
The Grid File: An Adaptable, Symmetric
Multikey File Structure

J. NIEVERGELT, H. HINTERBERGER

lnstitut ftir Informatik, ETH

AND K. C. SEVCIK
University of Toronto

Traditional file structures that provide multikey access to records, for example, inverted files, are
extensions of file structures originally designed for single-key access. They manifest various deficien-
cies in particular for multikey access to highly dynamic files. We study the dynamic aspects of tile
structures that treat all keys symmetrically, that is, file structures which avoid the distinction between
primary and secondary keys. We start from a bitmap approach and treat the problem of file design
as one of data compression of a large sparse matrix. This leads to the notions of a grid partition of
the search space and of a grid directory, which are the keys to a dynamic file structure called the grid
file. This tile system adapts gracefully to its contents under insertions and deletions, and thus achieves
an upper hound of two disk accesses for single record retrieval; it also handles range queries and
partially specified queries efficiently. We discuss in detail the design decisions that led to the grid
file, present simulation results of its behavior, and compare it to other multikey access file structures.

Categories and Subject Descriptors: H.2.2 [Database Management]: Physical Design; H.3.2 [In-
formation Storage and Retrieval]: Information Storage

General Terms: Algorithms, Performance

Keywords and Phrases: File structures, database, dynamic storage allocation, multikey searching,
multidimensional data.

1. PROBLEM, SOLUTIONS, PERFORMANCE

A wide selection of file structures is available for managing a collection of records
identified by a single key: sequentially allocated files, tree-structured files of
many kinds, and hash files. They allow execution of common file operations such
as FIND, INSERT, and DELETE, with various degrees of efficiency. Older file
structures such as sequential files or conventional forms of hash files were
optimized for handling static files, where insertions and deletions are considered
to be less important than look-up or modification of existing records. Insertions
were usually handled by overflow areas; their growth, however, leads to a

A previous version of this paper appeared in Trends in Information Processing Systems, Proc 3rd ECI
Conference. Lecture Notes in Computer Science 123.
Authors’ addresses: J. Nievergelt and H. Hinterberger, Institut fur Informatik, ETH, CH-8092 Zurich,
Switzerland; K.C. Sevcik, Computer Systems Research Group, University of Toronto, Toronto,
Ontario M5S lA4 Canada.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1984 ACM 0362-5915/f&4/1200-0038 $00.75

ACM Transactions on Database Systems, Vol. 9, No. 1, March 19S4, Pages 38-71.

The Grid File l 39

progressive degradation of performance, which in practice forces periodic restruc-
turing of the entire file. Modern file structures such as balanced trees or
extendible forms of hashing adapt their shape continuously to the varying
collection of data they must store, without any degradation of performance. Their
discovery was a major advance in the study of data structures.

File processing in today’s transaction oriented systems requires file structures
that allow efficient access to records, based on the value of any one of several
attributes or a combination thereof. The development of file structures that
provide multikey access to records repeats the history of single-key structures:
earlier schemes, such as inverted files, are extensions of file structures originally
designed for single-key access. They do not address the problem of graceful
adaptation to highly dynamic files. The design of balanced data structures appears
to be significantly more difficult for multidimensional data (each record is
identified by several attributes) than for one-dimensional data. This comes as no
surprise, since most balanced structures for single-key data rely on a total
ordering of the set of key values, and natural total orders of multidimensional
data do not exist.

In view of the diversity of file structures for single-key access, one might expect
an even greater variety for multikey access. In addition to the traditional inverted
file, many other schemes have been proposed: [2, 3, 5, 9, 18, 19, 27, 29, 30, 321
are a representative sample of the techniques known. We review several of these
file structures, and their properties, in Section 6: most of them suffer from various
deficiencies in a highly dynamic environment. Thus the field is open for improve-
ments, and in this paper we present the grid file as a contribution to the
development of balanced multikey file structures.

Consider a file F as a collection of records R = [aI, a2 . . . , uk], where the a are
fields containing attribute values. As an example, consider records with the
attribute fields last name, first name, middle initial, year of birth, and social
security number, for example [Doe, John, -, 1951, 1234567891. Multikey access
means that we reference the records R in file F by using any possible subset of
these (key-) fields, as shown in the following examples:

(1) Entire record specified (exact match query, point query)
(2) Doe born in 1951 (a partially specified query)
(3) All records with last name Doe (single-key query)
(4) Social security number 987654321 (presumably unique)
(5) Everybody born between 1940 and 1960 (range or interval query)

Multikey access problems come in two kinds. In information and document
retrieval an object (say a book) is characterized by index terms, often chosen
from a thesaurus of recommended terms. If we consider each term in the thesaurus
to be an attribute, documents become points in a high-dimensional space, but
the domain of each attribute is small (perhaps it contains only the two values
“relevant” and “irrelevant”). We do not consider this case. We only discuss the
other typical case of multikey access, where a record is characterized by a small
number of attributes (less than lo), but the domain of each attribute is large and
linearly ordered.

For the second case we can specify ranges by expressions r of the form: Zi 5 oi
5 ui, where li and ui denote lower and upper bounds on attribute value a chosen

ACM Transactions on Database Systems, Vol. 9, No. 1, March 19%

40 l J. Nievergelt, H. Hinterberger, and K. C. Sevcik

from its domain Si. The point specification li = Ui and the “don’t care” specifi-
cation li = “smallest value in Sip” Ui = “largest value in Sip” are special cases of

range specifications that cover exact matches and partially specified queries. The
general form of references we consider is (rl, r2, . . . , rk), where ri is a value-range
of the ith key-field over the attribute domain Si. If we abbreviate “don’t care”
specifications as blanks, we can formulate query (2) of the previous example as
(last name = Doe , , , year of birth = 19X), or query (5) as (, , , 1940 I year of
birth I 1960,). We consider primarily range queries, but the grid file is applicable
to other types of queries as well. For example, [31] applies the related technique
of “extendible cells” to closest point problems, and [12] studies the problem of
executing relational database queries on the grid file.

We approach the problem of designing a practical multikey access file structure
by first considering an extreme solution: the bitmap representation of the attribute
space, which reserves one bit for each possible record in the space, whether it is
present in the file or not. Even though the bitmap representation in its pure form
requires impractically large amounts of storage, it points the way to practical
solutions based on the idea of data compression.

In a k-dimensional bitmap the combinations of all possible values of k attributes
are represented by a bit position in a k-dimensional matrix. The size of the
bitmap (number of bit positions) is the product of the cardinalities of the attribute
domains. Figure 1 shows a three-dimensional bitmap.

FIND(rl, r2 . . . , rk) reduces to direct access, INSERT/DELETE requires that
a position in the bitmap be set to 1 or 0 respectively, and NEXT in any dimension
requires a scan until the next 1 is found. If a sufficiently large memory were
available, the bitmap would be the ideal solution to our problem. For realistic
applications, however, this bitmap is impossibly large. Fortunately it is sparse
(almost all zeros), and hence can be compressed. The sparse matrix compression
techniques known in numerical applications are inapplicable, since we need a
compression scheme that is compatible with file access operations: FIND, IN-
SERT, and DELETE must be executed efficiently in a compressed bitmap. This
we can achieve by introducing a dynamic directory. In maintaining a dynamic
partition (directory) on the space of all key-values, we approximate the bit map
through compression. This dynamic partitioning is treated in more detail in the
next section. The result of this approach is a symmetric, adaptable file structure.
Symmetric means that every key field is treated as the primary key; adaptable
means that the data structure adapts its shape automatically to the content it
must store, so that bucket occupancy and access time are uniform over the entire
file, even though the data may be distributed in a highly nonuniform way over
the data space.

The efficiency of a file processing system is measured mainly by response times
to multikey access requests. The major component of this response time is the
time spent in accessing peripheral storage media. In today’s systems these storage
media are disks, where the maximal amount of data transferred in one access is
fixed (a disk block or page). We will therefore assess efficiency in terms of the
number of disk accesses. In particular, we aim at file structures that meet the
following two principles.
ACM Transactions on Database Systems, Vol. 9, No. 1, March 1984.

The Grid File l 41

A partially
specified query

a1

Fig. 1. The three-dimensional bitmap. A “1” indicates the presence of a record with attribute
values determined by its position in the map, a “0” indicates absence.

Two-disk-access principle. A fully specified query must retrieve a single record
in at most two disk accesses: the first access to the correct portion of the dirctory,
the second to the correct data bucket.

Efficient range queries with respect to all attributes. The storage structure
should preserve as much as possible the order defined on each attribute domain,
so that records that are near in the domain of any attribute are likely to be in
the same physical storage block.

