root*.
5. Only the TSB-tree has only one reference to current nodes, allowing historial data to migrate.

208 • B. Salzberg and V. J. Tsotras

ACM Computing Surveys, Vol. 31, No. 2, June 1999

Records with similar values of start
time, end time, and key are clustered
together in disk pages. Having both a
similar start time and a similar end
time means that long-lived records will
be in the same page as other long-lived
records. These records are answers to
many timeslice queries. Short-lived
records will only be on the same pages if
their short lives are close in time. These
contain many correct answers to time-
slice queries with time values in the
short interval that their entries span.
Every timeslice query accesses some of
the long-lived record pages and a small
proportion of the short-lived record
pages. Individual timeslice queries do
not need to access most of the short-
lived record pages, as they do not inter-
sect the timeslice.

There are some subtle problems with
this. Suppose a data page is split by
start time. In one of the pages resulting
from the split, all the record versions
whose start time is before the split time
are stored. This page has an upper
bound on start time, implying that no
new record versions can be inserted. All
new record versions will have a start
time after now, which is certainly after
split time. Further, if there are current
records in this page, their end time will
continue to rise, so the lengths of the
record time spans in this page will be
variable.

Some are long and others short. Que-
ries as of current transaction time may
only retrieve a few (or no) records from
a page that is limited by an upper
bound on start time. This is illustrated
in Figure 24. Many such pages may
have to be accessed in order to answer a
query, each one contributing very little
to the answer (i.e., the answer is not
clustered well in pages).

Also, when a new version is created,
its start time is often far from the start
time of its predecessor (the previous
version with the same key). So consecu-
tive versions of the same record are
unlikely to be on the same page if start-
time splits are used.

Now suppose we decide that splitting
by start time is a bad idea and we split
only by key or by end time. Splitting by
end time enables migration of past data
to a WORM disk. However, a query of a
past transaction time may only retrieve
a small number of records if the records
are placed only by the requirement of
having an end time before some cut-off
value, just as in Figure 12.

Current pages (which were split by
key) can contain versions whose life-
times are very long and versions whose
lifetimes are very short. This also
makes past-time queries inefficient.

All of these subtle problems come
from the fact that many records are still
current and have growing lifetimes and
all new record versions have increasing
start times. Perhaps if we use a point-
based multiattribute index for dead ver-
sions only, efficient clustering may be
possible. Here newly dead record ver-
sions can be inserted in a page with an
upper limit on start time because the
start times may have been long ago.

Figure 23. The Overlapping tree/Exodus struc-
ture.

Figure 24. Storing data with similar start_times.

Comparison of Access Methods for Time-Evolving Data • 209

ACM Computing Surveys, Vol. 31, No. 2, June 1999

Items can be clustered in pages by key,
nearby start times, and nearby end
times. No guarantee can be made that a
query as of a given time will hit a mini-
mum number of record versions in a
page, however. For example, imagine a
page with record versions with very
short lifetimes, all of which are close by
but none of which overlap.

Although no guarantee of worst-case
search time can be made, the advan-
tages of having only one copy of each
record and no overlapping of time-key
space, so that backtracking is not neces-
sary, may make this approach worth-
while, at least for “dead” versions.
Space usage is thus linear (space is
O~n/B!, if in addition the multiat-
tribute method can guarantee that in-
dex and data pages have good space
utilization). A method for migrating
current data to the WORM and organiz-
ing the current data for efficient tempo-
ral queries is needed if the multiat-
tribute method was used for past data
only.

5.1.4 Summary. The worst-case per-
formance of the transaction-time meth-
ods is summarized in Table II. The
reader should be cautious when inter-
preting worst-case performance; the no-
tation sometimes penalizes a method for
its performance on a pathological sce-
nario. The footnotes indicate such cases.

5.1.5 Declustering and Bulk Loading.
The query bounds presented in Table II
assume that queries are processed in a
uniprocessor environment. Query per-
formance can be substantially improved
if historical data is spread (declustered)
across a number of disks that are then
accessed in parallel. Temporal data of-
fers an ideal declustering predicate
based on time. This idea is explored in
Kouramajian et al. [1994] and Muth et
al. [1996]. Muth et al. [1996] present a
way to decluster TSB pages. The declus-
tering method, termed LoT, attempts to
assign logically consecutive leaf (data)
pages of a TSB tree into a number of
separate disks. When a new data page

is created in a TSB tree, it is allocated a
disk address based on the disk ad-
dresses used by its neighboring pages.
Various worst-case performance guar-
antees are derived. Simulation results
show a large benefit over random data
page allocation. Another declustering
approach appears in Kourmajian et al.
[1994], where time-based declustering is
presented for the time-index. For de-
tails we refer to Muth et al. [1996] and
Kouramajian et al. [1994].

Most transaction-time access methods
take advantage of the time-ordered
changes to achieve good update perfor-
mance. The update processing compari-
son presented in Table II is in terms of
a single update. Faster updating can be
achieved if updates are buffered and
then applied to the index in bulks of
work. The log-structured history data
access method (LHAM) [Neil and Wei-
kum 1993] aims to support extremely
high update rates. It partitions data
into successive components based on
transaction-time timestamps. To
achieve fast update rates, the most re-
cent data is clustered together by trans-
action start-time as it arrives. A simple
(B1-tree-like) index is used to index
such data quickly; since it is based on
transaction start-time and is not very
efficient for the queries we examine
here. As data gets older, it migrates
(using an efficient technique termed
rolling merge) to another component
where the authors propose using other,
more efficient, indexes (like the TSB-
tree, etc.). Van den Bercken et al. [1997]
recently proposed a generic algorithm to
quickly create an index for a presum-
ably large data set. This algorithm can
be applied to various index structures
(the authors have applied it to R-trees
and on MVBT trees). Using the basic
index structure, buffers are used at
each node of the index. As changes ar-
rive they are buffered on the root and,
as this buffer fills, changes are propa-
gated in page units to buffers in lower
parts of the index, until the leaves are
reached. Using this approach, the total
update cost for n changes becomes

210 • B. Salzberg and V. J. Tsotras

ACM Computing Surveys, Vol. 31, No. 2, June 1999

Table II. Performance Characteristics of Examined Transaction-Time Methods

Access Method
(related section) Total Space Update per

change Pure-key Query Pure-Timeslice
Query

Range-Timeslice
Query

AP-Tree (5.1.2) O~n/B! O~logBn!1 N/A O~n/B! O~n/B!
ST-Tree (5.1.2) O~n/B! O~logBS!2 O~logBS 1 a!2 O~SlogBn!2 O~KlogBn!3

Time-Index (5.1.2) O~n2/B! O~n/B! N/A O~logBn 1 a/B! O~logBn 1 s/B!4

Two-level Time
(5.1.2)

O~n2/B! O~n/B! N/A O~RlogBn 1 a!5 O~MlogBn 1 a!6

Checkpoint
Index(5.1.2)7 O~n/B! O~n/B! N/A O~n/B! O~n/B!

