Off-Line Compression by Greedy Textual
Substitution

ALBERTO APOSTOLICQSENIOR MEMBER, IEEEAND STEFANO LONARDI STUDENT MEMBER, IEEE

Greedy off-line textual substitution refers to the following Lempel-Ziv (LZ) schemes [7]-[9], which attain asymptotic
approach to compression or structural inference. Given a long optimality both in terms of compression achieved and
textstring z, a substringw is identified such that replacing all algorithmic complexity. In LZ data compression, data can
instances ofw in x except one by a suitable pair of pointers . T
yields the highest possible contraction af the process is then D€ processedn-lineas itis read, a feature that nicely fits the
repeated on the contracted textstring until substrings capable Standard paradigm of sequential transmission. The unidirec-
of producing contractions can no longer be found. This paper tional or “polar” nature of pointers is crucial in determining
examines computational issues arising in the implementation of ;o computational efficiency inherent to this scheme.
this paradigm and describes some applications and experiments. In some applications, like, for instance, in the production

Keywords—Augmented suffix tree, compression of biological se- of 3 CD-ROM or magnetic disk for massive data dissemina-
quences, dynamic text compression, grammatical inference, off-ineyjo, e could afford to perform the compressighline, in
textual substitution, substring statistics. . . . L . . .

particular, to issue pointers in either direction if this brings
an increase in compression. Off-line heuristics may be ex-
I. INTRODUCTION pected to introduce extra time by whatever sequential imple-

In data compression by textual substitution (see, e.g. mentation, but their possible implementation on parallel, per-
[1]-[3]), substrings with multiple occurrences in a textstring Naps dedicated architectures (see, e.g., [10], [11]), may be ex-

are replaced by a suitable set of pointers to a unique commorP€cted to achieve sufficient speed to process streams of large
copy [for instance, by giving: 1) a textstring position starting Consecutive textfile Wlndqw§ consecutively in real-t_|me for
from which the substring can be recopied and 2) the length @nY Practical purpose. Within the realm of sequential com-
of that substring]. Disparate conventions, regarding issuesPutation, investing more time in the compression may be de-
such as the location of the common copy and the mechanicsSirable and feasible for information destined to be massively
of the encoding-decoding process, give rise to varioasro distributed, as long as the decompression can be still carried
schemesf compression. In general, the relative performance ©Ut fastand on-line [12]. In other situations, such as, e.g., in
of such schemes depends on many factors, including thePackup archiving, the odds of havmg_to restore the (_jata might
often subtle interplay between pointer sizes and dictionary D€ feeble enough that even the requirement that this phase be
parameters (say, number of entries and average Iength).on'“”e could be forfeited. Finally, as we briefly illustrate at
Partly in response to this fact, techniques were devised for the end of this paper, the study and implementation of macro
the compact encoding of integers in an unbounded domainSchemes of the kind considered here may be of some interest
(see, e.g., [4]-[6]). Unfortunately, however, the optimal in the germane field of inference of hierarchical structures or

implementation of the majority of macro schemes translates 9rammars for sequences (see, e.g., [13]-{15]). _

into A/P-complete problems [3], even before the problem of The idea that some of the polarlty or greedlness inherent

encoding of pointers is taken into account. One noteworthy 0 LZ schemes could be traded in for increased compres-

exception to this rule is represented by the well-known SiOn is intuitively appealing and not new. In [16]-[18], for
instance, the authors discuss variations such as, e.g., relaxing
the longest-match criterion in determining the next phrase

Manuscript received February 15, 2000; revised June 30, 2000. This work , jitt~i ; ; _
was supported in part by NSF Grants CCR-9201078 and CCR-9700276, byWIthln an LZ parse. The underlymg goal Is to try and con

NATO Grant CRG 900293, by British Engineering and Physical Sciences Verge faster to the entropy of the source. In view of the in-
Research Council Grant GR/L19362, by Purdue Research Foundation Gramtracta_bility of optimal off-line macro schemes, we concen-

690-1398-3145, and by the Italian Ministry of University and Research. This : : ;
work was published in part in the Proceedings of the Annual Data Compres- trate here on the |mplementat|on of approximate methods

sion Conference of the IEEE, Snowhbird, Utah, 1998 and 2000. such as one of the simplest possibteepest descepara-

The authors are with the Department of Computer Sciences, Purdue Uni- digm. This will consist of performing repeated stages in each
versity, West Lafayette, IN 47907-1398 USA (e-mail: axa@cs.purdue.edu;
stelo@cs.purdue.edu). one of which we identify a substring of the current version of

Publisher Item Identifier S 0018-9219(00)09987-4. the text yielding the maximum compression, and then replace

0018-9219/00$10.00 © 2000 IEEE

PROCEEDINGS OF THE IEEE, VOL. 88, NO. 11, NOVEMBER 2000 1733

abaababaabaababaabababababaa
1 2 3 4 5 6 7 8 9 10 1112 13 14 1516 17 18 19 20 21 22 23 24 25 26 27 28

Fig. 1. Overlapping and nonoverlapping occurrences.

all those occurrences except one with a pair of pointers to thedetection of fragments carrying biological significance, or
untouched occurrence. This is somewhat dual with respect toin assessing the relatedness of fragments and sequences. We
the bottom up offline scheme introduced by Rubin [19] and refer to, e.g., [23]-[32] and references therein for a sampler
recently revived by [20]. As we shall see, this simple scheme of the rich literature existing on these subjects.

already poses some interesting algorithmic problems, some The structure of the paper is as follows. In Sections Il and

of which we discuss in detail. However, the main issue that Ill, we give some background and notation, and describe a
we try to address here is that of whether and to what extent adata structure used to gather the statistics of the text. The
greedy use of bidirectional pointers can yield good compres- overall design is presented in Section IV, which is followed
sion. As it turns out, the method does outperform all cur- by a presentation of the main experimental results in Sec-
rent LZ implementations in most of the cases. More inter- tion V. A discussion of finerimplementation details and some
estingly, it performs quite well on biological sequences and final remarks conclude the paper.