Both ideas are as old as disk storage devices: the hope of realizing them led to
the traditional index sequential access methods introduced in the late fifties.
Since, in a batch processing operation, sequential file access suffices, physical
contiguity was dedicated to preserve the order of the primary key alone. And
traditional index sequential access techniques find a record specified by a primary
key value in one or two disk accesses when the file is newly generated. In practice
it turns out, however, that index sequential access techniques, on average, cause
more than two disk accesses. This is true for traditional techniques of handling
dynamic single-key files by means of chains of overflow buckets. It remained true
for balanced trees, which usually require more than two levels for large data
collections. The two-disk-access principle for dynamic single-key files was only
realized by address computation techniques such as extendible hashing [6]. It
was never applied to dynamic multikey files, where each secondary key directory
of an inverted file typically introduces an additional disk access.

The reasons why we consider the two principles above important for a modern
file system have to do with the expanding spectrum of computer applications:

(1) An interactive system should provide instantaneous response to the user’s
trivial requests. In the context of human physiology, instantaneous means l/lOth
of a second, the limit of resolution of our sense of time. In a typical system
l/lOth of a second suffices for a couple of disk accesses, but not for half a dozen.
A “trivial request” is often of the form “show me this item,” and triggers a fully

ACM Transactions on Database Systems, Vol. 9, No. 1, March 1984.

42 - J. Nievergelt, H. Hinterberger, and K. C. Sevcik

specified query. Hence a file system that obeys the two-disk-access principle is a
suitable basis for highly interactive applications programs.

(2) Computer-aided design, geographic data processing, and other applications
work on geometric objects in two and three dimensions. Complex geometric
objects are often decomposed into simple ones, such as rectangles, which can be
considered to be points in a higher-dimensional space. Geometric processing
generates a lot of intersection and neighborhood queries which translate into
range queries along all the dimensions of the space [lo].

2. GRID PARTITIONS OF THE SEARCH SPACE

All known searching techniques appear to fall into one of two broad categories:
those that organize the specific set of data to be stored and those that organize
the embedding space from which the data is drawn. Comparative search tech-
niques, such as binary search trees, belong to the first category: the boundaries
between different regions of the search space are determined by values of data
that must be stored, and hence shift around during the life time of a dynamic
file. Address computation techniques, including radix trees, belong to the second
category: region boundaries are drawn at places that are fixed regardless of the
content of the file; adaptation to the variable content of a dynamic file occurs
through activation or deactivation of such a boundary. In recent years search
techniques that organize the embedding space rather than the specific file content
have made significant progress (see [23] for a survey).

Each search technique partitions the search space into subspaces, down to the
“level of resolution” of the implementation, typically determined by the bucket
capacity. Much can be learned by comparing the partitioning patterns created
by different search techniques, regardless of how the partition is implemented.
Let us consider three examples, keeping in mind that we only consider the case
where the domain of each attribute is large and linearly ordered (for small
domains, such as Boolean ones, the space partitioning analogy is not helpful).

Multidimensional trees of various kinds (e.g., [2]) are an example of multikey
access techniques that organize the set of data to be stored. The recursively
applied divide and conquer principle leads to a partition of the search space as
illustrated in Figure 2(a), where region boundaries become progressively shorter.
The traditional inverted file, with its asymmetric treatment of primary key and
secondary keys, is a hybrid: Values of the primary key determine region bound-
aries so as to achieve a uniform bucket occupancy, whereas the domain of each
secondary key is “partitioned” independently of the data to be stored-to the
extreme level of resolution where each value of the secondary key domain is in
its own region. Figure 2(b) shows the resulting partition. The grid file presented
in this paper is based on grid partitions of the search space illustrated in Figure
2(c). Each region boundary cuts the entire search space in two, but, unlike the
inverted file, all dimensions are treated symmetrically. It turns out that the most
efficient implementations of grid partitions are obtained by drawing the boundary
lines at fixed values of the domain. Hence, grid partitions are an example of
techniques that organize the embedding space.

The utility of the different space partitions mentioned above depends on the
distribution of data. For the grid partition we assume independent attributes,
ACM Transactions on Database Systems, Vol. 9, No. 1, March 1984.

The Grid File 9 43

Fig. 2. Space partitions created by different search techniques.

but we do not assume a uniform distribution. Correlated attributes, such as data
points that lie on a diagonal, prevent full utilization of a grid partition’s discrim-
inatory power. Correlated attributes may mean that attributes are functionally
dependent on each other (age and year of birth, for instance), in which case
searching becomes more efficient if only some of the attributes are chosen as
dimensions of the search space. Or it may mean that we have not chosen the
most suitable attributes for searching, and that a transformation of a coordinate
system may result in independent attributes (see [lo] for an example in the
context of a geometric database).

Assuming independent attributes, the grid partition of the search space is
obviously well suited for range and partially specified queries. It exhibits some
striking advantages over the other types of partitions shown in Figure 2, such as
systematic region boundaries and economy of representation (one boundary line
of Figure 2(c) does the work of many in Figure 2(a)).

We introduce the following terminology and notation for the three-dimensional
case: generalization to lz dimensions is obvious. On the record space S = X X Y
x 2 we obtain a grid partition P = U X V X W by imposing intervals U = (~0,
k,..., UL), V = (uO, ul, . . . , u,), W = (uI,,, wl, . . . , w,) on each axis and dividing
the record space into blocks, which we call grid blocks, as shown in Figure 3.

During the operation of a file system the underlying partition of the search
space needs to be modified in response to insertions and deletions. For the grid
partition we introduce operations that refine the granularity by splitting an
interval, and render it coarser by merging two adjacent intervals.

Partition modification. The grid partition P = U x V X W is modified by
altering only one of its components at a time. A one-dimensional partition is
modified either by splitting one of its intervals in two, or by merging two adjacent
intervals into one. Figure 3 shows this for the partition V. Notice that the
intervals “below” the one being split or the two being merged retain their index
(u in Figure 3), while the indices of the intervals “above” the point of splitting or
merging are shifted by +l or -1, respectively (LJ~ t) u3 in Figure 3).

In order to obtain a file system, we will need other operations that relate grid
blocks and records to each other, such as: find the grid block in which a given
record lies, or list all records in a given grid block. The regularity of the grid
partition makes the implementation of such operations straightforward: they are
reduced to the separate maintenance of one-dimensional partitions. Thus the

ACM Transactions on Database Systems, Vol. 9, No. 1, March 1984.

44 l J. Nievergelt, H. Hinterberger, and K. C. Sevcik

2

t

Fig. 3. A three-dimensional record space X x Y x Z, with a grid partition P = U X V
X W. The picture shows the effect of refining P by splitting interval UI.

operations that modify the partition emerge as crucial, in the sense that they
impose severe constraints on an efficient representation.

3. THE GRID FILE

A file structure designed to manage a disk allocates storage in units of fixed size,
called disk blocks, pages, or buckets, depending on the level of description. We
use bucket for a storage unit that contains records. We assume an unlimited
number of them, each one of capacity c records. The case of very small bucket
capacities, such as c = 1, is not of great interest; other tile structures should be
designed to handle it. We are interested in the practical range of, say, 10 < c <
1000, where an entry in the grid directory is tiny compared to a bucket, and
where undesirable probabilistic effects such as the “birthday paradox” (high
probability that two records cause a bucket to overflow) are less likely. Differences
in access time to different buckets are ignored, hence the time required for a file
operation can be measured by the number of disk accesses.

The data structure used to organize records within a bucket is of minor
importance for the tile system as a whole. Often the simplest possiblestructure,
sequential allocation of records within a bucket, is suitable. The structure used
to organize the set of buckets, on the other hand, is the heart of a file system.
For the grid file, the problem reduces to defining the correspondence betwen grid
blocks and buckets: This assignment of grid blocks to buckets is the task of the
grid directory, to be described in Section 3.1. In order to obtain an efficient file
structure, constraints on access time, update time, and on memory utilization
must be met. In particular, we aim at

- the two-disk-access principle for point queries,
- efficient processing of range queries in large linearly ordered domains,
ACM Transactions on Database Systems, Vol. 9, No. 1, March 1984.

The Grid File l 45

- splitting and merging of grid blocks to involve only two buckets,
- maintaining a reasonable lower bound on average bucket occupancy.

The first three points determine processing efficiency; they are discussed in
Sections 3.2 and 3.3, respectively. The fourth point, on memory utilization, is
discussed by means of simulation results in Section 5.

3.1 The Grid Directory: Function and Structure

In order to obtain a file system based on the grid partitions described in Section
2, we must superpose a bucket management system onto these partitions. In our
case the design of a bucket management system involves three parts:

- defining a class of legal assignments of grid blocks to buckets,
- choosing a data structure for a directory that represents the current assign-

ment,
- finding efficient algorithms to update the directory when the assignment

changes.

In this section we discuss the first two points, concerned with function and
structure of the directory, respectively.

