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The problem of workload

characterization

The goal: Classify Internet traffic flows
according to the applications that generate
them “in the dark™

— No port numbers

— No payload




The problem of workload

characterization — Why 1n the dark?

 Traffic profiling based on TCP/UDP ports
— Misleading

« Payload-based classification
— Practically infeasible

» Applications are “hiding” their traffic
— P2P applications, skype, etc.

* Recent research approaches

— Statistical/machine-learning based classification (Roughan
et al. IMC’04, Moore et al. SIGMETRICS’05)

— Sensitive to network dynamics such as congestion




Our contributions

« We present BLINC (BLINd Classification), a
fundamentally different “in the dark” approach

— We shift the focus to the Internet host

— We analyze host behavior at three levels
« Social
* Functional
« Application

» We identify “signature” communication patterns
* Highly accurate classification




Outline

* Developing a classification benchmark
— Payload-based classification

* BLINC design

— Multilevel classification
— Signature communication patterns

« BLINC evaluation




Classification benchmark

 Packet-traces with machine readable headers

— Residential (2 traces)
« 25 hours & 34 hours, 110 Mbps
« web (35%), p2p (32%)

— Genome campus
* 44 hours, 25 Mbps, ftp (67%)

+ Classification based on payload signatures
— Caveats : Nonpayload (1%-2%), Unknown (6%-16%)




BLINC overview

* In the dark classification
— No examination of port numbers
— No examination of user payload

« Characterize the host
— Insensitive to congestion and path changes

* Deployable with existing equipment
— Operates on flow records




BLINC: Classification process

« Characterize the host
— Social : Popularity/Communities
— Functional : Consumer/provider of services
— Application : Transport layer interactions

* |dentify signature communication patterns

* Match observed behavior to signatures




1. Social level

« Characterization of the popularity of hosts

* Two types of behavior:
— Based on number of destination IPs
— Communities: Groups of communicating hosts




1. Social level: Popularity

* Reveals only basic application traffic
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1. Social level: Communities

« Communication cliques

Destination

Source

« Perfect cliques
— Attacks

« Partial cliques
— Collaborative applications (p2p, games)

« Partial cliques with same domain IPs
— Server farms (e.g., web, dns, mail)
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2. Functional level

* We characterize based on tuple (IP, Port)

« We identify three types of behavior
— Client: Consumer of services
— Server: Provider of services
— Collaborative
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2. Functional level: Client vs.

Server =
=

| src port: 1001

src port: 1002

Il

Observation:

The host uses a different ephemeral
src port for every flow

Rule:

Hosts that use a large number of
source ports are clients
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2. Functional level: Client vs.
Server

Il

Rule:

Hosts that use a small number of
source ports are offering services
on these ports

Observation:

The host uses only two

src ports for all flows
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src port: 443 —
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2. Functional level:
Characterizing the host

Collaborative

flows vs. source ports per applicati
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3. Application level

* Interactions between network hosts display
diverse patterns across application types.

* We capture patterns using “graphlets”
— Target most typical behavior
— Relationship between fields of the 4-tuple
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3. Application level: Graphlets

* Graphlets have four columns corresponding to the
4-tuple: src IP, dst IP, src port and dst port
* Each node is a distinct entry for each column

* Lines connect nodes when flows contain the specific
field values
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3. Graphlet Generation (FTP)
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3. Graphlet Library
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Heuristics: Further improving
performance

» Using the transport layer protocol.
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Heuristics: Further improving
performance

» Using the relative cardinality of sets.
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Heuristics: Further improving
performance

» Using the relative cardinality of sets.

o, 10%;

# destination Ports
# destination Ports
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WEB: #dst ports >> # dst IPs
P2P: #dst ports <= # dst IPs
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Heuristics: Further improving
performance

* Using the communities

Probably WEB too!!

/
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Heuristics: Further improving
performance

* Other heuiristics:
— Using the per-flow average packet size

— Recursive (mail/dns servers talk to mail/dns
servers, etc.)

— Failed flows (malware, p2p)
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Classification Results

* We evaluate BLINC using two metrics:

— Completeness
» Percentage classified by BLINC

— Accuracy
« Percentage classified by BLINC correctly

* We compare against payload classification
— Exclude unknown and nonpayload flows
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BLINC achieves highly accurate
classification

80%-90% completeness !

>90% accuracy !!
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Characterizing the unknown:
Non-payload flows

Destination port scans

BLINC is not limited by non-payload flows or
unknown signatures
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BLINC i1ssues and limitations

« Extensibility
— Creating and incorporating new graphlets
Application sub-types
—e.qg., BitTorrent vs. Kazaa
« Transport-layer encryption
— then what?
« NATS
— Should handle most cases
» Access vs. Backbone networks?
— Should handle but no data to test
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Conclusions

A new way of thinking of the classification problem
— Classify nodes instead of flows
— Multi-level analysis:
* social, functional, transport-layer characteristics
 each level provides corroborative evidence or insight
BLINC works well in practice
— classifies 80-90% of the traffic
— with >90% accuracy
Going beyond payload-based classification
— Nonpayload/unknown flows

Building block for security applications
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