Archivable Time
(5.1.2)8 O~n/B! O~logBn! N/A O~log2n 1 a/B! O~log2n 1 s/B!4

Snapshot Index
(5.1.2)

O~n/B! O~1!9 O~a!10 O~logBn 1 a/B! O~logBn 1 s/B!4

Windows Method
(5.1.2)

O~n/B! O~logBn! O~logBn 1 a! O~logBn 1 a/B! O~logBn 1 s/B!4

R-Trees (5.1.3) O~n/B! O~logBn! O~n/B!11 O~n/B! 11 O~n/B!11

SR-Tree (5.1.3) O~~n/B!logBn! O~lognB! O~n/B! 11 O~n/B! 11 O~n/B! 11

WOBT(5.1.3)12
O~n/B! O~logBm!13 O~logBn 1 a!14 O~logBn 1 a/B! O~logBn 1 a/B!

TSB-Tree (5.1.3) O~n/B! O~logBn! O~logBn 1 a!14 O~n/B!15 O~n/B!15

Persistent B-tree/Fat
Node (5.1.3)

O~n! O~logBm!13 O~logBnlogBm 1

a!14,16

O~logBn~logBm 1

a/B!!16

O~logBn~logBm 1

a/B!!16

Persistent B-tree/Fat
Field (5.1.3)

O~n/B! O~logBm!13 O~logBnlogBm 1

a!14, 16

O~logBn~logBm 1

a/B!!16

O~logBn~logBm 1

a/B!!16

MVBT(5.1.3) O~n/B! O~logBm!13 O~logBn 1 a!14 O~logBn 1 a/B! O~logBn 1 a/B!
MVAS(5.1.1 & 5.1.3) O~n/B! O~logBm!13 O~logBn 1 a/B!14,17O~logBn 1 a/B! O~logBn 1 a/B!
Overlapping B-Tree

(5.1.3)
O~nlogBn! O~logBm!13 O~logBn 1 a!14 O~logBn 1 a/B! O~logBn 1 a/B!

1This is the time needed when the end_time of a stored interval is updated; it is assumed that the start_time of the
updated interval is given. If intervals can be identified by some key attribute, then a hashing function could find the
updated interval at O~1! expected amortized time. In the original paper it was assumed that intervals can only be
added and in increasing start_time order; in that case the update time is O~1!.
2Where S denotes the number of different keys (surrogates) ever created in the evolution.
3Where K denotes the number of keys in the query key range (which may or may not be alive at the time of interest).
4Where s denotes the size of the whole timeslice for the time of interest. No separation of the key space in regions is
assumed.
5Where Ris the number of predefined key regions.
6Assuming that a query contains a number of predefined key-regions, Mdenotes the number of regions in the query
range.
7The performance is under the assumption that the Checkpoint Index creates very few checkpoints and the space
remains linear. The update time is O~n/B!since when the end_time of a stored interval is updated, the interval has to
be found. As with the AP-Index, if intervals can be identified by some key attribute, then a hashing function could find
the updated interval at O~1!. The original paper did not deal with this issue since it was implicitly assumed that
interval endpoints are known at insertion. If checkpoints are often then the method will behave as the Time Index.
8For the update it is assumed that the start_time of the updated interval is known. Otherwise, if intervals can be
identified by some key, a hashing function could be used to find the start_time of the updated interval. For the
range-timeslice query, we assume no extra structure is used. The original paper proposes using an approach similar to
the Two-Level Time Index or the ST-Tree.
9In the expected amortized sense, using a hashing function on the object key space. If no hashing but a B-tree is used
then the update becomes O~logBm!, where mis the size of the current state, on which the update is performed
10Assuming as in 9 that a hashing function is used. If a B-tree is used the query becomes O~logBS 1 a!, where S is
the total number of keys ever created.
11This is a pathological worst case, due to the non-guaranteed search on an R-tree based structure. In most cases the
avg. performance would be O~logBn 1 a!. Note that all the R-tree related methods assume both interval endpoints are
known at insertion time.
12Here we assume that the WOBT tree is implemented thoroughly on a magnetic disk, and that no (or infrequent)
deletions occur, i.e., just additions and updates.
13In the amortized sense, where mdenotes the size of the current tree being updated.
14For a pure-key query of the form: “find the previous salaries of employee Awho existed at time t”.
15This is a pathological worst case, where only key-splits are performed. If a time-split is performed before a key-split
when nodes resulting from a pure key-split would have too few records “alive” at the begin time of the node, then the
query takes O~logBn 1 a!,also assuming infrequent deletions.
16Where m denotes the size of the ephemeral B1-tree at the time of interest.
17The pure-key query performance assumes the existence of the C-lists on top of the MVAS structure.

Comparison of Access Methods for Time-Evolving Data • 211

ACM Computing Surveys, Vol. 31, No. 2, June 1999

O~~n/B!logcn! where c is the number of
pages available in main-memory, i.e., it
is more efficient than inserting updates
one by one (where instead the total up-
date processing is O~nlogBn!.

5.1.6 Temporal Hashing. External
dynamic hashing has been used in tra-
ditional database systems as a fast ac-
cess method for membership queries.
Given a dynamic set D of objects, a
membership query asks whether an ob-
ject with identity z is in the most cur-
rent D. While such a query can still be
answered by a B1-tree, hashing is on
average much faster (usually one I/O
instead of the usual two to three I/Os
for traversing the tree index). Note,
however. that the worst-case hashing
performance is linear to the size of D,
while the B1-tree guarantees logarith-
mic access. Nevertheless, due to its
practicality, hashing is a widely used
access method. An interesting question
is whether temporal hashing has an ef-
ficient solution. In this setting, changes
to the dynamic set are timestamped and
the membership query has a temporal
predicate, as in “find whether object
with identity z was in the set D at time
t.” Kollios and Tsotras [1998] present an
efficient solution to this problem by ex-
tending traditional linear hashing
[Litwin 1980] to a transaction-time en-
vironment.

5.2 Valid-Time Methods

According to the valid-time abstraction
presented in Section 2, a valid-time da-
tabase should maintain a dynamic col-
lection of interval-objects. Arge and Vit-
ter [1996] recently presented an I/O
optimal solution for the “*/point/-”
query. The solution (the external inter-
val tree) is based on a main-memory
data structure, the interval tree that is
made external (disk-resident)[Edels-
brunner 1983]. Valid timeslices are sup-
ported in O~l/B! space, using O~logBl!
update per change (interval addition,

deletion, or modification) and O~logB

l 1 a/B! query time. Here l is the num-
ber of interval-objects in the database
when the update or query is performed.
Even though it is not clear how practi-
cal the solution is (various details are
not included in the original paper), the
result is very interesting. To optimally
support valid timeslices is a rather dif-
ficult problem because in a valid-time
environment the clustering of data in
pages can dramatically change the up-
dates. Deletions are now physical and
insertions can happen anywhere in the
valid-time domain. In contrast, in a
transaction-time environment objects
are inserted in increasing time order
and after their insertion they can be
“logically” deleted, but they are not re-
moved from the database.