The purpose of the grid directory is to maintain the dynamic correspondence
between grid blocks in the record space and data buckets. Hence we must define
the class of legal assignments of grid blocks to buckets before we can design a
data structure. Reasons of efficiency dictate that only a subset of all possible
assignments of grid blocks to buckets be allowed, characterized by the constraint
that bucket regions must be convex.

The two-disk-access principle implies that all the records in one grid block
must be stored in the same bucket. Unfortunately, we cannot insist on the
converse: if each grid block had its own data bucket, bucket occupancy could be
arbitrarily low. Hence it must be possible for several grid blocks to share a
bucket: we call the set of all grid blocks assigned to the same bucket B (or
equivalently, the space spanned by these grid blocks) the region of B. The shape
of bucket regions clearly affects the speed of at least the following two operations:

- range queries, and
- updates following a modification of the grid partition.

Given our emphasis on efficient processing of range queries, and given the
earlier decision to base the file system on grid partitions of the record space,
there appears to be no other choice than to insist that bucket regions have the
shape of a box (i.e., a k-dimensional rectangle). We call such an assignment of
grid blocks to buckets conuex. Figure 4 shows a typical convex assignment of grid
blocks to buckets. Each grid block points to a bucket. Several grid blocks may
share a bucket, as long as the union of these grid blocks forms a rectangular box
in the space of records. The regions of buckets are pairwise disjoint, together
they span the space of records.

In order to represent and maintain the dynamic correspondence between grid
blocks in the record space and data buckets, we introduce the grid directory: a
data structure that supports operations needed to update the convex assignments

ACM Transactions on Database Systems, Vol. 9, No. 1, March 1984.

46 l J. Nievergelt, H. Hinterberger, and K. C. Sevcik

n r-1 n . . . ri Pool of buckets

Space of records with grid partition

Fig. 4. A convex assignment of grid blocks to buckets.

defined above when bucket overflow or underflow makes it necessary. The choice
of just how much to specify about this data structure and how much to leave for
later implementation decisions is discussed in Section 4.1. We define the grid
directory at a fairly abstract level, fixing only those decisions that appear
essential. Different implementations are discussed in Section 4.

A grid directory consists of two parts: first, a dynamic k-dimensional array
called the grid array; its elements (pointers to data buckets) are in one-to-one
correspondence with the grid blocks of the partition; and second, k one-dimen-
sional arrays called linear scales; each scale defines a partition of a domain S.

For the sake of notational simplicity we present the case k = 2, with record
space S = X x Y, from which the general case k > 2 is easily inferred.

A grid directory G for a two-dimensional space is characterized by

- Integers nx > 0, ny > 0 (“extent” of directory).
- Integers 0 I cx < nx, 0 5 cy < ny (“current element of the directory and cur-

rent grid block”).

It consists of

- a two-dimensional array G(0. . . , nx - 1,O. . . , ny - 1) (“grid array”) and
- one-dimensional arrays X(0. . . , nr), Y(0.. . , ny) (“linear scales”).

Operations defined on the grid directory consist of

- Direct access: G(cx, cy)

- Next in each direction

nextxabove: cx t (cx + 1) mod nx
nextrbelow: cx t (cx - 1) mod nr
nextyabove: cy t (cy + 1) mod ny
nextybelow: cy t (cy - 1) mod ny

ACM Transactions on Database Systems, Vol. 9, No. 1, March 1984.

The Grid File l 47

- Merge
mergex: given px, 1 I px < nx, merge px with nextxbelow; rename all elements

above px;
adjust X-scale.

mergey: similar to mergex for any py, 1 5 py C ny.

-- Split
splitx: given px, 0 5 px 5 nx, create new element px + 1 and rename all cells

above px;
adjust X-scale.

splity: similar to splitx for any py, 0 I py I ny.

Constraints on the u&es. The restriction to convex assignments of grid blocks
to buckets is expressed by the following constraints on the values of grid directory
elements:

ifG(i’,j’)=G(i”,j”)thenforalli,jwithi’IiIi”andj’rj(j”wehave
G(i’, j’) = G(i, j) = G(i”, j”).
Some splitting and merging policies (see Sections 4.2 and 4.3) restrict the set of
assignments that may arise during operation of the grid file to some subset of all
convex assignments.

3.2 Record Access

The description of the grid directory in Section 3.1, abstract as it may be, suffices
to justify a key assumption on which the efficiency of the grid file is based: the
array G is likely to be large and must be kept on disk, but the linear scales X and
Y are small and can be kept in central memory.

This assumption suffices for the two-disk-access principle to hold for fully
specified queries, as the following example shows. Consider a record space with
attribute “year” with domain 0 . . . 2000, and attribute “initial” with domain
a .*. z. Assume that the distribution of records in the record space is such as to
have caused the following grid partition to emerge.

X = (0, 1000, 1500, 1750, 1875, 2000); Y = (a, f, lz, p, z).

A FIND for a fully specified query (rl, r2 . . . ,), such as FIND [1980, w], is
executed as shown in Figure 5.

The attribute value 1980 is converted into interval index 5 through a search in
scale X, and w is converted into the interval index 4 in scale Y. For realistic
granularities of these partitions, these linear scales are stored in central memory;
thus the conversion of attribute value to interval index requires no time in our
model, where only the number of disk accesses count. The interval indices 5 and
4 provide direct access to the correct element of the grid directory, where the
bucket address is located. Even if only part of the grid directory can be read into
central memory in one disk access, the correct page (the one that contains the
desired bucket address) can easily be computed from the interval indices. Range
queries, including the special case of partially specified queries, are also handled
efficiently by the grid file. In information retrieval the following notion of

ACM Transactions on Database Systems, Vol. 9, No. 1, March 1984.

48 l J. Nievergelt, H. Hinterberger, and K. C. Sevcik

I1980, w, , 1

4 0 1 , 1000
I

2 ,
I

1500 3 , 1750 4 , 1875 5 , 2000
I I

a , f, k, PI =
I I I

1 2 3 : 4 P

[198O,w,...I

Fig. 5. Retrieval of a single record requires two disk accesses.

“precision” of an answer to a query is well known:

number of records retrieved that meet the query specification
total number of records retrieved

Figure 6 illustrates the fact that the precision of most range queries is high. In
particular, precision approaches 1 for queries that retrieve many records (as
compared to bucket capacity).

3.3 Dynamics of the Grid File

The dynamic behavior of the grid file is best explained by tracing an example:
that is, building up a file under repeated insertions. When deletions occur,
merging operations get triggered. In order to simplify the description, we present
the two-dimensional case only. Instead of showing the grid directory, whose
elements are in one-to-one correspondence with the grid blocks, we draw the
bucket pointers as originating directly from the grid blocks.

Initially, a single bucket A, of capacity c = 3 in our example, is assigned to the
entire record space.

ACM Transactions on Database Systems, Vol. 9, No. 1, March 1994.

The Grid File l 49

When bucket A overflows, the record space is split, a new bucket B is made
available, and those records that lie in one half of the space are moved from the
old bucket to the new one.

If bucket A overflows again, its grid block (i.e., the left half of the space) is
split according to some splitting policy: we assume the simplest splitting policy
of alternating directions. Those records of A that lie in the shaded lower-left grid
block of the figure below are moved to a new bucket C. Notice that, as bucket B
did not overflow, it is left alone: its region now consists of two grid blocks. For
effective memory utilization it is essential that in the process of refining the grid
partition we need not necessarily split a bucket when its region is split.

Assuming that records keep arriving in the lower-left corner of the space,
bucket C will overflow. This will trigger a further refinement of the grid partition
as shown below, and a splitting of bucket C into C and D.

The history of repeated splitting can be represented in the form of a binary
tree, which imposes on the set of buckets currently in use (and hence on the set
of regions of these buckets) a twin system: each bucket and its region have a
unique twin from which it is split off. In the picture above, C and D are twins,

ACM Transactions on Database Systems, Vol. 9, No. 1, March 1984.

50 l J. Nievergelt, H. Hinterberger, and K. C. Sevcik

Fig. 6. A range query causes irrelevant records to be retrieved only at the
fringes of the answer.

the pair (C, D) is A’s twin, and the pair (A, (C, D)) is B’s twin. Merging, needed
to maintain a high occupancy in the presence of deletions, can proceed from the
leaves up in the twin system tree. In one-dimensional storage the twin system
(also called the “buddy system”) created by repeated splits indeed suffices for
obtaining a high memory occupancy. In more than one dimension, however, this
is not so (in the example above, consider the case where buckets A and B have
become almost empty, yet are unable to merge because the pair C and D cannot
be merged). Hence, the merging policies to be discussed in Section 4.3 merge
buckets that never split from each other.