sequence families, where it beats all other generic compres-
sion methods, and approaches the performance of methodﬂ_
specifically built around some peculiar regularities of DNA
sequences, such as tandem repeats and palindromes, that areWe useX. to denote aralphabetof symbols For astring
neither distinguished nor treated selectively here. The mostz over %, the number of consecutive symbols inis the
interesting performances, however, are obtained in the com-length|z| of z, and we writex[i], 1 < ¢ < |z to indicate
pression of entire groups of genetic sequences foriiging theith symbol inz. In the following, we assumes| = n.
ilies with similar characteristics. This is becoming a stan- We usezli, j] shorthand for theubstringw of = composed
dard and useful way to group sequences in a growing number®Y z[d] - z[i + 1] - ... - z[j] wherel < i < j < |a],
of important specialized databases. On such inputs, the ap@ndz[¢, if = z[z]. Finally, substrings in the forna[1, j]
proach presented here yields scores that are not only bettef"® calledprefixesof , and substrings in the formz, ||
than those of any other method, but also improve increasingly &€ calledsuffixesof =. For any substringu of z, we de-
with increasing input size. This is to be attributed to a certain N0t€ bYf.. the number ohonoverlappingccurrences o

ability to capture distant relationships among the sequencegh - Cléarly, f., may be different from the total number of
in a family, a feature the merits of which were dramatically :

occurrences ofv. For examplew = aba occurs 11 times
exposed in the recent paper [21].

N z = abaababaabaababaabababababaa, with starting
Biological sequences, specially DNA, have been long

positions in the sefl, 4, 6, 9, 12, 14, 17, 19, 21, 23, 25}
recognized among important classes of data for which the (see Fig. 1). However, occurrences starting at positions 4 and
two tasks of compression and interpretation are often and

6, or 12 and 14, etc., overlap with each other. We can have
subtly intertwined. (see, e.g., [22]). The deoxyribonucleic

no more than seven occurrences:oin = so that no two of
acid (D.NA) anstitutes the physical medium in which all Lhoe,sr;igxzrilﬁ?izrgjslt;nf?: ;VE ;%l;{d;ﬁﬁi’?;asezwlgh ﬁ_t(;’;\rtlng
properties of living organisms are encoded. The knowledge understand our interest in the count of nonoverlapping oc-
of its sequence is _fundamental in molecular biology. Im- currences, assume that a substringppears repeatedly in
portant molecular F"O'Ogy databases (e.g., EMBL, Genbank, x. Then, replacing all occurrences af except one with a
DDJB, Entrez, SwissProt, etc.) have been developed to col-,qinter 16 the unique reference copy might yield a more com-
lect hundreds of thousand of sequences of nucleotides ancgact description of. If £, is known, then it is also possible
amino-acids from biological laboratories all over the world. {4 assess beforehand the contraction in length:thaould
The size of these databases, that is currently in the Orderundergo following such an encoding. If, now, we were asked
of thousands of gigabytes, grows at an exponential rate.tq jgentify the one substring inducing the highest contrac-
DNA compression by standard methods such as, e.g., thetion on «, we could clearly do so based on tfievalue and
LZ family of schemes does not seem to fully exploit the re- |ength of the individual substrings. Choosing instead on the
dundancies inherent to those sequences. The desigd of pasis of the total number of occurrences would neither guar-
hocmethods for the compression of genetic sequences con-antee nor allow us to precompute the best contraction.
stitutes, therefore, an interesting and worthwhile task. Along The computation of the statistics of all substrings of a
these lines, a corpus of specialized approaches to DNA com-string = is an easy application of theuffix treeT?, of z. As
pression has been developed in the recent past. As highis well known, the latter is a trie (digital search tree) col-
lighted above, pendant notions of information content and lecting all the suffixes 0£$, where $ is a special symbol not
structure have been associated with the compressibility of aincluded in3. The tree in compact form is built by iterated
sequence. From such a perspective, the amount of compresinsertion of consecutive suffixes i@(n?) worst case time
sion achievable on genetic sequences has been used in thendO(n log n) expected time (see, e.g., [33]). A number of

SUBSTRING STATISTICS WITHOUT OVERLAP

1734 PROCEEDINGS OF THE IEEE, VOL. 88, NO. 11, NOVEMBER 2000

1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22
abaababaabaababaababas

Fig. 2. The minimal augmented suffix tree faxbaababaabaababaababa$ shows node
additions and weights needed to change a suffix tree into an index for statistics without overlaps. The
label of a leaf is the starting position of the suffix corresponding to that leaf. The label of a node is the
number of occurrences without overlap of the string on the path ending at that node or anywhere in
the middle of the preceding arc.

more clever constructions are available achieving linear time Ill. | MPLEMENTING THE DATA STRUCTURES
for finite alphabets (see, e.g., [34]). The number of occur-
rences (with overlap) of a string of x is trivially given by

h ber of | hable f h de cl h When it comes to the actual allocation in memory of a
the num erotleaves reachable rom the node co;est 10 ey ix tree, one faces a number of design choices, promi-
locus ofw in 17, irrespective of whether or nat ends in the

ddle of Thus. labeli int | nodef 7" nent among which those pertaining to the implementation of
midale of an arc. Thus, 1abeling every internal nedet 1, nodes. There are three main possibilities in this regard.
with the number(«) of the leaves in the subtree rootedat

yields this statistics for all substrings of * The node is implemented as an array of $izg This
The problem becomes more involved if we wanted to build yields fast searches, but is likely to introduce an un-
a similar index for the statistics without overlap. A perusal of bearable amount of waste even for small alphabets.