A valid timeslice query (“*/point/-”) is
actually a special case of a two-dimen-
sional range query. Note that an inter-
val contains a query point v if and only
if its start_time is less than or equal to
v and its end_time is greater than or
equal to v. Let us map an interval I 5
~x1, y1! into a point ~x1, y1! in the two-
dimensional space. Then an interval
contains query v if and only if its corre-
sponding two-dimensional point lies in-
side the box generated by lines x 5 0,
x 5 v, y 5 v, and y 5 ` (Figure 25).
Since an interval’s end_time is always
greater or equal than its start_time, all
intervals are represented by points
above the diagonal x 5 y. This two-di-
mensional mapping is used in the prior-
ity search tree [McCreight 1985], the
data structure that provides the main-
memory optimal solution. A number of
attempts have been made to externalize
this structure [Kanellakis et al. 1993;
Icking et al. 1987; Blankenagel and
Guting 1990].

Kanellakis et al. [1993] uses the
above two-dimensional mapping to ad-
dress two problems: indexing con-
straints and indexing classes in an I/O
environment. Constraints are repre-
sented as intervals that can be added,

212 • B. Salzberg and V. J. Tsotras

ACM Computing Surveys, Vol. 31, No. 2, June 1999

modified, or deleted. The problem of in-
dexing constraints is then reduced to
the dynamic interval management prob-
lem, i.e., the “*/point/-” query! For solv-
ing the dynamic interval management
problem, Kanellakis et al. [1993] intro-
duces a new access method, the metab-
lock tree, which is a B-ary access
method that partitions the upper diago-
nal of the two-dimensional space into
metablocks, each of which has B2 data
points (the structure is rather complex;
for details see Kanellakis et al. [1993]).
Note however that the metablock tree is
a semidynamic structure, since it can
support only interval insertions (no de-
letions). It uses O~l/B! space, O~logB

l 1 a/B!query time, and O~logBl 1
~logBl!2/B! amortized insertion time.
The insertion bound is amortized be-
cause the maintenance of a metablock’s
internal organization is rather complex
to perform after each insertion. Instead,
metablock reorganizations are deferred
until enough insertions have accumu-
lated. If interval insertions are random,
the expected insertion time becomes
O~logBl!.

Icking et al. [1987] and Blankenagel
and Guting [1990] present two other
external implementations of the priority
search tree. Both use optimal space
~O~l/B!!; Icking et al. [1987] has
O~log2l 1 a/B! query time I/Os for
valid timeslices, while Blankenagel and
Guting [1990] has O~logBl 1 a! query
time.

In Ramaswamy and Subramanian
[1994], a new technique called path cach-
ing is introduced for solving two-dimen-
sional range queries. This technique is
used to turn various main-memory data
structures, like the interval tree or the
priority search tree [McCreight 1985],
into external structures. With this ap-
proach, the “*/point/-” query is addressed
in O~logBl 1 a/B! query time, O~logBl!
amortized update time (including inser-
tions and deletions), but in O~~l/B!
log2log2B! space.

The above approaches are aimed at
good worst-case bounds, but lead to
rather complex structures. Another main-
memory data-structure that solves the
“*/point/-” query is the segment tree
[Bentley 1977] which, however, uses more
than linear space. Blankenagel and Gut-
ing [1994] present the external segment
tree (EST), which is a paginated version
of the segment tree. We first describe the
worst-case performance of the EST
method. If the endpoints of the valid-time
intervals take values from a universe of
size V (i.e., there are V possible endpoint
values), the EST supports “*/point/-” que-
ries using O~~l/B!log2V! space, O~log2V!
update per change, and query time
O~log2V 1 a!. Blankenagel and Guting
[1994] also present an extended analysis
of the expected behavior of the EST under
the assumption of a uniformly distributed
set of intervals of fixed length. It is shown
that the expected behavior is much bet-
ter; the average height of the EST is, for
all practical purposes, small (this affects
the logarithmic portion of the perfor-
mance) and the answer is found by ac-
cessing an additional O~a/B! pages.

An advantage of the external segment
tree is that the method can be modified
to also address queries with key predi-
cates (like the “range/point/-” query).
This is performed by embedding B-trees
in the EST. The original EST structure
guides the search to a subset of inter-
vals that contain the query valid time v
while an embedded B-tree allows
searching this subset for whether the

Figure 25. An interval is translated into a point
in a two-dimensional space. Axes x and y repre-
sent an interval’s starting and ending valid-times.
Intervals that intersect valid instant v correspond
to the points included in the shaded area.

Comparison of Access Methods for Time-Evolving Data • 213

ACM Computing Surveys, Vol. 31, No. 2, June 1999

query key predicate is also satisfied. For
details see Blankenagel and Guting
[1994].

Good average-case performance could
also be achieved by using a dynamic
multidimensional access method. If only
multidimensional points are supported,
as in the k-d-B-tree [Robinson 1984] or
the h-B-tree [Lomet and Salzberg 1990],
mapping an (interval, key) pair to
a triplet consisting of start_time,
end_time, key, as discussed above, al-
lows the valid intervals to be repre-
sented by points in three-dimensional
space.

If intervals are represented more nat-
urally, as line segments in a two- di-
mensional key-time space, the cell-tree
[Gunther 1989], the R-tree, or one of its
variants, the R* [Beckmann et al. 1990],
or the R1 [Sellis et al. 1987] could be
used. Such solutions should provide
good average-case performance, but
overlapping still remains a problem, es-
pecially if the interval distribution is
highly nonuniform (as observed in
Kolovson and Stonebraker [1991] for R-
trees). If the SR-tree [Kolovson and
Stonebraker 1991] is utilized for valid-
time databases, overlapping is de-
creased, but the method may suffer if
there are many interval deletions, since
all remnants (segments) of a deleted
interval have to be found and physically
deleted.

Another possibility is to facilitate a
two-level method whose top level in-
dexes the key attribute of the interval
objects (using a B1-tree), while the sec-
ond level indexes the intervals that
share the same key attribute. An exam-
ple of such method is the ST-index [Gu-
nadhi and Segev 1993]. In the ST-index
there is a separate AP-tree that indexes
the start_times of all valid-time inter-
vals sharing a distinct key attribute
value. The problem with this approach
is that a “*/point/-” query will have to
check all stored intervals to see whether
they include the query valid-time v.

The time-index [Elmasri et al. 1990]
may also be considered for storing valid-
time intervals; there are, however, two

drawbacks. First, changes can arrive in
any order, so leaf entries anywhere in
the index may have to merge or split,
thus affecting their relevant timeslices.
Second, updating may be problematic as
deleting (or adding or modifying the
length) of an interval involves updating
all the stored timeslices that this inter-
val overlaps.

Nascimento et al. [1996] offer yet an-
other approach to indexing valid-time
databases, the MAP21 structure. A val-
id-time interval ~x, y! is mapped to a
point z . 5 x10s 1 y, where s is the
maximum number of digits needed to
represent any time point in the valid-
time domain. This is enough to map
each interval to a separate point. A
regular B-tree is then used to index
these points. An advantage of this ap-
proach is that interval insertions/dele-
tions are easy using the B-tree. How-
ever, to answer a valid timeslice query
about time v the point closer to v is
found in the B-tree and then a sequen-
tial search for all intervals before v is
performed. At worst, many intervals
that do not intersect v can be found
(Nascimento et al. [1996] assumes that
in practice the maximal interval length
is known, which limits how far back the
sequential search continues from v).

