BLINC: Multilevel Traffic
Classification in the Dark

Thomas Karagiannis, UC Riverside
Konstantina Papagiannaki, Intel Research Cambridge
Michalis Faloutsos, UC Riverside

Bl Riverside INntelgesearch

The problem of workload

characterization

The goal: Classify Internet traffic flows
according to the applications that generate
them “in the dark™

— No port numbers

— No payload

The problem of workload

characterization — Why 1n the dark?

 Traffic profiling based on TCP/UDP ports
— Misleading

« Payload-based classification
— Practically infeasible

» Applications are “hiding” their traffic
— P2P applications, skype, etc.

* Recent research approaches

— Statistical/machine-learning based classification (Roughan
et al. IMC’04, Moore et al. SIGMETRICS’05)

— Sensitive to network dynamics such as congestion

Our contributions

« We present BLINC (BLINd Classification), a
fundamentally different “in the dark” approach

— We shift the focus to the Internet host

— We analyze host behavior at three levels
« Social
* Functional
« Application

» We identify “signature” communication patterns
* Highly accurate classification

Outline

* Developing a classification benchmark
— Payload-based classification

* BLINC design

— Multilevel classification
— Signature communication patterns

« BLINC evaluation

Classification benchmark

 Packet-traces with machine readable headers

— Residential (2 traces)
« 25 hours & 34 hours, 110 Mbps
« web (35%), p2p (32%)

— Genome campus
* 44 hours, 25 Mbps, ftp (67%)

+ Classification based on payload signatures
— Caveats : Nonpayload (1%-2%), Unknown (6%-16%)

BLINC overview

* In the dark classification
— No examination of port numbers
— No examination of user payload

« Characterize the host
— Insensitive to congestion and path changes

* Deployable with existing equipment
— Operates on flow records

BLINC: Classification process

« Characterize the host
— Social : Popularity/Communities
— Functional : Consumer/provider of services
— Application : Transport layer interactions

* |dentify signature communication patterns

* Match observed behavior to signatures

1. Social level

« Characterization of the popularity of hosts

* Two types of behavior:
— Based on number of destination IPs
— Communities: Groups of communicating hosts

1. Social level: Popularity

* Reveals only basic application traffic
p o p e rt| es Heavier tail of CCDF of

destination IPs for P2P and
malware

10" 10° 10° 10°
mber of Destination IPs

mail |

5| § -5
10 10 J
10° 10’ g’ 10° _Ao* 10° 10’ 10° 10° 10?
Number of Dest i s NMumber of Destination IPs

10

1. Social level: Communities

« Communication cliques

Destination

Source

« Perfect cliques
— Attacks

« Partial cliques
— Collaborative applications (p2p, games)

« Partial cliques with same domain IPs
— Server farms (e.g., web, dns, mail)

11

2. Functional level

* We characterize based on tuple (IP, Port)

« We identify three types of behavior
— Client: Consumer of services
— Server: Provider of services
— Collaborative

12

2. Functional level: Client vs.

Server =
=

| src port: 1001

src port: 1002

Il

Observation:

The host uses a different ephemeral
src port for every flow

Rule:

Hosts that use a large number of
source ports are clients

13

2. Functional level: Client vs.
Server

Il

Rule:

Hosts that use a small number of
source ports are offering services
on these ports

Observation:

The host uses only two

src ports for all flows

= -

src port: 443 —

—
—————\

14

2. Functional level:
Characterizing the host

Collaborative

flows vs. source ports per applicati

* , 10",

applications: No « P2 T K
distinction between e ‘
servers and clients Sl - 107,
10"~
10
10",

ifer—

i
J‘/'
o
-

£ .2 - -
S

2 10

3E

Servers

10 o
#!‘-‘Iows ; #Flows
Obscure behavior due to multiple mail
protocols and passive ftp

15

3. Application level

* Interactions between network hosts display
diverse patterns across application types.