Fig. 2 shows that this transition induces a twofold changein ~ * The node isimplemented as a linked list (or, better, as a
our structure: on the one hand, the weight in each node does ~ balanced search tree). This keeps space to a minimum,

no longer necessarily coincide with the number of leaves; but introduces an overhead on the search.

on the other, extra nodes must be now introduced to account ¢ The adjacency of a node is realized as part of a global
for changes in the statistics that occur in the middle of arcs. hash coding. This yields expected constant time search
The efficient construction of this augmented index in min- within overall©(n log) space.

imal form (i.e., with the minimum possible number of unary In our case, the space is of high practical concern, so that
nodes) is quite elaborate [35]. For a striagthe resulting we use the linked list. Fig. 2 displays the minimal augmented
structure is denote@’(a:) and called thé/linimal Augmented suffix tree of our example textstring. As is customary, the
Suffix Treeof z. It is not difficult to build 7%, in O(n?) time substrings representing edge labels are not stored explicitly
and space by embedding the necessary weighting as part oin the nodes but rather encoded each by an ordered pair of
the iterated suffix insertion procedure, hence, at an expectedntegers to a unique common copy ©f so as to achieve
cost of O(nlogn) [33]. The time required by the construc- overall linear space. However, even linear space can be prob-
tion given in [35] is instead)(n log? n) in the worst case. lematic: at 20 bytes per node and with a number of nodes 1.5

The number of auxiliary nodes was bounded®y logn) times the number of symbols in the input string, as typically
in [35]. A tighter O(n) bound is implied by recent develop- featured in our experiments, a text of sizeneeds approxi-
ments in [36]. mately30n bytes of storage space. In general, although the

APOSTOLICO AND LONARDI: OFF-LINE COMPRESSION BY GREEDY TEXTUAL SUBSTITUTION 1735

22[p g]e]¢] proposed by McCreight together with his construction. Sim-
ilar problems have been studied by Fiala and Green [17] in
the context of sliding window compression. More recently,
Larsson [38] showed that the algorithm by Ukkonen can be
easily extended to accommodate the sliding window update
abaababaabaababaababa $‘ of the suffix tree in amortized linear time. Gat al. [39]
12 3 4 5 6 7 8 3 Lun M6 Y BB Nan introduced a new data structure for dynamic text indexing
that supports insertion and deletion of a single character in
O(logn) time and the updates involving a substring that
0CCUrsoce,, times iNO(|w| + ocey, log i+ log |w|). Several
recent efforts address the dynamic maintenance of tries of
various nature. However, we did not find an existing satisfac-
tory solution to the problem of quickly modifying our statis-
tical index so as to reflect the deletion from the corresponding
abaababaabaababaababa sJ textstring ofall the occurrences of a given substring. In our
i3 3 s e 7 experiments, every new version of the suffix tree was built
Ei . . from scratch. In a later section, we present some heuristics
ig. 3. The data structure allocating textstring

abaababaabaababaababa$ prior to and after the removal designed to alleviate such computation efforts.
of aba.

. . . . IV. CHOOSING AND COMPUTING A GAIN MEASURE
size of the suffix tree depends on the particular implementa-

tion, one might expect it to be never lower than 20 bytes per By “gain measure,” we refer here to the functiohthat

input symbol (obps in the worst case. We refer to [37] for ~ drives, at each stage, the selection of the substring that yields

a comparative study of various space-efficient allocations. the highest compression. In practice, it is not easy to define
In general, these space savings are achieved at the expenggrecisely such a measure, as we explain below.

of higher complexity in either construction, or searching, or ~ The main difficulty is due to the fact that at the time when

both; thus, for instance, the suffix array and the PAT tree needwe need to compute the contraction that would be induced

O(nlog n) time for the constructionp(n) on average forthe by a particular substring, we lack some important costs such

array] andO(|w| + log n) when searching for a string. as those associated with the optimal encodings of pointers or
We use(w) to denote the node, if it exists, precisely at integers, which can be computed precisely only at the outset.
the end of the path i, labeled by the string. If, instead, Letting {(¢) represent the number of bits needed to encode

w ends in the middle of an arc, thém)) denotes the node integer:, we assume for simpliciti(¢) = [log] at the time
corresponding to the shortest extensionwofhat ends ina the gain is computed. Note that this choice does not affect

node. In our realizationa) contains the following items: the appraisal of final compression, the latter being based on
» two indicesl, j] identifying an occurrence af in z, purely empirical measures. Along the same lines, one could
i.e., such thaty = x[¢, j]; choose an expression fbthat reflects more accurately the
« one pointer to the list of children and one to the list of €fficient encoding of integers in an unknown range [4]-[6].
siblings of (w); However, as long as the ultimate encoding of the compressed
« one counter to store the number of nonoverlapping oc- String is not based on those representations, but rather on
currences ofy in z. some statistical treatment (e.g., Huffman encoding), there is
The data structure allocating the textstringhould sup- ~ hardly any sense in resorting to them and hardly any way to

port somewhat contrasting primitives such as, for instance, COmputel(z) accurately at this stage.
efficient string searching and repeated substring deletions. With this choice made, we describe now in succession
To accommodate the repeated contractions, dhe latter is three possible measures of gain. Let us denote tye word
maintained in a linked list of dynamic arrays, as follows. At that maximize<? at some iteration and, therefore, is selected
the beginning, the text is read from the source into a single t0 be replaced by pointers.
array of lengthn. Subsequently, the removal of the occur- N Scheme 1, we assume ttditthe f,, occurrences of the
rences of a Substring, = aba will partition the array into Stringw are removed from the teXt, white itself is saved in
linked fragments, as shown in Fig. 3. These arrangements aretn auxiliary data structure that contains:
complemented by refresh cycles that will recombine the text < the stringw, that isBm,, bits long, wheren,, = |w|
in a single array, from time to time, to counteract excessive andB = log [%];
fragmentations. * the lengthm,, of w, at a cost of(m,,) bits;