Further research is needed in this
area. An interesting open problem is
whether an I/O optimal solution exists
for the “range/point/-” query (valid
range timeslices).

5.3 Bitemporal Methods

As mentioned in Section 4.5, one way to
address bitemporal queries is to fully
store some of the C~ti! collections of
Figure 3, together with the changes be-
tween these collections. To exemplify
searching through the intervals of a
stored C~ti!, an access method for each
stored C~ti! is also included. These C~ti!s
(and their accompanying methods) can
then be indexed by a regular B-tree on
ti, the transaction time. This is the ap-
proach taken in the M-IVTT [Nasci-

214 • B. Salzberg and V. J. Tsotras

ACM Computing Surveys, Vol. 31, No. 2, June 1999

mento et al. 1996]; the changes between
stored methods are called “patches” and
each stored C~ti! is indexed by a MAP21
method [Nascimento et al. 1996].

The M-IVTT approach can be thought
as an extension of the time-index [El-
masri et al. 1990] to a bitemporal envi-
ronment. Depending on how often C~ti!s
are indexed, the space/ update or the
query time of the M-IVTT will increase.
For example, the space can easily be-
come quadratic if the indexed C~ti!s are
every constant number of changes and
each change is the addition of a new
interval.

In another approach, the intervals as-
sociated with a bitemporal object can be
“visualized” as a bounding rectangle,
which is then stored in a multidimen-
sional index, such as the R-tree [Gutt-
man 1984] (or some of its variants, like
the SR-tree [Kolovson and Stonebraker
1991]). While this approach has the ad-
vantage of using a single index to sup-
port both time dimensions, the charac-
teristics of transaction-time create a
serious overlapping problem [Kumar et
al. 1998]. All bitemporal objects that
have not been “deleted” (in the transac-
tion sense) are represented with a
transaction-time endpoint extending to
now (Figure 4).

To avoid this overlapping, the use of
two R-trees (two-R approach) is pro-
posed [Kumar et al. 1998]. When a bi-
temporal object with valid-time interval
I is added in the database at transac-
tion-time t, it is inserted at the front

R-tree. This tree keeps bitemporal ob-
jects whose right transaction endpoint
is unknown. If a bitemporal object is
later “deleted” at some time t9~t9 . t!,
it is physically deleted from the front
R-tree and inserted as a rectangle of
height I and width from t to t9, in the
back R-tree. The back R-tree keeps bi-
temporal objects with known transac-
tion-time intervals (Figure 26, from Ku-
mar et al. [1998]). At any given time, all
bitemporal objects stored in the front
R-tree share the property that they are
“alive” in the transaction-time sense.
The temporal information of every such
object is thus represented simply by a
vertical (valid-time) interval that “cuts”
the transaction axis at the transaction-
time this object was inserted in the da-
tabase. Insertions in the front R-tree
objects are in increasing transaction
time, while physical deletions can hap-
pen anywhere on the transaction axis.

A “*/point/point” query about ~ti, vj! is
then answered with two searches. The
back R-tree is searched for all rectan-
gles that contain point ~ti, vj!. The front
R-tree is searched for all vertical inter-
vals that intersect a horizontal interval
H. Interval H starts from the beginning
of transaction time and extends until
point ti is at height vj (Figure 26). To
support “range/range/range” queries, an
additional third dimension for the key
ranges is added in both R-trees.

The usage of two R-trees is reminis-
cent of the dual-root mixed media R-tree

Figure 26. In the 2-R-tree approach, bitemporal data is divided according to whether their right
transaction endpoint is known. The scenario of Figure 3 is presented here (i.e., after time t5 has
elapsed). The left two-dimensional space is stored in the front R-tree, while the right in the back R-tree.

Comparison of Access Methods for Time-Evolving Data • 215

ACM Computing Surveys, Vol. 31, No. 2, June 1999

proposed in Kolovson and Stonebraker
[1989] as a mixed-media index that
stores intervals and also consists of two
R-trees. There, new intervals are stored
on one R-tree and are gradually moved
to the second R-tree. There are, how-
ever, the following differences: (a) in the
dual-root mixed media R-tree, intervals
inserted have both their endpoints
known in advance (which is not a char-
acteristic of transaction-time); (b) both
R-trees in Kolovson and Stonebraker
[1989] store intervals with the same
format; (c) the transferring of data in
the dual-root mixed media R-tree is per-
formed in a batched way. When the first
R-tree reaches a threshold near its max-
imum allocated size, a vacuuming pro-
cess completely vacuums all the nodes
of the first R-tree (except its root) and
inserts them into the second R-tree. In
contrast, transferring a bitemporal ob-
ject in the 2-R approach is performed
whenever this object is deleted in the
transaction-time sense. Such a deletion
can happen to any currently “alive” ob-
ject in the front R-tree.

Bitemporal problems can also be ad-
dressed by the partial persistence ap-
proach; this solution emanates from the
abstraction of a bitemporal database as
a sequence of history-timeslices C~t!
(Figure 3) and has two steps. First, a
good ephemeral structure is chosen to
represent each C~t!. This structure
must support dynamic addition/deletion
of (valid-time) interval-objects. Second,
this structure is made partially persis-
tent. The collection of queries supported
by the ephemeral structure implies
what queries are answered by the bi-
temporal structure.

The main advantage obtained by
“viewing” a bitemporal query as a par-
tial persistence problem is that the val-
id-time requirements are disassociated
from those with transaction-time. More
specifically, valid time support is pro-
vided from the properties of the ephem-
eral structure, while the transaction
time support is achieved by making this
structure partially persistent. Concep-

tually, this methodology provides fast
access to the C~t! of interest, on which
the valid-time query is then performed.

The partial persistence methodology
is also used in Lanka and Mays [1991];
Becker et al. [1996]; Varman and Verma
[1997] for the design of transaction-time
access methods. For a transaction-time
environment, the ephemeral structure
must support dynamic addition/deletion
of plain-objects; hence a B-tree is the
obvious choice. For a bitemporal envi-
ronment, two access methods were pro-
posed: the bitemporal interval tree [Ku-
mar et al. 1995], which is created by
making an interval tree [Edelsbrunner
1983] partially persistent (and well pag-
inated) and the bitemporal R-tree [Ku-
mar et al. 1998] created by making an
R-tree partially persistent.

The bitemporal interval tree is de-
signed for the “*/point/point” and
“*/range/point” queries. Answering such
queries implies that the ephemeral data
structure should support point-enclosure
and interval-intersection queries. In the
absence of an external ephemeral method
that optimally solves these problems
[Kanellakis 1993; Ramaswamy and Sub-
ramanian 1994], a main-memory data
structure, the interval tree (which opti-
mally solves the in-core versions of the
above problems), was used and made par-
tially persistent and well paginated. One
constraint of the bitemporal interval tree
is that the universe size V on the valid
domain is known in advance. The method
computes “*/point/point” and “*/range/
point” queries in O~logBV 1 logBn 1 a!
I/Os. The space is O~~n 1 V!/B!; the
update is amortized O~logB~m 1 V!!I/Os
per change. Here n denotes the total
number of changes, a is the answer size,
and m is the number of intervals con-
tained in the current timeslice C(t) when
the change is performed.