4. ENVIRONMENT-DEPENDENT ASPECTS

4.1 What to Specify and What to Leave Open

There is a difference between writing a software package for a specific application
and designing a general-purpose data structure. In the first case we exploit our
knowledge of the intended application (e.g., known size of database, known data
distribution, known query frequencies) to obtain an efficient dedicated system.
In the second case we postpone all inessential decisions so as to obtain a general
design that can be tailored to a specific environment by the implementor.

With the goal of presenting the grid file as a general-purpose file structure
suited to multikey access, we have followed the second course of action and
specified only those decisions that we consider essential, namely

- grid partitions of the search space,
- assignments of grid blocks to buckets that result in conuex (box-shaped) buc-

ket regions,
- grid directory, consisting of a (possibly large) dynamic array but small

linear scales.
ACM Transactions on Database Systems, Vol. 9, No. 1, March 19S4.

The Grid File l 51

Some other important decisions have been left open because we feel that they
can be settled in many different ways within the framework set by the decisions
above. In this section we discuss the most important open issues, namely

- choice of splitting policy,
- choice of merging policy,
- implementation of the grid directory,
- concurrent access.

4.2 Splitting Policy

Several splitting policies are compatible with the grid file; they result in different
refinements of the grid partition. The implementor, or perhaps even the user of
a sufficiently general grid file implementation, may choose among them in an
attempt to optimize performance on the basis of query frequencies observed in
his application.

A refinement of the grid partition gets triggered by the overflow of a bucket,
all of whose records lie in a single grid block. Its occurrence is relatively rare: the
majority of all overflows involve buckets whose records are distributed over
several grid blocks and can be handled by a mere bucket split without any change
to the partition. If a partition refinement does occur, there is a choice of dimension
(the axis to which the partitioning hyperplane is orthogonal) and location (the
point at which the linear scale is partitioned).

The simplest splitting policies choose the dimension according to a fixed
schedule, perhaps cyclically. A splitting policy may favor some attribute(s) (in
the sense of a linear scale of higher resolution) by splitting the corresponding
dimension(s) more often than others. This has the effect of increasing the
precision of answers to partially specified queries in which the favored attribute(s)
is specified, but others are not.

The location of a split on a linear scale need not necessarily be chosen at the
midpoint of the interval, as we have described in Section 3. Little is changed if
the splitting point is chosen from a set of values that are convenient for a given
application-months or weeks on a time axis, feet or inches on a linear scale
used to measure machine parts.

4.3 Merging Policy

Merging occurs at two levels: bucket merging and merging of cross sections in
the grid directory. Directory merging is rarely of interest. Although the directory
could shrink when two adjacent cross sections have identical values, in most
applications, it is unwarranted to reduce directory size as soon as possible, as in
a steady-state or in a growing file it will soon grow back to its earlier size. There
are only two exceptions: in a shrinking file and in “dynamic weighting of
attributes” (to be discussed later) directory merging occurs.

Bucket merging, on the other hand, is an integral part of the grid file. Different
policies appear to yield reasonable performance, with a possible trade-off between
time and memory utilization. A merging policy is controlled by three decisions:
which pairs of adjacent buckets are candidates for merging their contents into a
single bucket; among several eligible pairs, which one has priority; and the merging
threshold that determines at what bucket occupancy merging is actually triggered.

ACM Transactions on Database Systems, Vol. 9, No. 1, March 1984.

52 l J. Nievergelt, H. Hinterberger, and K. C. Sevcik

planar representation tree representation

bucket to be merged

c ,

these 2 buckets can be merged
with the neighbor but not with
the buddy system

neighbor system

buddy system

I

Fig. 7. Possible modifications to the grid directory when merging in the buddy or neighbor systems.

We have used two different systems for determining pairs of buckets that can
merge. In the (k-dimensional) “buddy system,” a bucket can merge with exactly
one adjacent buddy in each of the k dimensions. The assignment of grid blocks
to buckets is such that buddies can always merge if the total number of records
fits into one bucket. The buddy system is easily implemented, and we recommend
it as the standard merging policy. We have also experimented with a more general
“neighbor system,” in which a bucket can merge with either of its two adjacent
neighbors in each of the k dimensions, provided the resulting bucket region is
convex. The neighbor system can generate all convex assignments of grid blocks
to buckets, whereas the buddy system only generates a subclass that is best
described by means of recursive halving and is represented by the “quad tree” in
Figure 7. The simulation experiments of Section 5 show that both systems give
a reasonable performance.

The second decision, that of which axis to favor when it is possible to merge
along several axes, is only relevant when the granularity of the partitions along
the different axes happens to be different. For example, if the splitting policy
favors some attribute(s) by splitting the corresponding dimension(s) more often
than others, the merging policy must not undo this effect by merging more often
along these same axes.

The third decision, of setting a merging threshold of p percent, with the
interpretation that the contents of two mergeable buckets are actually merged if
ACM Transactions on Database Systems, Vol. 9, No. 1, March 1984.

The Grid File l 53

Fig. 8. Insertion and removal of an arbitrary (k - 1).
dimensional cross section.

the occupancy of the result bucket is at most p percent, has a clear answer:
Thresholds of around 70 percent are reasonable, those above 80 percent lead to
poor performance.

4.4 Implementation of the Grid Directory

A grid directory behaves like a k-dimensional array with respect to the operations
of direct access and next, but the insertion and removal of arbitrary (k - l)-
dimensional cross sections (corresponding to hyperplanes in the record space) is
an unconventional operation that is difficult to reconcile with direct access (see
Figure 8). What data structure should be chosen to implement a grid directory?

It is tempting to design exotic data structures that allow fast insertion and
removal of arbitrary (k - 1)-dimensional cross sections. Let us mention a few
and assess their practicality.

Linked lists are prime candidates for representing any structure where inser-
tions and deletions may occur at arbitrary positions. Since they require the
traversal of pointer chains to find a desired element, fast access is only guaranteed
if these chains reside within the same page or disk block. A grid directory of
several dimensions easily extends over several pages, however. Moreover, a list
representation of the directory has the disadvantage of introducing a space
overhead of k pointers (one or two for each dimension is the most direct way of
representing the connectivity among gridblocks), which is significant compared
to the normal content of a directory element (typically, a single disk address and
a small amount of status information of the bucket located at that address, such
as an occupancy number). It is doubtful whether the overhead caused by pointers
is justified for an infrequent operation such as a directory split.

If one is willing to incur a significant space overhead, a better idea might be to
represent the grid directory by a k-dimensional array whose size is determined
solely by the shortest interval in each linear scale, as shown in Figure 9. This
technique is the multidimensional counterpart of the directory used in extendible
hashing [6]. A refinement of the grid partition causes a change in the structure
of the directory only if a shortest interval is split, in which case the directory
doubles in size. This data structure anticipates several small structural updates
and attempts to replace them by a single large one. The strategy is successful

ACM Transactions on Database Systems, Vol. 9, NO. 1, March 1984.

54 l J. Nievergelt, H. Hinterberger, and K. C. Sevcik

Fig. 9. Representation of the grid directory by an array that
occasionally doubles in size.

when data is uniformly distributed, but may lead to an extravagantly large
directory when it is not. In extendible hashing the uniformity is provided by a
randomizing hash function, even if the data is not uniformly distributed over the
record space. Since the grid file is designed to answer range queries efficiently,
and randomizing functions destroy order, this approach cannot be used to
generate uniformly distributed data. Hence any nonuniformity in the data leads
to an oversized directory, and this approach cannot be recommended in general.

An interesting representation of the grid directory that avoids the space
overhead of the “doubling array” and yet permits a (k - 1)dimensional update
to be written contiguously, rather than being scattered throughout the k-dimen-
sional old array, is described in [12]. A timestamp is attached to the update that
allows correct computation of the address of a directory element. Address com-
putation becomes complicated when many such patches are superposed, so the
directory must be reorganized periodically. The option of postponing a change to
the existing directory, from the moment a partition refinement is needed to some
later time, is useful in a concurrent access or real-time environment.

In most applications the split and merge of the directory occur rarely as
compared to direct access and next; thus the conventional allocation of a multi-
dimensional array is sufficient. Split and merge operations may cause a rewrite
of the entire directory, and hence take longer than they would in a list, but the
old directory can be used to access data while the new one is being written.
Moreover, direct access is faster and memory utilization is optimal, thus a larger
fraction of the directory may be kept in central memory. We feel these advantages
of conventional array allocation outweigh the penalty in processing time.

An attempt to make optimal use of available central memory leads to the
scheme of managing the grid directory on disk with a small resident grid directory
in central memory (Figure 10). Even on a small computer, it is worthwhile to use
more auxiliary information in central memory than just linear scales to facilitate
access to disk ([8] is an interesting study of how a small amount of internal
storage can be used to save disk accesses). The resident grid directory is a scaled
down version of the real one, in which the limit of resolution is coarser. An
implementation of the grid file used for storing geometric objects uses this fact
to answer queries about intersection or distance of objects with few disk accesses
WI.