Repeatedly building the suffix tree at each stage exacts a « the value off,,, at a cost of(f,,) bits;
considerable toll irrespective of the method adopted. Ideally, < the f,, positions ofw in z, at a global cost bounded by
one would like to build the tree once and then maintain it, to- fuwl(n) bits.
gether with updated statistics, following every substring se- Fig. 4 shows the original and compressed representations
lection and removal. Linear time algorithms for dynamically for the textstring and the corresponding associated costs. The
maintaining the tree under deletion of a string were originally expression underneath the top figure represents the original

1736 PROCEEDINGS OF THE IEEE, VOL. 88, NO. 11, NOVEMBER 2000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 1 2 3 4 5 6 7 8 9 10 1t 12 13 14 15 16 17 18 19 20 21 22

[abajabalbajabajabalbafabalbas
| L L L L L L L k4 L L I L E i L L L L L L kI L
Bfwmw (B + 1)fumw
dictionary original positions L. P__ e r 2 2 E P B P ¥ LI
,,,,,,,,,,,,,, R . . .| 140 12 17 . . [(8.3)[(5,3)]b a[a® af-3,3)]b af=5,3)]b a $
bababasj 1 2 3 4 5 6 17 8 s 10 11 12 13 18
1 2z 3 4 5 6 7 3.. 5..
(B+ Dmy + (fo — D(U(n) + 1(my) + 1)
l
Bm,, + l(mw) + l(fw) + fu~ () Fig. 5. [lllustrating Scheme 2 foaba; L and” are used to mark
Fig. 4. lllustrating Scheme 1 withba. literals and pointers, respectively; the pgix) denotes a pointer

to a reference copy that has lengthnd that i» symbols away.

1 2 3 4 5 6 7 8 § 10 11 12 13 14 18 16 17 18 19 20 21 22

b al b ajs abas$

L& » & & & & L L E K b L L L L L L & L B & &

Table 1
Statistical Encoders Available to OFF-LINE

.
o

encoding type

Plain

(B + 1) fumuw

Huffman

Arithmetic

Deflate (ZLIB)

RLE

RLE + Huffman
RLE + Arithmetic
RLE + Deflate (zL1B)

Bm,, + (l(d) + J-)fu' + l(mu')

Fig. 6. lllustrating Scheme 3 forv = aba; d is the size of the
dictionary, “(1)” denotes a pointer to the first entry in the dictionary,
L and P mark literals and pointers, respectively.

N O Ut e WY = O

cost of the occurrences af as plain text: withjw| = m,,,

the f., copies ofw require B f,,m., bits in the plain text. In In Scheme 3, words in the textfile are replaced by pointers
practice, the value oB is appraised based on the empirical g their corresponding entries in an external dictionary. Thus,
entropy of the source: the plain text is encoded with the bestfouowing the selection ofw at the generic iterationy is
statistical encoder from Table 1, and thBris set to the av- added as a new entry into the dictionary aidof its oc-
erage length of a symbol. o currences become pointers to that entry. Also in this case, an
The expression at the bottom of the figure is the cost of yxiliary bit-vector is required in general in order to distin-
representing the same occurrences @iased on the external gyish between pointers and literals at the outset, both in the
dictionary and auxiliary structures. The difference between oyt and in the dictionary. However, if pointer recursion is

the two expressions defin€s; (w) as follows: forbidden as we assume in our construction, then the words

in the dictionary cannot contain pointers, and a bit-vector is

Gi(w) = B fumy — Bmy — U(my) = U(fu) = ful(n) not needed there.
=(fuw — 1)Bmy — l(my) — I(fu) — ful(n). The plain text representation of all the occurrencesof
requires(B + 1) f.,m,, bits. The costs of the pointer-based
In Scheme 2, we assume that one of fhecopies ofw representation are (see Fig. 6):
is kept in the original text, marked by a “literal identifica- Bm,, bits for the stringw in the dictionary;

tion” bit, while the remainingf,, — 1 copies are encoded by * I(m,,) to store the length,,;
pointers, each pointer being preceded by a suitable identifi- I(d)f,, for the f,, pointers inside the text, whergis

cation bit. the size of the dictionary.
Because of the additional bit, the plain text representation The corresponding expression 16%(w) is then
of all the occurrences af requires(B + 1) f,,m,, bits. The

pointer-based representation costs are as follows (see Fig. 5)73(w) = (B + 1) fumu — Bmy, — (I(d) + 1) fuo — I(mw)

* (B + 1)m,, bits for the original copy ofv; =B(fu — Dy + fumw — (1(d) + 1) fo — U(my).
o (fu—1)(I(n)+1(my)+1) bits for thef,, — 1 pointers.) o
The difference of these expressions defiGgsas follows: We point out that, for any of the above specifications:of
and any wordwv in z, G(w) is amonotone increasing function
Ga(w) = (B + 1) fumw — (B+ Dy — (fo — 1) of m,,. Moreover, the maximum number of nonoverlapping
occurrences ob in z does not change in the middle of an arc
~(U(n) +(mw) +1)

of 7. Therefore, the word maximizing the gain at each stage
(fo—D(B+Lmy — (fuo — DU(n)+(my) + 1) alwaysends on a node df,. If now w is this word, then its
(fow — DB+ Lymy —l(n) — l(my,) — 1). occurrences are suitably encoded, and the whole process is

APOSTOLICO AND LONARDI: OFF-LINE COMPRESSION BY GREEDY TEXTUAL SUBSTITUTION 1737

1: abaababaabaababaababa$ Substituted substring: "aba" Table 2

A First Glance at the Three OFF-LINE Encoders’ Performances on

: bstituted substring: "ba" A -
2: bababa$ Substituted substring 2 a 300-MHz Solaris Machine

Final encoding:

sublen = [3 2] paper2 (82,199) mito (78,521)
encoder size time(min] size time min)

OFF-LINE; | 30,848 3.21 16,426 1.66

OFF-LINE2 | 33,757 3.01 17,741 2.24

OFF-LINE3 | 30,219 2.38 16,086 2.38

substr = [ababal

abspol = [0 0] abspoh = [0 0]
relpol = [0 20 2 0 0] relpoh = [0 0 0 0 0 0]

occurr = [5 3]

text = [$]

specifically designed to compress DNA, the difference in
performance is not large, as shown in Table 6.