The bitemporal R-tree does not have
the valid-universe constraint. It is a
method designed for the more general
“range/point/point” and “range/range/
point” bitemporal queries. For that pur-
pose, the ephemeral data structure

216 • B. Salzberg and V. J. Tsotras

ACM Computing Surveys, Vol. 31, No. 2, June 1999

must support range point-enclosure and
range interval-intersection queries on
interval-objects. Since neither a main-
memory, nor an external data structure
exists with good worst-case performance
for this problem, the R*-tree [Beckmann
et al. 1990] was used, an access method
that has good average-case performance
for these queries. As a result, the per-
formance of the bitemporal R-tree is
bound by the performance of the ephem-
eral R*-tree. This is because a method
created by the partial-persistence meth-
odology behaves asymptotically as does
the original ephemeral structure.

Kumar et al. [1998] contains various
experiments comparing the average-
case performance of the 2-R methodol-
ogy, the bitemporal R-tree, and the ob-
vious approach that stores bitemporal
objects in a single R-tree (the 1-R ap-
proach, as in Figure 4). Due to the lim-
ited copying introduced by partial per-
sistence, the bitemporal R-tree uses
some small extra space (about double
the space used by the 1-R and 2-R meth-
ods), but it has much better update and
query performance. Similarly, the 2-R
approach has in general better perfor-
mance than the 1-R approach.

Recently, Bliujute et al. [1998] exam-
ine how to handle valid-time now-rela-
tive data (data whose end of valid-time
is not fixed but tracks the current time)
using extensions of R-trees.

It remains an interesting open prob-
lem to find the theoretically I/O optimal
solutions even for the simplest bitempo-
ral problems, like the “*/point/point”
and “*/range/point” queries.

6. CONCLUSIONS

We presented a comparison of different
indexing techniques which have been
proposed for efficient access to temporal
data. While we have also covered valid-
time and bitemporal approaches, the
bulk of this paper addresses transac-
tion-time methods because they are in
the the majority among the published
approaches. Since it is practically im-
possible to run simulations of all meth-
ods under the same input patterns, our

comparison was based on the worst-case
performance of the examined methods.
The items being compared include space
requirements, update characteristics,
and query performance. Query perfor-
mance is measured against three basic
transaction-time queries: the pure-key,
pure-timeslice, and range-timeslice que-
ries, or, using the three-entry notation,
the “point/-/*”, the “*/-/point,” and the
“range/-/point” queries, respectively. In
addition, we addressed problems like
index pagination, data clustering, and
the ability of a method to efficiently
migrate data to another medium (such
as a WORM device). We also introduced
a general lower bound for such queries.
A method that achieves the lower bound
for a particular query is termed I/O-
optimal for that query. The worst-case
performance of each transaction-time
method is summarized in Table II. The
reader should be cautious when inter-
preting worst-case performance. The no-
tation will sometimes penalize a method
for its performance on a pathological
scenario; we indicate such cases. While
Table II provides a good feeling for the
asymptotic behavior of the examined
methods, the choice of the appropriate
method for the particular application
also depends on the application charac-
teristics. In addition, issues such as
data clustering, index pagination, mi-
gration of data to optical disks, etc.,
may also be more or less important,
according to the application. While I/O-
optimal (and practical) solutions exist
for many transaction-time queries, this
is not the case for the valid and bitem-
poral domain. An I/O-optimal solution
exists for the valid-timeslice query, but
is mainly of theoretical importance;
more work is needed in this area. All
examined transaction-time methods
support “linear” transaction time. The
support of branching transaction time is
another promising area of research.

ACKNOWLEDGMENTS
The idea of doing this survey was pro-
posed to the authors by R. Snodgrass.
We would like to thank the anonymous

Comparison of Access Methods for Time-Evolving Data • 217

ACM Computing Surveys, Vol. 31, No. 2, June 1999

referees for many insightful comments
that improved the presentation of this
paper. The performance and the de-
scription of the methods are based on
our understanding of the related pa-
pers, hence any error is entirely our
own. The second author would also like
to thank J.P. Schmidt for many helpful
discussions on lower bounds in a pagi-
nated environment.

REFERENCES

AGRAWAL, R., FALOUTSOS, C., AND SWAMI, A.
1993. Efficient similarity search in sequence
databases. In Proceedings of FODO.

AHN, I. AND SNODGRASS, R. 1988. Partitioned
storage for temporal databases. Inf. Syst. 13,
4 (May 1, 1988), 369–391.

ARGE, L. AND VITTER, J. 1996. Optimal dynamic
interval management in external memo-
ry. In Proceedings of the 37th IEEE Sympo-
sium on Foundations of Computer Science
(FOCS). IEEE Computer Society Press, Los
Alamitos, CA.

BECKER, B., GSCHWIND, S., OHLER, T., SEEGER, B.,
AND WIDMAYER, P. 1996. An asymptotically
optimal multiversion B-tree. VLDB J. 5, 4,
264–275.

BECKMANN, N., KRIEGEL, H.-P., SCHNEIDER, R., AND

SEEGER, B. 1990. The R*-tree: An efficient
and robust access method for points and rect-
angles. In Proceedings of the 1990 ACM SIG-
MOD International Conference on Manage-
ment of Data (SIGMOD ’90, Atlantic City, NJ,
May 23–25, 1990), H. Garcia-Molina,
Ed. ACM Press, New York, NY, 322–331.

BENTLEY, J. 1977. Algorithms for Klee’s rectan-
gle problems. Computer Science Depart-
ment, Carnegie Mellon University, Pitts-
burgh, PA.

BEN-ZVI, J. 1982. The time relational model.
Ph.D. Dissertation. University of California
at Los Angeles, Los Angeles, CA.

BLANKENAGEL, G. AND GUTING, R. 1990. XP-
trees, external priority search trees. Tech.
Rep., Fern Universitat Hagen, Informatik-
Bericht No.92.

BLANKENAGEL, G. AND GUTING, R. 1994. External
segment trees. Algorithmica 12, 6, 498–532.

BLIUJUTE, R., JENSEN, C. S., SALTENIS, S., AND
SLIVINSKAS, G. 1998. R-tree based indexing
of now-relative bitemporal data. In Proceed-
ings of the Conference on Very Large Data
Bases.

BÖHLEN, M. H. 1995. Temporal database sys-
tem implementations. SIGMOD Rec. 24, 4
(Dec.), 53–60.

BOZKAYA, T. AND ÖZSOYOGLU, M. 1995. Indexing
transaction-time databases. Tech. Rep. CES-
95-19. Case Western Reserve University,
Cleveland, OH.

BURTON, F., HUNTBACH, M., AND KOLLIAS, J.
1985. Multiple generation text files using
overlapping tree structures. Comput. J. 28,
414–416.

CHAZELLE, B. 1986. Filtering search: A new ap-
proach to query answering. SIAM J. Com-
put. 15, 3, 703–724.

CHIANG, Y. AND TAMASSIA, R. 1992. Dynamic al-
gorithms in computational geometry. Proc.
IEEE 80, 9, 362–381.