In summary, many ways of implementing the grid directory are possible.
Conventional array allocation is the simplest and is adequate, the resident grid
directory technique has the best performance when neighborhood relations in all
ACM Transactions on Database Systems, Vol. 9, No. 1, March 1984.

The Grid File . 55

Fig. 10. A small “resident grid directory” manages the large grid
directory on disk.

dimensions are important. Regardless of how the grid directory is implemented,
it can be supplemented by auxiliary access structures such as directories for
attributes not chosen as dimensions of the search space, at the usual cost to be
paid in inverted files-directory updates may become a lot more time consuming.

4.5 Extensions: Dynamic Weighting of Attributes, Concurrent Access

Let us mention two possible extensions of the grid file design that appear to be
easily incorporated into the structure described so far.

Dynamic weighting of attributes. Transaction environments change. In partic-
ular, the query profile that determines access frequencies to individual records
in the file may change to such an extent that a new data organization, optimized
with respect to the new access frequencies, may enhance the performance of an
interactively accessed database. Many multiattribute file organizations have been
studied from the point of view of optimal performance of a static file under a
fixed access frequency profile (e.g., static multiattribute clustering). Recent
efforts aim at extending this clustering to dynamic files, but we are unaware of
methods that can adapt to both a dynamic file content and a time-varying query
profile.

The grid file permits a dynamic adaptation of its structure to a time-varying
access frequency profile by the same technique used to adapt to a varying file
content: a dynamic modification of the grid partition. The splitting and merging
policies discussed above make it possible to change dynamically the parameters
that govern the granularity of the attribute scales. As the granularity of the
partition is directly related to the precision of the answers, these parameters can
be altered to favor frequent queries.

Adaptation of the splitting and merging parameters can be done automatically
by monitoring the query environment and feeding this information into a table-
driven grid file. In the extreme, an inactive attribute can be set to a “merge-only”
state, whereupon in a dynamic file it will gradually fade away. When its partition

ACM Transactions on Database Systems, Vol. 9, No. 1, March 19&i.

56 l J. Nievergelt, H. Hinterberger, and K. C. Sevcik

has been reduced to a single interval, the corresponding dimension in the grid
directory can be removed or assigned to another attribute.

Concurrent access. An increasing number of applications, such as information
or reservation systems, require concurrent access to a file system. Concurrency
control is complicated in tree structures because the root is a bottleneck shared
by all access paths. If a process has the potential of modifying the data structure
near the root (such as an insertion or deletion in a balanced tree), other processes
may be slowed down by the observance of locking protocols even if they access
disjoint data. The grid file (and other structures based on address computation,
see [ll] and [23]) has the property that access paths to separate buckets are
disjoint, thus allowing simpler concurrency control protocols.

5. SIMULATION EXPERIMENTS

The performance of a file system is determined by two criteria: processing time
and memory utilization. The grid file is designed to economize disk accesses, and
we must show that this overriding concern for speed is compatible with a
reasonable utilization of available space. A theoretical analysis of grid file
behavior appears to be difficult for two reasons: many of the techniques developed
for analyzing single-key data structures do not directly generalize to their
multidimensional counterparts, and the grid tile has parameters that are compli-
cated to capture in a mathematical model (such as different splitting and merging
policies). For these reasons we resort to simulation.

Our experience with grid file performance is based on three programs, two
written in Pascal and one in Modula-2. The first program runs on a DEC-10
under the TOPS-10 operating system. It is a simulation program of 600 Pascal
lines, implementing both the buddy and the neighbor systems of splitting and
merging. The buddy system requires 150 lines of source code for the splitting and
130 lines for the merging operations. The corresponding figures for the neighbor
system are 160 and 220 lines respectively. The second program runs on an
APPLE III personal computer under UCSD Pascal. It supports a six-dimensional
grid file and consists of approximately 1600 lines of Pascal source code. About
300 lines each are required by SPLIT and MERGE, 150 lines are used up by
FIND, INSERT, and DELETE, the rest is devoted to dialog and housekeeping
operations. The third grid file program, due to K. Hinrichs, is written in Modula-
2 and runs on a Lilith personal computer. It has an interactive graphics interface
and is used for storing geometric objects and answering intersection que-
ries [lo].

5.1 Objectives and Choice of Simulation Model

The simulation runs described below had the following objectives:

(1) estimation of average bucket occupancy,
(2) estimation of directory size,
(3) visualization of the geometry of bucket regions,
(4) evaluation of splitting and merging policies.

Since the grid file is designed to handle large volumes of data, (1) is by far the
most important point. Average bucket utilization need not be close to 100 percent,
ACM Transactions on Database Systems, Vol. 9, No. 1, March 1984.

The Grid File l 57

but it must be prevented from becoming arbitrarily small under any circum-
stances. Point (2) is of greater theoretical than practical importance; we don’t
know the asymptotic growth rate of directory size, but for realistic file sizes the
grid directory tends to require only a fraction of the space required by data
storage, as an entry in the grid directory ranges from a few bytes (for a disk
address) to a few dozen bytes (if additional information is stored, such as a record
count or locking information in a concurrent access environment). Point (3) is
merely a confirmation of what one expects from the way the grid file was designed,
namely that?grid partitions and bucket regions adapt their size and shape to data
clusters. Point (4) covers space/time trade-offs and is discussed in Sections 5.3
and 5.4, in which we treat steady-state and shrinking files.

Among the many types of loads that may be imposed on a file, the following
are particularly suitable as benchmarks for testing and comparing performances:

- the growing file (repeated insertions),
- the steady-state file (in the long run there are as many insertions as dele-

tions, so the number of records in the file is kept approximately constant),
- the shrinking file (repeated deletions).

We have tested the behavior of the grid file with two simulation programs.
One for the three-dimensional case of a growing file, the other for the two-
dimensional case (for ease of displaying results graphically) under all three types
of loads mentioned above. The justification for restricting our experiments to
two and three dimensions is that the bucket occupancy (the primary objective of
our simulation) appears to be largely independent of the dimensionality of the
record space. For a growing file this is plausible on a priori grounds: buckets are
split when they are full, regardless of the nature of their contents and independent
of different splitting policies. In fact, the average bucket occupancy for k = 2 and
k = 3 turn out to be the same. With respect to merging, one can readily see that
a bucket has more buddies to merge, the more dimensions there are; thus bucket
occupancy will not be worse in higher dimensional grid files.

The sample spaces used in the experiments are as follows: attribute values of
each record are chosen independently of each other from uniform and piecewise
uniform one-dimensional distributions to obtain uniform and nonuniform data
distributions over the record space. Two standard, integer-valued random number
generators from a program library were used.

5.2 The Growing File

Average bucket occupancy. We observed the average bucket occupancy while
inserting 10,000 records from a two-dimensional uniform distribution. Figure 11
shows two typical curves depicting the average bucket occupancy over time, one
for bucket capacity c = 50, the other for c = 100. As soon as the number n of
inserted records reaches a small multiple of the bucket capacity c, average bucket
occupancy shows a steady state behavior with small fluctuations of around 70
percent. It is tempting to conjecture that it approaches asymptotically the magical
value In 2 = 0.6931 . . . , which often shows up in theoretical analyses of processes
that repeatedly split a set into two equiprobable parts (see also [S]).

In Section 4 we mentioned splitting policies that do not necessarily refine a
ACM Transactions on Database Systems, Vol. 9, No. 1, March 1984.

58 l J. Nievergelt, H. Hinterberger, and K. C. Sevcik

bucket capacity c = 50

bucket capacity c = 100

*
2000 4000 6000 8000 10000

number of records inserted

Fig. 11. Average bucket occupancy of a continuously growing grid file.

partition at interval midpoints; for example, a ternary system might always split
an interval into three thirds. If such a policy also splits an overflowing bucket
into three, then average bucket occupancy drops to 39 percent. Thus the advice:
it is possible to use different splitting policies at a moderate increase in the size
of the directory, but it is impractical to depart from the rule of splitting one
bucket into two.

Growth of the directory. The constant average bucket utilization observed
above implies a linear growth of the number of buckets with the amount of data
stored. Since a bucket may be shared by many grid blocks, each of which requires
its own entry in the grid directory, the question remains open as to how fast the
directory grows with the amount of data stored. The number of directory entries
per bucket is a good measure of the efficiency of the grid directory.