It is worthwhile to highlight such DNA-specific analyzers
repeated until the gain becomes zero or negligible, accordingang compressors. As mentioned, information theoretic ana-
to some predetermined threshold. lyzes of biological sequences mingle with the very dawn of
_ The three schemes just described were embeddedjqintormatics studies (see, e.g., [22]), but this area has re-
in as many encoders, respectively called OFF-LINE .onyy known a considerable revival of interest in view of the
OFF-LINE;, and OFF-LINE. As an example, the iterations ., <qjy e production of genomic sequences of various kinds.
of OFF'.LINEl are hlghhghted in Fig. 7. The first iteration In this context, the detection of redundancy serves not only
rgsults in the choice (.ﬁba’ the second, 05?‘ The coIIec'— the purpose of achieving more compact descriptors, but also,
tion of data represen_tlng the output _encodmg appears in .theand perhaps more importantly, may act as a filter of possibly
\?v(;}tg;ng?\g; (I)e]:tg;e figure. Several implementation details relevant biological functions. The tenet there is that an in-

' compressible string is more random and, thus, less likely than
a repetitive one to carry some biological function.

Due to mutations, errors in the sequencing process, and

The encoders described in the previous section were codedbther biological events, a substantial part of the redundancy
in C++ using the Standard Template Library (STL) [40] present in DNA manifests itself in the form of consecutive
and extensively tested. Table 2 offers a first glance of the (tandenm repeats of the same wordmiotif, and palindromes.
performances of the three encoders on two typical inputs, However, such tandem repeats and palindromes are not exact.
namely,paper2 from the Calgary Corpus anaito , the Rather, they may occur with substitutions, insertions, or dele-
mitochondrial DNA sequence of the yeaStagcharomyces tions of symbols. Moreover, palindromes are actuatiyn-
Cerevisiag. Running times are in the order of 2 or 3 min plementegdmeaning that in the reverse half of the word the
for files of about 80 KB on a 300-Mhz machine running pasea is mirrored by aT (and vice—versa), whil€ is mir-
under Solaris. In terms of compression, the best encoder is;q g by aG (and vice-versa).

OFF-LINEs, followed by OFF-LINE and, at some distance,
OFF-LINE;.

Table 3 compares performances among textual substitu-
tion methods over the entire Calgary Corpus. OFF-LINE
outperforms the other two encoders on most inputs. As a
whole, OFF-LINE encoders perform better than the rest on
most inputs, and loose marginally to G4vhere they do.
However, a thoroughly faithful comparison t@® is made
difficult by the many heuristics embedded in that program.

Fig. 7. Arun of OFF-LINE; on our example textstring.

V. RESULTS

Among the recent dedicated approaches to DNA com-
pression, the one by Grumbach and Tahi [25], [26], called
BIoCoMPRESZ, extends LZ-77 to catch very distant repeats
and complementary palindromes.

Loewenstern and Yianilos [27] consider the problem of
computing good estimates of the entropy of DNA sequences
by building a Pwm-like predictive model. With respect to
the original Pwm, they extend the context model by allowing

Crossing the boundary of textual substitution methods, the mismatches. Their algorithm estimates the parameters of the

recent block-sorting techniques callediBand Bzip2, based ~ Mdel, called ©NA, via a learning process that tries to op-

on [41], outperform @ip and OFF-LINE on the whole Cal- timize a complex objective function. The general problgm_ is
gary Corpus (see Table 4). As seen next, a different scenario"OWn to beA”P-complete, but they devise more realistic

is displayed when we turn to biological data sets. approximation schemes.

We compare the performance of OFF-LINE encoders with ~ Allison et al. propose the most computationally intensive
those of standard compression programs in Table 5. The en2pproach to DNA compression [43]. They search for both
coder OFF-LINE outperforms each and every general pur- approximate repeats and approximate palindromes. Their
pose encoder on the fourteen chromosomes and the mitorimary purpose is not to compress the text, but rather to
chondrial DNA of the yeast. It should be noted that the actual model the statistical properties of the data as accurately as
compressions are very small and sometimes negative. possible and to find patterns and structures within them.

In fact, raw biological sequences (notably, those coming They build a model with parameters such as the probability
from coding regions [42]) are known to be hard to com- of repeats, of the length of repeats, and of mismatches within
press. However, even comparing our encoders with programsrepeats. The parameters of the model are estimated by an

1738 PROCEEDINGS OF THE IEEE, VOL. 88, NO. 11, NOVEMBER 2000

Table 3
The Variants of OFF-LINE Against the Other Textual Substitution Compressors, on the
Calgary Corpus