DIETZFELBINGER, M., KARLIN, A., MEHLHORN, K.,
MEYER, F., ROHNHERT, H., AND TARJAN, R.
1988. Dynamic perfect hashing: Upper and
lower bounds. In Proceedings of the 29th
IEEE Conference on Foundations of Computer
Science. 524–531.

DRISCOLL, J. R., SARNAK, N., SLEATOR, D. D., AND
TARJAN, R. E. 1989. Making data struc-
tures persistent. J. Comput. Syst. Sci. 38, 1
(Feb. 1989), 86–124.

DYRESON, C., GRANDI, F., KÄFER, W., KLINE, N.,
LORENTZOS, N., MITSOPOULOS, Y., MONTANARI,
A., NONEN, D., PERESSI, E., PERNICI, B., ROD-
DICK, J. F., SARDA, N. L., SCALAS, M. R., SEGEV,
A., SNODGRASS, R. T., SOO, M. D., TANSEL, A.,
TIBERIO, P., WIEDERHOLD, G., AND JENSEN, C.
S, Eds. 1994. A consensus glossary of tem-
poral database concepts. SIGMOD Rec. 23, 1
(Mar. 1994), 52–64.

EASTON, M. C 1986. Key-sequence data sets on
indelible storage. IBM J. Res. Dev. 30, 3
(May 1986), 230–241.

EDELSBRUNNER, H. 1983. A new approach to
rectangle intersections, Parts I&II. Int. J.
Comput. Math. 13, 209–229.

ELMASRI, R., KIM, Y., AND WUU, G. 1991. Efficient
implementation techniques for the time in-
dex. In Proceedings of the Seventh Interna-
tional Conference on Data Engineering (Kobe,
Japan). IEEE Computer Society Press, Los
Alamitos, CA, 102–111.

ELMASRI, R., WUU, G., AND KIM, Y. 1990. The
time index: An access structure for temporal
data. In Proceedings of the 16th VLDB Con-
ference on Very Large Data Bases (VLDB,
Brisbane, Australia). VLDB Endowment,
Berkeley, CA, 1–12.

ELMASRI, R., WUU, G., AND KOURAMAJIAN, V.
1993. The time index and the monotonic B1-
tree. In Temporal Databases: Theory, De-
sign, and Implementation, A. Tansel, J. Clif-
ford, S. Gadia, S. Jajodia, A. Segev, and R.
Snodgrass, Eds. Benjamin/Cummings, Red-
wood City, CA, 433–456.

FALOUTSOS, C., RANGANATHAN, M., AND MANOLO-
POULOS, Y. 1994. Fast subsequence match-
ing in time-series databases. In Proceedings
of the 1994 ACM SIGMOD International Con-
ference on Management of Data (SIGMOD ’94,
Minneapolis, MN, May 24–27, 1994), R. T.
Snodgrass and M. Winslett, Eds. ACM
Press, New York, NY, 419–429.

GRAY, J. AND REUTER, A. 1993. Transaction Pro-
cessing: Concepts and Techniques. Morgan

218 • B. Salzberg and V. J. Tsotras

ACM Computing Surveys, Vol. 31, No. 2, June 1999

Kaufmann Publishers Inc., San Francisco,
CA.

GUNADHI, H. AND SEGEV, A. 1993. Efficient in-
dexing methods for temporal relation-
s. IEEE Trans. Knowl. Data Eng. 5, 3
(June), 496–509.

GUNTHER, O. 1989. The design of the cell-tree:
An object-oriented index structure for geomet-
ric databases. In Proceedings of the Fifth
IEEE International Conference on Data Engi-
neering (Los Angeles, CA, Feb. 1989). 598–
605.

GUTTMAN, A. 1984. R-trees: A dynamic index
structure for spatial searching. In Proceed-
ings of the ACM SIGMOD Conference on Man-
agement of Data. ACM Press, New York,
NY, 47–57.

HELLERSTEIN, J. M., KOUTSOUPIAS, E., AND PAPAD-
IMITRIOU, C. H. 1997. On the analysis of
indexing schemes. In Proceedings of the 16th
ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems (PODS ’97,
Tucson, AZ, May 12–14, 1997), A. Mendelzon
and Z. M. Özsoyoglu, Eds. ACM Press, New
York, NY, 249–256.

ICKING, CH., KLEIN, R., AND OTTMANN, TH. 1988.
Priority search trees in secondary memory
(extended abstract). In Proceedings of the In-
ternational Workshop WG ’87 Conference on
Graph-Theoretic Concepts in Computer Sci-
ence (Kloster Banz/Staffelstein, Germany,
June 29–July 1, 1987), H. Göttler and H.-J.
Schneider, Eds. Proceedings of the Second
Symposium on Advances in Spatial Data-
bases, vol. LNCS 314. Springer-Verlag, New
York, NY, 84–93.

JAGADISH, H. V., MENDELZON, A. O., AND MILO, T.
1995. Similarity-based queries. In Proceed-
ings of the 14th ACM SIGACT-SIGMOD-SI-
GART Symposium on Principles of Database
Systems (PODS ’95, San Jose, California, May
22–25, 1995), M. Yannakakis, Ed. ACM
Press, New York, NY, 36–45.

JENSEN, C. S., MARK, L., AND ROUSSOPOULOS, N.
1991. Incremental implementation model for
relational databases with transaction time.
IEEE Trans. Knowl. Data Eng. 3, 4, 461–473.

JENSEN, C. S., MARK, L., ROUSSOPOULOS, N., AND
SELLIS, T. 1992. Using differential tech-
niques to efficiently support transaction time-
. VLDB J. 2, 1, 75–111.

KAMEL, I. AND FALOUTSOS, C. 1994. Hilbert R-
tree: An improved R-tree using fractals. In
Proceedings of the 20th International Confer-
ence on Very Large Data Bases (VLDB’94,
Santiago, Chile, Sept.). VLDB Endowment,
Berkeley, CA, 500–509.

KANELLAKIS, P. C., RAMASWAMY, S., VENGROFF, D.
E., AND VITTER, J. S. 1993. Indexing for
data models with constraints and classes (ex-
tended abstract). In Proceedings of the
Twelfth ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems
(PODS, Washington, DC, May 25–28), C.

Beeri, Ed. ACM Press, New York, NY, 233–
243.

KOLLIOS, G. AND TSOTRAS, V. J. 1998. Hashing
methods for temporal data. TimeCenter TR-
24. Aalborg Univ., Aalborg, Den-
mark. http:www.cs.auc.dk/general/DBS/tdb/
TimeCenter/publications.html

KOLOVSON, C. 1993. Indexing techniques for
historical databases. In Temporal Databas-
es: Theory, Design, and Implementation, A.
Tansel, J. Clifford, S. Gadia, S. Jajodia, A.
Segev, and R. Snodgrass, Eds. Benjamin/
Cummings, Redwood City, CA, 418–432.

KOLOVSON, C. AND STONEBRAKER, M. 1989.
Indexing techniques for historical databas-
es. In Proceedings of the Fifth IEEE Interna-
tional Conference on Data Engineering (Los
Angeles, CA, Feb. 1989). 127–137.