The assumption of independent attributes is crucial for the size of the directory.
Correlated attributes, for example y = a*x, are unlikely to significantly affect
average bucket occupancy, but they are very likely to increase directory size
substantially. Even in the case of independent attributes, the asymptotic growth
rate of directory size as a function of the number of records is unknown to us.
As an example of the problem, consider random shots into the unit square as
illustrated in Figure 12. To model the case of bucket capacity c = 1, we divide
any grid block that gets hit twice into two halves, alternating directions repeatedly
if necessary, until every grid block contains at most one point. The grid file is
obviously not immune to the worst-case catastrophe that may strike all address
computation techniques, namely that all points come to lie within a tiny area.
Conventional practice in hashing ignores this worst case, as it is very unlikely.
Another well-known probabilistic effect, however, the birthday paradox, is likely
to happen: even if the number of records (people) is much smaller than the
ACM Transactions on Database Systems, Vol. 9, No. 1, March 1984.

The Grid File l 59

Fig. 12. Random shots into unit square trigger repeated halvings.

number of grid blocks (days in a year), the probability of two or more points
colliding in some grid block (having a common birthday) is high. We conjecture
that, in this model, the expected number of grid blocks grows faster than linearly
in the number of points shot into the unit square. The point at which a superlinear
growth rate begins to be noticeable, however, depends strongly on bucket capacity
c, and turns out to be sufficiently large so that grid directory size is modest for
practical values of n and c.

Figure 13 shows the number of buckets and the number of grid blocks during
insertion of 10,000 records from a two-dimensional uniform distribution into
buckets of capacity c = 100. The “straight line” depicting the number of buckets
has a slope of 70 percent, as expected. The number of grid blocks also appears to
grow linearly, but the fluctuations from a straight line (oscillating between one
and two directory entries per bucket) have a larger period and amplitude.

This “staircase phenomenon” also occurs in extendible hashing; intuitively, it
can be explained as follows. When records are inserted from a space with uniform
distribution there are moments when practically all grid blocks have equal size,
and almost every grid block has its own bucket. Under the assumption of
uniformity (which is essential to this argument!), within a short time span a few
buckets whose regions are randomly chosen from the entire record space will
overflow; the resulting partition refinements affect all parts of the space, leading
to a rapid increase in the number of grid blocks. At this moment the directory
has a lot of spare capacity to accomodate further insertions, buckets get split
without triggering a partition refinement, until we are back to a “one-grid-block-
per-bucket” state, but with a directory that has doubled in size.

Figure 14 shows an experiment to determine the influence of bucket capacity
on directory growth by plotting the number of grid blocks per bucket as a function
of the normalized number n/c of records. The dashed line connects points where
the directory has grown to 40,000 entries. 200,000 records packed into buckets of
capacity 20 require a directory with only 2 entries per bucket. Given the small
size of a directory entry (small compared to a bucket), we consider an average of
10 directory entries per bucket to be a modest investment. With c = 1, the
birthday paradox causes this value to be reached with about 100 records. Already,
with c = 2, a grid directory of 40,000 entries accomodates 9000 records in 6400

ACM Transactions on Database Systems, Vol. 9, No. 1, March 1984.

J. Nievergelt, H. Hinterberger, and K. C. Sevcik

grid blocks

buckets 2 40 ”

1 I::::::::::::::+t:::::::::~:~::::::::::::~~
0 2000 4000 6000 8000 10000

number of records inserted

Fig. 13. Number of grid blocks and number of buckets as a function of the stored data.

4

cr 18 .-
3 c = 1 c = bucket capacity

Lj 16 -- \
n \

\
2 14 -- \
a \

\
; 12 -- \
4 \

\

40000 gridblocks

0 2000 4000 6000 8000 10000 12000

no. records / c

Fig. 14. Grid blocks per bucket as a function of the normalized number n/c of records.

buckets. Such small bucket sizes are only used to demonstrate the effect: we
consider 10 or more records per bucket realistic, and for such bucket capacities
directory size is no problem.

Visualization of the geometry of bucket regions. Finally, we show how the grid
file adapts its shape to the data it must store. Figure 15 shows the bucket regions
ACM Transactions IX-I Database Systems, Vol. 9, No. 1, March 1984.

The Grid File l 61

Fig. 15. Bucket regions with uniform record distribution (400 inser-
tions, bucket capacity c = 20).

obtained after inserting 400 records from a uniform record distribution and from
splitting done at interval midpoints. Figure 16 shows how the grid file “absorbs”
a nonuniformity: These bucket regions are obtained from a nonuniform distri-
bution in which the probability is five times greater that a record is drawn from
the upper-left quadrant of the space than from the rest.

5.3 Steady-State File

A dynamic file is in a steady state if the number of records remains approximately
constant, because, in the long run, there are as many insertions as deletions.
Whereas a growing file is a test for the splitting policy of a file system, a steady-
state file tests the interaction between the splitting and merging policies.

In order to determine whether an average bucket occupancy of around 70
ACM Transactions on Database Systems, Vol. 9, No. 1, March 1984.

62 l J. Nievergelt, H. Hinterberger, and K. C. Sevcik

Fig. 16. Bucket regions with nonuniform distribution (400 insertions,
bucket capacity c = 20).

percent can be maintained in the presence of deletions, we ran the following
simulation. The file is initialized by inserting 5000 records into an empty file
with a bucket capacity of 16; then, 5000 accesses are generated from a uniform
distribution, about half of them insertions and half of them deletions. Different
values of the merging-threshold (the percent-occupancy which the resulting
bucket should not exceed when two buckets are merged) are tested. The bucket
capacity of 16 was chosen just large enough so that the merging-threshold can
be varied in small steps. The buddy system is used as a merging policy. Figure
17 shows that the average bucket occupancy is rather insensitive to the value of
the merging threshold. Even a merging threshold of 100 percent achieves only
an average bucket occupancy of around 70 percent, a threshold of 50 percent
suffices to reach about a 60 percent average occupancy. Figure 18 shows the time
ACM Transactions on Database Systems, Vol. 9, No. 1, March 1984

80 100% merging-threshold
\

-
; 60--

- -
0

75% merging-threshold
7

50% merging-threshold

L .::.:....t-...:.::::I.::---.:::~.::....:’::::.’ .:..:::/
0 1000 2000 3000 4000 5000

number of accesses (insertions + deletions)

Fig. 17. Average bucket occupancy of grid file in steady-state, buddy system.

b

400--

:
E
2 ,

', 300--

.",
d
L?

2 0 200--
?i
2
?I
0"
rcI
0

100 -- 2

a
5
E:

0 1 h

50 75 100

merging-threshold (i.e. O/O joint occup.)

Fig. 18. Number of SPLIT and MERGE operations plotted against
merging-threshold with 5000 accesses in steady state.

64 l J. Nievergelt, H. Hinterberger, and K. C. Sevcik

o/o

i 100% merging-threshold

75% merging-threshold 75% merging-threshold

* *
1000 1000 2000 2000 3000 3000 4000 4000 5000 5000

number of records deleted number of records deleted

Fig. 19. Average bucket occupancy of a shrinking file, operated under the buddy system
with different merging thresholds.

penalty that a high merging threshold entails: if the bucket resulting from a
merge is too full, it will soon split again. We recommend a merging threshold of
around 70 percent, that is, the average occupancy observed in the growing file.

5.4 The Shrinking File

In order to compare the effectiveness of the merging policies based on the buddy
system and the neighbor system, we ran a simulation of a file that shrinks from
an initial content of 5000 records down to empty. Figure 19 shows that the buddy
system does not guarantee a high average bucket occupancy over a long stretch
of deletions. Setting the merging threshold to 100 percent, which may be reason-
able if we know the file is in a shrinking phase, helps considerably in the early
part. Notice that the merging threshold can easily be adjusted dynamically. In
contrast to the buddy system, the neighbor system suffers no degradation in
average bucket occupancy, as Figure 20 shows.

In conclusion, we believe that the experiments reported above show that the
space utilization of the grid file is good. This is true for a file filling up in its
early stages, as well as for a file operating in a steady state or going through brief
shrinking phases.

6. REVIEW OF PRIOR MULTIKEY ACCESS TECHNIQUES

In recent years, the increasing usage of databases and integrated information
systems has encouraged the development of file structures specifically suited to
ACM Transactions on Database Systems, Vol. 9, No. 1, March 1984.

The Grid File l 65

o/o A

number of records deleted

Fig. 20. Average bucket occupancy of a shrinking file, operated under the neighbor system
with a merging threshold of 75 percent.

access by combinations of attribute values. Inverted files were among the earliest
such file structures. They have been used pervasively in most applications that
require multikey access, and thus have been accepted as a standard against which
to evaluate alternative approaches.

Several criteria are of importance in assessing multikey file structures. These
include operation speed, space utilization, and adaptability under file growth,
among others. The specific context in which the file structure is to be used
determines the relative importance of various criteria.

