# BLINC: Multilevel Traffic Classification in the Dark

Thomas Karagiannis, UC Riverside
Konstantina Papagiannaki, Intel Research Cambridge
Michalis Faloutsos, UC Riverside





## The problem of workload characterization

- The goal: Classify Internet traffic flows according to the applications that generate them "in the dark"
  - No port numbers



## The problem of workload characterization – Why in the dark?

- Traffic profiling based on TCP/UDP ports
  - Misleading
- Payload-based classification
  - Practically infeasible
- Applications are "hiding" their traffic
  - P2P applications, skype, etc.
- Recent research approaches
  - Statistical/machine-learning based classification (Roughan et al. IMC'04, Moore et al. SIGMETRICS'05)
  - Sensitive to network dynamics such as congestion

#### Our contributions

- We present BLINC (BLINd Classification), a fundamentally different "in the dark" approach
  - We shift the focus to the Internet host
  - We analyze host behavior at three levels
    - Social
    - Functional
    - Application
- We identify "signature" communication patterns
- Highly accurate classification

### Outline

- Developing a classification benchmark
  - Payload-based classification
- BLINC design
  - Multilevel classification
  - Signature communication patterns
- BLINC evaluation

### Classification benchmark

- Packet-traces with machine readable headers
  - Residential (2 traces)
    - 25 hours & 34 hours, 110 Mbps
    - web (35%), p2p (32%)
  - Genome campus
    - 44 hours, 25 Mbps, ftp (67%)
- Classification based on payload signatures
  - Caveats : Nonpayload (1%-2%), Unknown (6%-16%)

#### **BLINC** overview

- In the dark classification
  - No examination of port numbers
  - No examination of user payload
- Characterize the host
  - Insensitive to congestion and path changes
- Deployable with existing equipment
  - Operates on flow records

### BLINC: Classification process

- Characterize the host
  - Social : Popularity/Communities
  - Functional: Consumer/provider of services
  - Application : Transport layer interactions
- Identify signature communication patterns

Match observed behavior to signatures

#### 1. Social level

Characterization of the popularity of hosts

- Two types of behavior:
  - Based on number of destination IPs
  - Communities: Groups of communicating hosts

### 1. Social level: Popularity

Reveals only basic application traffic properties

destination IPs for P2P and

malware 10° 10° web × 10<sup>-3</sup> 10<sup>-5</sup> 10<sup>-6</sup> 10° 10<sup>1</sup> 10<sup>2</sup> 10<sup>3</sup> 10<sup>2</sup> 10<sup>4</sup> 10<sup>3</sup> Number of Destination Number of Destination IPs 10° 10° mail × 10<sup>-3</sup> <sup>™</sup> 10<sup>-3</sup> 10<sup>-5</sup> 10 10° Number of Destination in Number of Destination IPs

### 1. Social level: Communities

Communication cliques



- Perfect cliques
  - Attacks
- Partial cliques
  - Collaborative applications (p2p, games)
- Partial cliques with same domain IPs
  - Server farms (e.g., web, dns, mail)

#### 2. Functional level

We characterize based on tuple (IP, Port)

- We identify three types of behavior
  - Client: Consumer of services
  - Server: Provider of services
  - Collaborative

### 2. Functional level: Client vs.



## 2. Functional level: Client vs. Server



# 2. Functional level: Characterizing the host

flows vs. source ports per application

Collaborative applications: No distinction between servers and clients



### 3. Application level

 Interactions between network hosts display diverse patterns across application types.

- We capture patterns using "graphlets"
  - Target most typical behavior
  - Relationship between fields of the 4-tuple

### 3. Application level: Graphlets

- Graphlets have four columns corresponding to the 4-tuple: src IP, dst IP, src port and dst port
- Each node is a distinct entry for each column
- Lines connect nodes when flows contain the specific field values



## 3. Graphlet Generation (FTP)

| sourceIP | destinationIP | sourcePort | destinationPort |
|----------|---------------|------------|-----------------|
| X        | Y             | 21         | 10001           |
| X        | Y             | 20         | 10002           |
| X        | Z             | 21         | 3000            |
| X        | Z             | 1026       | 3001            |



### 3. Graphlet Library



Using the transport layer protocol.



Using the relative cardinality of sets.



Using the relative cardinality of sets.



Using the communities



- Other heuristics:
  - Using the per-flow average packet size
  - Recursive (mail/dns servers talk to mail/dns servers, etc.)
  - Failed flows (malware, p2p)

### Classification Results

- We evaluate BLINC using two metrics:
  - Completeness
    - Percentage classified by BLINC
  - Accuracy
    - Percentage classified by BLINC correctly
- We compare against payload classification
  - Exclude unknown and nonpayload flows

## BLINC achieves highly accurate classification



## Characterizing the unknown: Non-payload flows

BLINC is not limited by non-payload flows or unknown signatures



### BLINC issues and limitations

- Extensibility
  - Creating and incorporating new graphlets
- Application sub-types
  - e.g., BitTorrent vs. Kazaa
- Transport-layer encryption
  - then what?
- NATS
  - Should handle most cases
- Access vs. Backbone networks?
  - Should handle but no data to test

### Conclusions

- A new way of thinking of the classification problem
  - Classify nodes instead of flows
  - Multi-level analysis:
    - social, functional, transport-layer characteristics
    - each level provides corroborative evidence or insight
- BLINC works well in practice
  - classifies 80-90% of the traffic
  - with >90% accuracy
- Going beyond payload-based classification
  - Nonpayload/unknown flows
- Building block for security applications