* We capture patterns using “graphlets”
— Target most typical behavior
— Relationship between fields of the 4-tuple

16

3. Application level: Graphlets

* Graphlets have four columns corresponding to the
4-tuple: src IP, dst IP, src port and dst port
* Each node is a distinct entry for each column

* Lines connect nodes when flows contain the specific
field values

192.168.1.1 10.0.0.0 1026 135

sourcelP destinationlP sourcePort destinationPort
O O O e
Vo
O

17

3. Graphlet Generation (FTP)

sourcelP destinationl|P sourcePort destinationPort

X V4 1026 3001

O 20 O 10002

5005

X N 5000

2] O 10001

7 3000

O 3001

U 1026

18

3. Graphlet Library

sl P scPort dstPot sedlP dstIP sacPort dstPort selP dsllP scPort dstPort P dst]P sacPot dstPort

() () 7
T ATTACK WEB (TCP,
o GAMES (LDP)
{a) (b) (c) ()

sl AP scPort dtPort gd &P wcPot dPot st dsUP scPort dstPrt selP P scPon dstPon

CHAT(TCP)
P2P(TCP, UDP) GAMES/UDP

(e) (1) (g) (h)
srclP dstlP scPort dstPot sedlP dstIP acPot dstPort sglP Pk AP sePt gt seIP Pete dsIP o secPon dstPon

DNS/UDP

MAIL server
STREAMINGREAL with DNS

(1)

19

Heuristics: Further improving
performance

» Using the transport layer protocol.

srcIP dstIP srcPort dstPort

)
S

WEB (TCP)
GAMES (UDP)

20

Heuristics: Further improving
performance

» Using the relative cardinality of sets.

srclP dstIP srcPort dstPort

srclP dstIP srcPort dstPort

/~ O\
WEB (TCP)

GAMES (UDP)

|

CHAT (TCP)

)
v,
3
Q
.o
c
>
3‘

Cardinality of set of dst IPs

versus set of dst ports varies
with the application

21

Heuristics: Further improving
performance

» Using the relative cardinality of sets.

o, 10%;

destination Ports
destination Ports
=)

WEB: #dst ports >> # dst IPs
P2P: #dst ports <= # dst IPs

22

Heuristics: Further improving
performance

* Using the communities

Probably WEB too!!

/

23

Heuristics: Further improving
performance

* Other heuiristics:
— Using the per-flow average packet size

— Recursive (mail/dns servers talk to mail/dns
servers, etc.)

— Failed flows (malware, p2p)

24

Classification Results

* We evaluate BLINC using two metrics:

— Completeness
» Percentage classified by BLINC

— Accuracy
« Percentage classified by BLINC correctly

* We compare against payload classification
— Exclude unknown and nonpayload flows

25

BLINC achieves highly accurate
classification

80%-90% completeness !

>90% accuracy !!

100

90+

80|
70}
60}
50/
40+

Percentage of flows

30

20+ 1
4 10+ .
o L _ 1 1 | il
, GN UN1 UN2
- 'l Completeness
\ | [|Accurac y

26

Characterizing the unknown:
Non-payload flows

Destination port scans

BLINC is not limited by non-payload flows or
unknown signatures

10", —
E T

Blaster 71-., -

10°:
' RPC
exploit Sasser gjammer

#Flows

105;— _ 7 | ,

10‘; | i
§ ‘ Flows classified as attacks reveal

o known exploits

10°) g ’ ey gy

27

BLINC i1ssues and limitations

« Extensibility
— Creating and incorporating new graphlets
Application sub-types
—e.qg., BitTorrent vs. Kazaa
« Transport-layer encryption
— then what?
« NATS
— Should handle most cases
» Access vs. Backbone networks?
— Should handle but no data to test

28

Conclusions

A new way of thinking of the classification problem
— Classify nodes instead of flows
— Multi-level analysis:
* social, functional, transport-layer characteristics
 each level provides corroborative evidence or insight
BLINC works well in practice
— classifies 80-90% of the traffic
— with >90% accuracy
Going beyond payload-based classification
— Nonpayload/unknown flows

Building block for security applications

29