The retrieval time in which to obtain all records that satisfy constraints on
the values of a combination of attributes depends on several factors. In an
inverted file, for example, the appropriate inverted lists must be accessed and
processed in order to locate all relevant records, then the records themselves
must be retrieved. In most large information systems, the time to move blocks of
data from and to secondary storage (typically disks) dominates the processing
time in main memory. Hence the number of required block transfers from
secondary storage is frequently used as the measure of efficiency in both retrieval
and update operations. For this reason, it is important that the information
required to perform any operation be as localized as possible within blocks on
secondary storage.

A second performance criterion is the space requirement; it must be discussed
separately for data storage and access mechanisms. Some file organizations avoid
filling each block of storage in order to permit graceful file growth; the size of

ACM Transactions on Database Systems, Vol. 9, No. 1, March 1984.

66 l J. Nievergelt, H. Hinterberger, and K. C. Sevcik

such “holes” affects space requirements. Access mechanisms may require signifi-
cant amounts of storage on disk as well as in main memory. In an inverted file,
for example, inverted lists are often so large that they must be stored on disk,
but indices to locate the inverted list for each attribute/value pair are retained
in main memory.

Inverted files are well suited for accessing records on the basis of Boolean
conditions on attributes, but they exhibit drawbacks which have motivated the
development of alternate structures. First, retrieval of the inverted lists may
require an excessive number of disk accesses. Second, the overhead required for
insertions and deletions can become prohibitive in terms of space and time.
Finally, in environments where several attributes are equally significant, a file
structure that treats all significant attributes symmetrically is appealing.

In the remainder of this section we briefly describe a variety of multikey file
structures, each designed to perform better than an inverted file (or other
alternatives) in at least some circumstances. Many of the approaches are gener-
alizations of well-known single key tile structures. For example, Rothnie and
Lozano [29] describe a generalization of hashing in which a bucket address for a
record is formed by concatenating the results of hash functions, each of which is
applied to the value of one attribute. A critical design decision in setting up such
a multikey hash file structure is the determination of the number of bits to be
allocated to represent the hashed value of each attribute. The more attribute
values specified, the smaller the number of buckets that need to be accessed in
order to obtain the required records. Because it is difficult to specify a combina-
tion of hash functions that lead to a uniform occupancy of buckets, it is necessary
to tolerate either a low average bucket occupancy, or a high likelihood that
buckets will overflow (more than one storage block is needed to hold the records
corresponding to a single bucket). Also, like most hashing schemes, multikey
hashing is inappropriate when the selection condition involves ranges of values
rather than specific values.

Several generalizations of inverted files have been proposed. Lum describes
combined indices, in which several attributes are concatenated in various orders
and then treated as a single, aggregate key [181. If more than three attributes are
combined, both the storage space and update time become excessive. By combin-
ing them in groups of three, however, the number of disk accesses to retrieve
inverted lists can be reduced substantially, at the cost of some increased com-
plexity [22]. Bit-encoded inverted lists form the basis of compressed bitmaps,
described by Vallarino [32]. The bit-encoded inverted lists form a large sparse
bit array, which is then represented in highly compressed form and used to locate
records specified by a selection condition. Another organization that exploits
compression in providing multikey access is the transposed file organization, used
in ROBOT (Retrieval Organization Based On Transposition) [l, 191. In this
organization, vectors consisting of the values of a particular attribute for all
records are stored in a highly compressed form. Thus, retrievals and updates that
refer to only a few attributes do not involve memory transfers of irrelevant
attributes. This approach is most effective when the majority of operations deal
with a significant portion of the records (i.e., one to three percent) and selection
conditions involve only a few attributes.
ACM Transactions on Database Systems, Vol. 9, No. 1, March 1984.

The Grid File l 67

Various generalizations of tree structured indices permit multikey access to
files. Quad trees [7] are a two-attribute generalization of binary search trees. The
straightforward generalization to k dimensions is impractical because the tree
nodes become large and contain many nil pointers. These problems are avoided
in k-d trees [2,3], which can be thought of as an efficient implementation of the
k-dimensional generalization of quad trees. k-d trees share many properties with
binary search trees.

Similarly, binary TRIES can be generalized to support multikey access [25,31].
This is achieved by representing each attribute value as a bit string and inter-
leaving these strings. The result is then used as the key in a standard binary
TRIE. This organization is particularly effective for handling nearest-neighbor
searches [31].

The multiple-attribute tree database organization orders the records lexico-
graphically on the key fields, with the more significant attributes placed toward
the higher end of the sorting field [13]. Then the key fields are separated from
the records and organized into a doubly-chained tree. The tree can then be used
to locate all relevant records for a given query. If both the number of records and
the number of attributes are large, several disk accesses may be required to locate
records satisfying specified constraints on key values.

Casey describes a complex tree-based multikey access structure in which
records are grouped according to the frequency with which they are retrieved
together [5]. Superimposed coding is used in each node to characterize the records
below the node in the tree. Probably because of its complexity, this organization
has not been widely used in practice. The importance of this structure is due to
the fact that, more than with any other multikey file structure, the selection
conditions used in accessing the file influence its organization. A similar, but
more practical, approach is suggested by Pfaltz, Berman, and Caglet [26].

Several generalizations of B-trees which would allow multikey access have
been proposed recently. For example, Robinson [28] describes k-d-B-trees. The
leaf nodes of the tree are pointer pages that contain pointers to those records
which correspond to a “region” (or hyper-rectangle) in k-dimensional space. The
internal nodes are region pages that reflect the partitioning of a region into
nonoverlapping, jointly exhaustive subregions. The root of the tree represents
the initial partitioning of the entire k-dimensional space. Efficient utilization of
I/O channels is obtained by requiring pointer and region pages to be approxi-
mately the size of blocks of secondary storage. Related approaches are taken in
[9] and [30].

Quintary trees are a file structure intended to provide faster access than other
tree-based multikey file structures, at the cost of requiring more space [El.
Quintary trees consist of k levels, corresponding to the k attributes in decreasing
order of importance. Each level resembles a binary tree branching on the values
of the corresponding attribute.

Along with k-d-B-trees, other multikey file organizations have been proposed
recently that are also based on the idea of partitioning k-dimensional space and
then storing the records corresponding to each cell of the partition in a single
block of secondary storage. One such organization is the multidimensional direc-
tory suggested by Liou and Yao [17]. Attributes are ordered by priority, and

ACM Transactions on Database Systems, Vol. 9, No. 1, March 1984.

68 ’ J. Nievergelt, H. Hinterberger, and K. C. Sevcik

numbers di, &., . . . , dk are chosen such that B = di x dz x . . . x dk equals
approximately the number of blocks of secondary storage required to hold the
blocks of the file. The larger d values are associated with the attributes that
appear more frequently in selection conditions. Then, each attribute is used in
turn to divide each region at one level into d subregions of approximately equal
record population. This results in B regions, each containing approximately one
block’s worth of records. A multidimensional directory, which contains one entry
per secondary storage block, is used to locate those blocks that may contain the
records that are relevant to a given selection condition.

Multipaging [20] is another organization that uses splitting factors d. In
contrast to [171, all attributes are treated alike. The range of values of attribute
i is partitioned into d intervals such that approximately the same number of
records have values of attribute i in each interval. These partitions impose a grid
of hyper-rectangles in k-dimensional space. Unfortunately, correlations among
the attributes and statistical variations cause the occupancies of the hyper-
rectangles to be quite uneven. When each grid partition corresponds to a single
block on secondary storage, either average occupancy in each block is very low
or many blocks overflow. Given a It-tuple of attribute values, the corresponding
interval in each of the k dimensions can be determined, and a block address for
the record can be calculated without using an index.

Dynamic multipaging [21] is an extension designed to overcome the difficulty
of handling insertions and deletions in the original multipaging method. When-
ever block overflows cause the average number of block accesses per query to
exceed some threshold, the partition on one of the attributes is refined by splitting
one of the intervals. If attribute i is split, then the fraction l/di of the blocks of
the file are split, thus increasing the number of blocks by the factor (di + l)/di.
Such reorganizations require substantial effort. Recently, Burkhard presented a
multikey access scheme called interpolation-based index maintenance [4] which
uses a grid partition of the search space, at intervals determined by a radix,
similarly to the grid file. This is a multidimensional generalization of Litwin’s
linear hashing [16], and relates to the grid file as linear hashing relates to
extendible hashing [6]-the correspondence between regions (grid blocks) in
space and data buckets is given by formulas (“interpolations”), rather than
through a directory. The trade-offs involved in the decision of using a directory,
as in the grid file, or avoiding it, as in interpolation-based index maintenance,
are an interesting topic for research.