File Size | Huffman Lz.78 LZ-77
(bytes) Pack COMPRESS GZip | OFr-LINE; OFF-LINE; OFF-LINE3
bib 111,261 72,868 46,528 35,063 36,145 39,226 34,442
book1 768,771 438,487 332,056 313,376 305,185 323,007 298,735
book2 610,856 368,423 250,759 206,687 203,249 216,494 204,703
geo 102,400 72,836 77,777 68,493 68,229 69,983 68,726
nevs 377,109 246,516 182,121 144,840 141,257 150,462 143,246
obj1 21,504 16,330 14,048 10,323 10,845 11,271 11,088
obj2 246,814 194,378 128,659 81,631 88,179 93,915 87,574
papertl 53,161 33,457 25,077 18,577 19,994 21,607 19,289
paper2 82,199 47,731 36,161 29,753 30,848 33,757 30,219
pic 513,216 106,737 62,215 56,442 52,036 55,427 50,885
proge 39,611 26,030 19,143 13,275 14,758 15,527 14,127
progl 71,646 43,093 27,148 16,273 18,508 18,919 16,153
progp 49,379 30,328 19,209 11,246 12,890 13,282 11,160
trans 93,695 65,343 38,240 18,985 21,170 21,170 19,662
Table 4
Comparing OFF-LINE with Context-Sorting Encoders on the Calgary Corpus
File Size BWT BWT
(bytes) BZir BZir2 | Orr-LINE; OFF-LINE2 OFF-LINE3
bib 111,261 27,097 27,467 36,145 39,226 34,442
book1 768,771 | 230,247 232,598 305,185 323,007 298,735
book2 610,856 | 155,944 157,443 203,249 216,494 204,703
geo 102,400 57,358 56,921 68,229 69,983 68,726
nevs 377,109 | 118,112 118,600 141,257 150,462 143,246
obj1 21,504 10,409 10,787 10,845 11,271 11,088
obj2 246,814 76,017 76,441 88,179 93,915 87,574
paperl 53,161 | 16,360 16,558 19,994 21,607 19,289
paper2 82,199 | 24,826 25,041 30,848 33,757 30,219
pic 513,216 49,422 49,759 52,036 55,427 50,885
proge 39,611 | 12,379 12,544 14,758 15,527 14,127
progl 71,646 15,387 15,579 18,508 18,919 16,153
progp 49,379 10,533 10,710 12,890 13,282 11,160
trans 93,695 17,561 17,899 21,170 21,170 19,662
expectation maximization algorithm that takes timén?) file contains one or more blocks. Each block is composed by

at each iteration. Their results may well be taken to representone or more annotation lines each starting with the symbol
the current “state of the art,” but as said the algorithm is >, followed by the genetic sequence.
extremely slow. Table 7 shows the results of running OFF-LINBN
Finally, we run OFF-LINE on families of related and un- several families of sequences of the yeast genome. The
related genetic sequences. Entries in most genetic databasesomplete dataset is available at http://www.cs.purdue.
are flat text files containing one or more sequences that areedu/homes/stelo/Off-line/. The file&Spor_ A1l 2x.fasta
usually functionally related, with some annotations. The is artificially obtained by concatenatinfpor_All.fasta
fasta format is the most commonly used standard for with itself, in an attempt to probe into extreme cases of
storing and exchanging genetic files. The genéaista intersequence correlation [21]. The last two families (8 and

APOSTOLICO AND LONARDI: OFF-LINE COMPRESSION BY GREEDY TEXTUAL SUBSTITUTION 1739

Table 5
Comparing OFF-LINE with Other Compression Programs on the Chromosomes of the Yeast

File Size | Huffman LZ-78 LZ-17 BWT BwWT
(bytes) Pack COMPRESS GZip BZrp BZip2 | OFF-LINE;y OFF-LINEz OFF-LINE3
chrl 230,195 63,144 62,935 66,264 61,674 62,373 57,098 58,631 56,915
chrII 813,137 | 222,597 219,845 236,837 218,463 221,032 201,617 203,456 201,180
chrIll 315,344 86,281 86,009 91,827 84,809 85,705 77,916 78,983 77,764
chrIV 1,522,191 | 416,516 409,957 440,056 407,799 411,250 371,230 374,413 870,796
chrV 574,860 | 157,415 155,944 167,740 154,580 155,731 142,364 143,775 141,919
chrVI 270,148 74,077 73,873 78,925 72,838 73,651 67,451 68,151 67,391
chrVII 1,090,936 | 298,680 204,417 317,282 293,079 296,245 270,051 272,972 269,265
chrVIII 562,638 | 154,110 152,265 163,135 151,240 152,992 139,588 140,924 139,271
chrIX 439,885 | 120,669 118,965 127,805 118,182 119,553 109,507 110,871 109,303
chrX 745,443 | 204,152 201,783 216,148 200,325 202,223 184,709 186,471 184,287
chrXI 666,448 | 182,377 180,100 194,119 179,306 180,901 165,780 166,752 165,478
chrXII 1,078,171 | 295,441 291,754 305,653 288,112 290,800 260,172 261,346 259,898
chrXIII 924,430 | 253,176 249,099 267,127 248,450 250,735 228,233 231,474 227,610
chrXIV 784,328 | 215,020 212,219 228,757 210,988 212,816 195,291 196,719 194,947
chrXvV 1,001,282 | 298,762 204,921 317,971 293,838 297,279 270,626 273,366 269,921
chrXvl 948,061 | 286,579 264,113 278,651 254,947 257,590 234,099 237,365 233,150
mito 78,521 18,149 17,890 19,369 17,962 18,094 16,426 17,741 16,086
Table 6 VI. FINE TUNING AND OTHER IMPLEMENTATION DETAILS
Comparing OFF-LINE with DNA-Specific Compression Programs
on the Third Chromosomelfrlll) of the Yeast (315 344 bps). The The most time-consuming activity of the compression
Parametebpc Represents the Average Number of Bits Per phase is the construction of the index trie and its annotation