KOLOVSON, C. AND STONEBRAKER, M. 1991.
Segment indexes: Dynamic indexing tech-
niques for multi-dimensional interval da-
ta. In Proceedings of the 1991 ACM SIG-
MOD International Conference on
Management of Data (SIGMOD ’91, Denver,
CO, May 29–31, 1991), J. Clifford and R.
King, Eds. ACM Press, New York, NY, 138–
147.

KOURAMAJIAN, V., ELMASRI, R., AND CHAUDHRY, A.
1994. Declustering techniques for paralleliz-
ing temporal access structures. In Proceed-
ings of the 10th IEEE Conference on Data
Engineering. 232–242.

KOURAMAJIAN, V., KAMEL, I., KOURAMAJIAN, V., EL-
MASRI, R., AND WAHEED, S. 1994. The time
index 1 : an incremental access structure for
temporal databases. In Proceedings of the
3rd International Conference on Information
and Knowledge Management (CIKM ’94,
Gaithersburg, Maryland, Nov. 29–Dec. 2,
1994), N. R. Adam, B. K. Bhargava, and Y.
Yesha, Eds. ACM Press, New York, NY,
296–303.

KUMAR, A., TSOTRAS, V. J., AND FALOUTSOS, C.
1995. Access methods for bitemporal data-
bases. In Proceedings of the international
Workshop on Recent Advances in Temporal
Databases (Zurich, Switzerland, Sept.), S.
Clifford and A. Tuzhlin, Eds. Springer-Ver-
lag, New York, NY, 235–254.

KUMAR, A., TSOTRAS, V. J., AND FALOUTSOS, C.
1998. Designing access methods for bitempo-
ral databases. IEEE Trans. Knowl. Data
Eng. 10, 1 (Jan./Feb.).

LANDAU, G. M., SCHMIDT, J. P., AND TSOTRAS, V. J.
1995. On historical queries along multiple
lines of time evolution. VLDB J. 4, 4, 703–
726.

LANKA, S. AND MAYS, E. 1991. Fully persistent
B1trees. In Proceedings of the 1991 ACM
SIGMOD International Conference on Man-
agement of Data (SIGMOD ’91, Denver, CO,
May 29–31, 1991), J. Clifford and R. King,
Eds. ACM Press, New York, NY, 426–435.

Comparison of Access Methods for Time-Evolving Data • 219

ACM Computing Surveys, Vol. 31, No. 2, June 1999

LEUNG, T. Y. C. AND MUNTZ, R. R. 1992. Gene-
ralized data stream indexing and temporal
query processing. In Proceedings of the Sec-
ond International Workshop on Research Is-
sues in Data Engineering: Transactions and
Query Processing.

LEUNG, T. Y. C. AND MUNTZ, R. R. 1992. Tem-
poral query processing and optimization in
multiprocessor database machines. In Pro-
ceedings of the 18th International Conference
on Very Large Data Bases (Vancouver, B.C.,
Aug.). VLDB Endowment, Berkeley, CA,
383–394.

LEUNG, T. Y. C. AND MUNTZ, R. R. 1993. Stream
processing: Temporal query processing and
optimization. In Temporal Databases: The-
ory, Design, and Implementation, A. Tansel,
J. Clifford, S. Gadia, S. Jajodia, A. Segev, and
R. Snodgrass, Eds. Benjamin/Cummings,
Redwood City, CA, 329–355.

LITWIN, W. 1980. Linear hashing: A new tool
for file and table addressing. In Proceedings
of the 6th International Conference on Very
Large Data Bases (Montreal, Ont. Canada,
Oct. 1–3). ACM Press, New York, NY, 212–
223.

LOMET, D. 1993. Using timestamping to opti-
mize commit. In Proceedings of the Second
International Conference on Parallel and Dis-
tributed Systems (Dec.). 48–55.

LOMET, D. AND SALZBERG, B. 1989. Access meth-
ods for multiversion data. In Proceedings of
the 1989 ACM SIGMOD International Confer-
ence on Management of Data (SIGMOD ’89,
Portland, OR, June 1989), J. Clifford, J. Clif-
ford, B. Lindsay, D. Maier, and J. Clifford,
Eds. ACM Press, New York, NY, 315–324.

LOMET, D. AND SALZBERG, B. 1990. The perfor-
mance of a multiversion access method. In
Proceedings of the 1990 ACM SIGMOD Inter-
national Conference on Management of Data
(SIGMOD ’90, Atlantic City, NJ, May 23–25,
1990), H. Garcia-Molina, Ed. ACM Press,
New York, NY, 353–363.

LOMET, D. AND SALZBERG, B. 1990. The hB-tree:
a multiattribute indexing method with good
guaranteed performance. ACM Trans. Data-
base Syst. 15, 4 (Dec. 1990), 625–658.

LOMET, D. AND SALZBERG, B. 1993. Transaction-
time databases. In Temporal Databases:
Theory, Design, and Implementation, A.
Tansel, J. Clifford, S. Gadia, S. Jajodia, A.
Segev, and R. Snodgrass, Eds. Benjamin/
Cummings, Redwood City, CA.

LOMET, D. AND SALZBERG, B. 1993. Exploiting a
history database for backup. In Proceedings
of the 19th International Conference on Very
Large Data Bases (VLDB ’93, Dublin, Ireland,
Aug.). Morgan Kaufmann Publishers Inc.,
San Francisco, CA, 380–390.

LORENTZOS, N. A. AND JOHNSON, R. G. 1988. Ex-
tending relational algebra to manipulate tem-
poral data. Inf. Syst. 13, 3 (Oct., 1, 1988),
289–296.

LUM, V., DADAM, P., ERBE, R., GUENAUER, J., PIS-
TOR, P., WALCH, G., WERNER, H., AND WOOD-
FILL, J. 1984. Designing DBMS support for
the temporal database. In Proceedings of the
ACM SIGMOD Conference on Management of
Data. ACM Press, New York, NY, 115–130.

MANOLOPOULOS, Y. AND KAPETANAKIS, G. 1990.
Overlapping B1trees for temporal data. In
Proceedings of the Fifth Conference on JCIT
(JCIT, Jerusalem, Oct. 22-25). 491–498.

MCCREIGHT, E. M. 1985. Priority search trees.
SIAM J. Comput. 14, 2, 257–276.

MEHLHORN, K. 1984. Data Structures and Algo-
rithms 3: Multi-dimensional Searching and
Computational Geometry. EATCS mono-
graphs on theoretical computer science.
Springer-Verlag, New York, NY.

MOTAKIS, I. AND ZANIOLO, C. 1997. Temporal ag-
gregation in active database rules. In Pro-
ceedings of the International ACM Conference
on Management of Data (SIGMOD ’97, May).
ACM, New York, NY, 440–451.

MUTH, P., KRAISS, A., AND WEIKUM, G. 1996.
LoT: A dynamic declustering of TSB-tree
nodes for parallel access to temporal da-
ta. In Proceedings of the Conference on
EDBT. 553–572.

NASCIMENTO, M., DUNHAM, M. H., AND ELMASRI, R.
1996. M-IVTT: A practical index for bitem-
poral databases. In Proceedings of the Con-
ference on DEXA (DEX ’96, Zurich, Switzer-
land).