7. CONCLUSIONS

Each of the multikey file structures in use today has its strengths and its
weaknesses, and also environments for which it is well suited. Nonetheless, for a
significant class of environments, there is a need for a file structure that provides
a different balance among the performance criteria. The grid file is designed to
handle efficiently a collection of records with a modest number (say k < 10) of
search attributes whose domains are large and linearly ordered. Within this usage
environment, it combines several of the better properties of the file structures
reviewed above: A high data storage utilization of 70 percent, combined with
ACM Transactions on Database Systems, Vol. 9, No. 1, March 1984.

The Grid File l 69

insensitivity to record clusters; smooth adaptation to the contents to be stored,
in particular to file growth; a directory which, up to large but realistic file sizes,
is compact by the standards of multikey files; fast access to individual records
(two disk accesses); and efficient processing of range queries.

We have presented in detail the reasoning that led to the design of the grid
file. In summary:

- range queries demand grid partitions of the search space,
- efficient update after modification of a grid partition demands conuex assign-

ments of grid blocks to data buchets,
- the two-disk-access principle demands representation of an assignment by

means of the grid directory.

We have fixed those decisions that appear to us to be essential, and left others
open in order to give the implementor freedom to adapt the file system to his
environment. In particular, we have treated the following three aspects of the
grid file as parameters to be specified by the implementor:

- splitting policy,
- merging policy,
- implementation of the grid directory.

Simulation results show that the grid file uses space economically over a wide
range of operating conditions. Although dynamic space partitioning periodically
leads to a rapid increase in the number of grid blocks, the allocation of buckets
to grid blocks absorbs these bursts: The number of buckets grows in proportion
to the number of records. For independent attributes, the number of directory
entries per bucket also appears to grow linearly up to large practical file sizes,
although asymptotically it may grow faster. Attribute correlations affect the size
of the directory, but do not significantly affect the average bucket occupancy.

ACKNOWLEDGMENT

We are grateful to W. Willinger for writing an early version of the simulation
program, and to the following people for communicating to us their experiences
about ongoing implementations of the grid file: K. Hinrichs of ETH Zurich (grid
file for storing geometric objects); S. Banerjee, S. M. Joshi, S. Sanyal, and S.
Srikumar of the Tata Institute for Fundamental Research in Bombay (relational
database systems based on the grid file); H. Hickhoff and H. P. Kriegel of the
University of Dortmund (performance comparison of grid file and various types
of multidimensional trees). We also thank A. B. Cremers, A. Frank, Th. Haerder,
J. 0. Jesperson, 0. V. Johansen, J. Koch, M. Mall, H. Samet, J. W. Schmidt, M.
Tamminen, and the referees for helpful comments that have improved this paper.
This paper supersedes [24], which describes some early results.

REFERENCES

1. BATORY, D.S. On searching transposed files. ACM Trans. Database Syst. 4,4 (Dec. 1979h 5X-
544.

ACM Transactions on Database Systems, Vol. 9, No. 1, March 1984.

70 ’ J. Nievergelt, H. Hinterberger, and K. C. Sevcik

2. BENTLEY, J.L. Multidimensional search trees used for associative searching. Commun. ACM
18,9 (Sept. 1975), 509-517.

3. BENTLEY, J.L. Multidimensional binary search trees in database applications. IEEE Trans.
Softw. Eng. SE-& 4 (July 1979), 333-340.

4. BURKHARD, W.A. Interpolation-based index maintenance. In Proc. ACM Symp. Principks of
Database Systems (1983), 76-89.

5. CASEY, R.G. Design of tree structures for efficient querying. Commun. ACM 16,9 (Sept. 1973),
549-556.

6. FAGIN, R., NIEVERGELT, J., PIPPENGER, N., AND STRONG, H.R. Extendible hashing-a fast
access method for dynamic files. ACM Trans. Database Syst. 4,3 (Sept. 1979), 315-344.

7. FINKEL, R.A., AND BENTLEY, J.L. Quad trees-a data structure for retrieval on composite keys.
Acta Znf. 4 (1974), l-9.

8. GONNET, G.H., AND LARSON, P.A. External hashing with limited internal storage. In Proc.
ACM Symp. Principles of Database Systems (1982), 256-261.

9. GUETING, H., AND KRIEGEL, H.P. Multidimensional B-tree: an efficient dynamic tile structure
for exact match queries. Forschungsbericht Nr. 105, Informatik, Univ. Dortmund, Dortmund,
West Germany, 1980.

10. HINRICHS, K., AND NIEVERGELT, J. The grid file: a data structure designed to support proximity
queries on spatial objects. In Proc. Workshop on Graph Theoretic Concepts in Computer Science
(Osnabruck, 1983).

11. HINTERBERGER, H., AND NIEVERGELT, J. Concurrency control in two-level file structures.
Working paper, Informatik, ETH Zurich, 1983.

12. JOSHI, SM., SANYAL, S., BANERJEE, S., AND SRIKUMAR, S. Using grid files for a relational
database management system. Speech and Digital Systems Group, Tata Institute of Fundamental
Research, Homi Bhabha Road, Bombay 400 005, India.

13. KASHYAP, R.L., SUBAS, S.K.C., AND YAO, S.B. Analysis of the multiattribute tree database
organization. IEEE Trans. Softw. Eng. 2, 6 (Nov. 1977).

14. KNUTH, D.E. The Art of Computer Programming. Vol. 3, Sorting and Searching. Addison-
Wesley, Reading, Mass., 1973.

15. LEE, D.T., AND WONG, C.K. Quintary trees: a file structure for multidimensional database
systems. ACM Trcms. Database Syst. 5,3 (Sept. 1980), 339-353.

16. LITWIN, W. Linear hashing: a new tool for file and table addressing. In Proc. 6th International
Conference on Very Large Data Bases, 1980, pp. 212-223.

17. LIOU, J.H., AND YAO, S.B. Multidimensional clustering for database organizations. Znf. Syst. 2
(1977), 187-198.

18. LUM, V.Y. Multiattribute retrieval with combined indices. Commun. ACM 13, 11 (Nov. 1970),
660-665.

19. BARNES, M.C., COLLENS, D.S. Storing hierarchic database structures in transposed form.
Datafair, 1973.

20. MERRE~, T.H. Multidimensional paging for efficient database querying. In Proc. ZCMOD
(Milano, Italy, June 1978), pp. 277-289.

21. MERRETT, T.H., AND 0~00, E.J. Dynamic multipaging: a storage structure for large shared
data banks. Rep. SOCS-81-26, McGill Univ., 1981.

22. MULLIN, J.K. Retrieval-update speed trade-offs using combined indices. Commun ACM 14, 12
(Dec. 1971), 775-778.

23. NIEVERGELT, J. Trees as data and file structures. In CAAP ‘81, Proc. 6th Colloquium on Trees
in Algebra and Programming, E. Astesiano and C. Bohm, Eds., Lecture Notes in Computer
Science 112, Springer Verlag, 1981, pp. 35-45.

24. NIEVERGELT, J., HINTERBERGER, H., AND SEVCIK, K.C. The grid file: an adaptable, symmetric
multikey file structure. In Trends in Information Processing Systems, Proc. 3rd ECZ Conference,
A. Duijvestijn and P. Lockemann, Eds., Lecture Notes in Computer Science 123, Springer Verlag,
1981, pp. 236-251.

25. ORENSTEIN J.A. Multidimensional TRIES used for associative searching. Znf. Process. L&t. 14,
4 (June 1982), 150-157.

26. PFALTZ, J.L., BERMAN, W.J., AND CAGLEY, E.M. Partial-match retrieval using indexed descrip-
tor tiles. Commun. ACM 23,9 (Sept. 1980), 522-528.

27. RIVEST, R.L. Partial-match retrieval algorithms. SZAMJ. Cornput. 5, 1 (1976), 19-50.

ACM Transactions on Database Systems, Vol. 9, No. 1, March 1984.

The Grid File l 71

28. ROBINSON, J.T. The k-d-B-tree: a search structure for large multidimensional dynamic indexes.
In Proc. SIGMOD Conference 1981, ACM, New York, pp. 10-18.

29. ROTHNIE, J.B., AND LOZANO, T. Attribute-based file organisation in a paged environment.
Commun. ACM 17,2 (Feb. 1974), 63-69.

30. SCHEUERMANN, P., AND OUKSEL, M. Multidimensional B-trees for associative searching in
database systems, Znf. Syst. 7,2 (1982), 123-137.

31. TAMMINEN, M. The extendible cell method for closest point problems. BIT 22 (1982), 27-41.
32. VALLARINO, 0. On the use of bit maps for multiple key retrieval. ACM SZGPLAN Notices 11,

(Mar. 1976), 108-114.

Received 1982; revised July 1982; accepted February 1983

ACM Transactions on Database Systems, Vol. 9, No. 1, March 1984.