Character in the Compressed Representation (Some Final Sizes are

Extrapolated from Table 1 of [43]) with the values of the gain. We employed three heuris-

tics to overcome the high computational demands of a

encoder size boe “full-fledged” version of the compressor.
La Table 9 shows the results achieved by one of these heuris-
GZrp 91,827 233 tics on the basic algorithm, in which more than just one sub-
Pack 86,281 2.19 string selection and substitution is performed between two
COMPRESS 86,000 218 consecutive update; of the statistical inde_x. Qf course, such
an approach saves time on one hand, but it risks blurring the
BZip2 85,705 2.17 . : o i
perception of the best candidates for substitution. In our im-
Bz 84,809 2.15 plementation, a heap is maintained with the statistical index,
OFF-LINEs 77,764 1.97 containing at each step tlig best words in terms af?, for
Cona [27] 76471 1.94 some'chc?sen value ofthe paramé@eBgtwegn any two con-
B P secutive index reconstructions, téestrings in the heap are
10COMPRESS2 [26] ’ ' retrieved and used in succession in a contraction step for the
AED [43] 75,407 1.913 text. It is possible at some point that a string from the heap

will no longer be found in the contracted text. In fact, part of

) the words in the heap turn out to be useless in general. In any
9) are a segment dll the upstream regions of the yeast c45e as soon as all words in the heap have been considered,
and, thus, not strongly related. Table 7 shows that not only 54 new augmented trie is built on the contracted text.
the absolute performance of OFF-LINE, but also its relative ag the table displays, the number of individual substring
advantage over the other methods improves as the inputsypstitution passes over the text grows with the maximum
size increases. Likewise, as soon as the input files containg|iowed size of the heap. On the other hand, we spend less
sequences not as strongly related, the improvements, whileand less time building weighted tries. The overall result is,
still present, decay immediately, as shown for files 8 and within a wide interval, a considerable speed up with respect
9 in the table. The ability to capture distant relationships to the eager version of OFF-LINE without substantial penalty

is enhanced in the comparison with 8and B4rP2 as we in compression performance. When the size of the heap be-
move from their default window sizes (900 Kb in B2) to comes too large (approximately > 100 in our experi-

smaller sizes. The results, shown in Table 8, suggest that thements), only a small subset of the words in the heap is used:
relative advantage of OFF-LINE will increase as it will be most of the computational effortis spentin pattern searching,
applied to larger and larger families. which results in deterioration of both speed and compression.

1740 PROCEEDINGS OF THE IEEE, VOL. 88, NO. 11, NOVEMBER 2000

Table 7

Comparing OFF-LINE With Other Compression Programs on Families of Sequences of the

Yeast. The Figures in Parentheses Report Percentage Gains Achieved by OFRF-EINE

the Number of Upstream Sequences in Each Family, Individual Sequence Length is 800 bps
Except in the Last Two Rows, Where it is 2000. The Alphabet Consists of About 50 Symbols.

The Input Strings 1-9 Correspond, in this Order, to the FamiliesS@fr EarlyII.fasta,

Spor EarlyI.fasta,

Helden GCN.fasta,

Spor Middle.fasta,

Helden All.fasta,

Spor_All.fasta,Spor_All_2x.fasta,All Up 400k.fasta,All Up_1M.fasta

Table 8

Family Total size Huffman LZ-78 LZ-1 BWT

(bytes) k PAcK COMPRESS GZip BZir2 -9 | OFF-LINE3
) 25,008 29 7,996(11.0%) 7,875(9.6%) 8,008(11.1%) 7,300(2.5%) 7,119
(2) 31,039 36 9,937 (12.5%) 9,646(9.8%) 9,862(11.8%) 9,045 89 8,697
(3) 32,871 38 | 10,59002.2%) 10,223(0.0%) 10,3790.4%) 9:530(2.4%) 9,301
4) 54,325 63 | 17,2950146%) 16,3950.0%) 16,96112.0%) 15,490(4.6%) 14,778
(5) 112,507 130 | 36,172017.7%) 33,44001.0% 33,829120%) 31,793(6.4%) 29,758
(6) 222,453 258 | 70,75523.0%) 63,939(s.0%) 68,13620a%) 61,674(11.0%) 54,317
@) 444,906 516 | 141,431(ss.4%) 124,637(a7.1%) 135,816(s1.5%) 85,142(20.6%) 65,891
®) 399,615 191 | 121,70012.3%) 115,029(7.02%) 115,023(7.209) 112,363(5.0%) | 106,722
9) 1,001,002 477 | 305,054011.0%) 286,971ga%) 285,064(s.5%) 280,334(s.1%) 268,612

Table 10

Constraining the Competitors to Work on Small Windows

Enhances the Gain of OFF-LINE. Here, the Input Strings 6 and 7

Correspond, Respectively, to the Familiesspbr_All.fasta,
Spor_All 2x.fasta (See Table 7 for their Respective Statistics)

Family LZ-77 BWT
GZip -1 BZir2 -1 | OFF-LINE3
(6) 76,629(29.1%) 63,332(14.2%) 54,317
(7) 153,103(57,0%) 126,314(47,8%) 65,891
Table 9

Performances of OFF-LINEfor Different Choices of the
Size of the Candidates Heap. We Fixeth occ = 2,

min length = 2,1 = 100
paper2 mito
Q size timemin) size timemin)
1 30,773 19.70 16,326 7.06
2 30,780 10.36 16,367 4.06
5 30,785 5.06 16,405 2.24
10 30,787 3.21 16,446 1.66
20 30,826 2.39 16,476 1.36
50 30,904 1.97 16,632 1.28
100 | 30,923 1.86 16,702 1.37
1,000 | 30,923 1.98 16,702 1.47

Comparing the Performance of OFF-LINEor Different Choices
of the Maximum Allowed Length of a Candidate for Substitution.
We Fixedmin occ = 4,1 =4, = 10

paper2 mito
l size time min] size time min)
10 | 30,986 2.58 17,044 0.29
50 | 30,664 2.62 16,491 1.32
100 | 30,636 2.68 16,470 1.38
oo | 30,636 19.39 16,470 10.34

choose some substringofof lengthl because that substring
occurs without overlap at least as many times;a$able 10
shows that the pruned version of OFF-LIN& ! = 100 per-
forms almost ten times faster and achieves exactly the same
compression as the version that builds the complete tree.