NASCIMENTO, M., DUNHAM, M. H., AND KOURAMA-
JIAN, V. 1996. A multiple tree mapping-
based approach for range indexing. J. Bra-
zilian Comput. Soc. 2, 3 (Apr.).

NAVATHE, S. B. AND AHMED, R. 1989. A tempo-
ral relational model and a query language.
Inf. Sci. 49, 1, 2 & 3 (Oct./Nov./Dec. 1989),
147–175.

O’NEIL, P. AND WEIKUM, G. 1993. A log-struc-
tured history data access method
(LHAM). In Proceedings of the Workshop on
High Performance Transaction System (Asilo-
mar, CA).

ÖZSOYOGLU, G. AND SNODGRASS, R. 1995. Tempo-
ral and real-time databases: A survey. IEEE
Trans. Knowl. Data Eng. 7, 4 (Aug.), 513–532.

RAMASWAMY, S. 1997. Efficient indexing for
constraint and temporal databases. In Pro-
ceedings of the 6th International Conference
on Database Theory (ICDT ’97, Delphi,
Greece, Jan. 9-10). Springer-Verlag, Berlin,
Germany.

RAMASWAMY, S. AND SUBRAMANIAN, S. 1994.
Path caching (extended abstract): a technique
for optimal external searching. In Proceed-
ings of the 13th ACM SIGACT-SIGMOD-SI-
GART Symposium on Principles of Database
Systems (PODS ’94, Minneapolis, MN, May
24–26, 1994), V. Vianu, Ed. ACM Press,
New York, NY, 25–35.

RICHARDSON, J., CAREY, M., DEWITT, D., AND SHE-
KITA, E. 1986. Object and file management

220 • B. Salzberg and V. J. Tsotras

ACM Computing Surveys, Vol. 31, No. 2, June 1999

in the Exodus extensible system. In Proceed-
ings of the 12th International Conference on
Very Large Data Bases (Kyoto, Japan,
Aug.). VLDB Endowment, Berkeley, CA, 91–
100.

RIVEST, R. 1976. Partial-match retrieval algo-
rithms. SIAM J. Comput. 5, 1 (Mar.), 19–50.

ROBINSON, J. 1984. The K-D-B tree: A search
structure for large multidimensional dynamic
indexes. In Proceedings of the ACM SIG-
MOD Conference on Management of Data.
ACM Press, New York, NY, 10–18.

ROTEM, D. AND SEGEV, A. 1987. Physical organi-
zation of temporal data. In Proceedings of
the Third IEEE International Conference on
Data Engineering. IEEE Computer Society
Press, Los Alamitos, CA, 547–553.

SALZBERG, B. 1988. File Structures: An Analytic
Approach. Prentice-Hall, Inc., Upper Saddle
River, NJ.

SALZBERG, B. 1994. Timestamping after com-
mit. In Proceedings of the 3rd International
Conference on Parallel and Distributed Infor-
mation Systems (PDIS, Austin, TX,
Sept.). 160–167.

SALZBERG, B. AND LOMET, D. 1995. Branched
and Temporal Index Structures. Tech. Rep.
NU-CCS-95-17. Northeastern Univ., Boston,
MA.

SEGEV, A. AND GUNADHI, H. 1989. Event-join op-
timization in temporal relational databas-
es. In Proceedings of the 15th International
Conference on Very Large Data Bases (VLDB
’89, Amsterdam, The Netherlands, Aug 22–
25), R. P. van de Riet, Ed. Morgan Kauf-
mann Publishers Inc., San Francisco, CA,
205–215.

SELLIS, T., ROUSSOPOULOS, N., AND FALOUTSOS,
C. 1987. The R1-tree: A dynamic index for
multi-dimensional objects. In Proceedings of
the 13th Confererence on Very Large Data
Bases (Brighton, England, Sept., 1987). VLDB
Endowment, Berkeley, CA.

SESHADRI, P., LIVNY, M., AND RAMAKRISHNAN, R.
1996. The design and implementation of a
sequence database system. In Proceedings of
the 22nd International Conference on Very
Large Data Bases (VLDB ’96, Mumbai, India,
Sept.). 99–110.

SHOSHANI, A. AND KAWAGOE, K. 1986. Temporal
data management. In Proceedings of the
12th International Conference on Very Large
Data Bases (Kyoto, Japan, Aug.). VLDB En-
dowment, Berkeley, CA, 79–88.

SNODGRASS, R. T. AND AHN, I. 1985. A taxonomy
of time in databases. In Proceedings of the
ACM SIGMOD Conference on Management of
Data. ACM Press, New York, NY, 236–246.

SNODGRASS, R. T. AND AHN, I. 1986. Temporal
databases. IEEE Comput. 19, 9 (Sept. 1986),
35–41.

STONEBRAKER, M. 1987. The design of the Post-
gres storage system. In Proceedings of the
13th Confererence on Very Large Data Bases
(Brighton, England, Sept., 1987). VLDB En-
dowment, Berkeley, CA, 289–300.

TSOTRAS, V. J. AND GOPINATH, B. 1990. Efficient
algorithms for managing the history of evolv-
ing databases. In Proceedings of the Third
International Conference on Database Theory
(ICDT ’90, Paris, France, Dec.), S. Abiteboul
and P. C. Kanellakis, Eds. Proceedings of
the Second Symposium on Advances in Spa-
tial Databases, vol. LNCS 470. Springer-
Verlag, New York, NY, 141–174.

TSOTRAS, V. J., GOPINATH, B., AND HART, G. W.
1995. Efficient management of time-evolv-
ing databases. IEEE Trans. Knowl. Data
Eng. 7, 4 (Aug.), 591–608.

TSOTRAS, V. J., JENSEN, C. S., AND SNODGRASS, R.
T. 1998. An extensible notation for spatio-
temporal index queries. SIGMOD Rec. 27, 1,
47–53.

TSOTRAS, V. J. AND KANGELARIS, N. 1995. The
snapshot index: An I/O-optimal access method
for timeslice queries. Inf. Syst. 20, 3 (May
1995), 237–260.

TSOTRAS, V. J. AND KUMAR, A. 1996. Temporal
database bibliography update. SIGMOD
Rec. 25, 1 (Mar.), 41–51.

VAN DEN BERCKEN, J., SEEGER, B., AND WIDMAYER,
P. 1997. A generic approach to bulk load-
ing multidimensional index structures. In
Proceedings of the 23rd International Confer-
ence on Very Large Data Bases (VLDB ’97,
Athens, Greece, Aug.). 406–415.

VARMAN, P. AND VERMA, R. 1997. An efficient
multiversion access structure. IEEE Trans.
Knowl. Data Eng. 9, 3 (May/June), 391–409.

VERMA, R. AND VARMAN, P. 1994. Efficient ar-
chivable time index: A dynamic indexing
scheme for temporal data. In Proceedings of
the International Conference on Computer
Systems and Education. 59–72.

VITTER, J. S. 1985. An efficient I/O interface for
optical disks. ACM Trans. Database Syst.
10, 2 (June 1985), 129–162.

Received: December 1994; revised: May 1998; accepted: June 1998

Comparison of Access Methods for Time-Evolving Data • 221

ACM Computing Surveys, Vol. 31, No. 2, June 1999