The collective speed-up gained from these heuristics com-
bined is significant: Our original implementation took sev-
eral hours to compress those files while, afterwards, it would
complete in a few minutes. What is even better, the corre-
sponding loss of efficiency in terms of compression is almost
negligible.

As documented in some additional tables, a few hundred
iterations of the word selection loop of OFF-LINE suffice
on inputs of the order of 100000 symbols. This suggests
that dedicated fine-grained parallel architectures of this kind

Whenever one can assume it as being highly unlikely that would implement virtually instantaneous encoders for biose-
very long words occur frequently in a text, then building the quences and general inputs alike. Tables 11 and 12 show the
statistics forall the substrings can be a waste of resources. modest number of iterations of the main loop performed by
Pruning the tree speeds up the implementation considerablyOFF-LINE on our inputs, which would be negligible in a
and saves large amounts of memory. Pruning the tree does noparallel context. Therefore, the most expensive tasks, rep-
mean that we could completely miss the word involved in a resented by the tree constructions, can be limited consider-

long substitution. If the current best substitution is a ward
longer than the threshold then the encoder will eventually

APOSTOLICO AND LONARDI: OFF-LINE COMPRESSION BY GREEDY TEXTUAL SUBSTITUTION

ably in a parallel implementation, turning the method into an
on-line, even real-time, application.

1741

Table 11

Iterations of the Main Loop of OFF-LINE for the Calgary

Corpus Files
File Size Oé O{‘ Oé
bib 111,261 | 504 634 465
bookl 768,771 | 2997 2857 2990
book2 610,856 | 2305 2408 2378
geo 102,400 | 407 473 503
nevs 377,109 | 1789 1634 1619
obj1 21,504 | 125 111 337
obj2 246,814 | 1219 1207 1055
paperl 53,161 | 373 475 342
paper2 82,199 (506 717 505
pic 513,216 94 125 222
proge 39,611 | 255 261 308
progl 71,646 | 312 267 273
progp 49,379 | 208 210 252
trans 93,695 | 340 253 318

Table 12

Iterations of the Main Loop of OFF-LINE for the Chromosomes

of the Yeast

o
File Size o Oé OQQ
chrl 230,195 78 603 80
chril 813,137 | 112 474 128
chrIII 315344 | 61 309 68
chrIV 1,522,191 | 383 1297 441
chrV 574,860 | 109 276 118
chrVl 270,148 22 226 30
chrVII 1,090,936 | 144 1009 162
chrVIII 562,638 | 91 264 102
chriX 439,885 | 54 543 63
chrX 745,443 | 108 376 123
chrXI 666,448 | 49 302 58
chrXIT 1,078,171 | 444 1443 499
chrXIII 924,430 | 187 706 212
chrXIV 784,328 | 24 441 72
chrXV 1,001,282 | 128 924 147
chrXvl 948,061 | 193 755 217

Qff-Line 3
T

17100 T 1

‘mito’ —

17000

16900

16800

16700

Size

16600

16500

16400

16300

16200

16100 . L . L s
Q 150 200 250 300
Iterations

(@)

Off-Line 3
T

29900 -

29800

20700 F

Size

29600

29500

29400 L L : ' L

150
lterations

()

Fig. 8. Compressed sizes of (a)ito and (b)paper2 versus
number of iterations of OFF-LINE

plot the sizes of the compressed stringgo andpaper2 ,
respectively, at all consecutive stages of the iterated substitu-
tions performed by OFF-LINE Following a steady increase
until iteration 256, the compression starts decreasing as soon
as OFF-LINE must employ more than 1 byte to represent
a pointer. In addition to this, the erratic shape of the plot for
paper2 suggests, with its several local minima, that it is
hard at run time to pin down precisely the best moment when
to stop the iterations.

VIl. CONCLUDING REMARKS

We have presented a small battery of compressors that per-
form well on all data but especially well on biological data.
The basic paradigm is uncluttered, relatively easy to pro-
gram, and acceptably fast in comparisoratbho¢ consid-
erably slower and more involved methods.

Besides the obvious challenge of developing versions

Since the number of iterations performed determines the specifically tailored to biological sequence data, a number
size of the vocabulary, whence ultimately of pointers, this of interesting questions emerged in the course of the exper-
generates “quantization” phenomena in the neighborhood ofiments that would warrant additional effort. These include
certain values that play critical roles in a computer program. possible provisions for variable window sizes, better ways
Fig. 8 displays the sensitivity of the current implementations to approximate the gain functiod’, the feasibility and
to pointer encodings at the crossing of 1 byte. The two curves usefulness of reiteration of treatment following the first

1742

PROCEEDINGS OF THE IEEE, VOL. 88, NO. 11, NOVEMBER 2000

S — DDCs [3]
A — ba

B — aA 4
C - BA

D - BC g

Fig. 9. Hierarchical grammar produced by SEQUITUR for [61

abaababaabaababaababa$
[7]
[8]

S -+ AABAABAB $
A -
B -+ ba

aba

9

[20]

Fig. 10. First layer of grammar produced by OFF-LINE.

application of OFF-LINE, and several issues pertaining to

the computational efficiency achievable by sequential and |17
parallel implementations. Among the latter, a prominent
concern would be to devise efficient algorithms that avoid
building the statistical index from scratch after each word
selection, and better storage and matching algorithms for
our data structure. In fact, as documented in our tables, a few
hundred iterations of the word selection loop of OFF-LINE
suffice on inputs of the order of 100000 symbols. This
suggests that dedicated fine-grained parallel architectures of [14]
this kind would implement virtually instantaneous encoders
for biosequences and general inputs alike.

In view of the discussion in the previous section, it is in-
teresting for a moment to regard OFF-LINE also as a para-
digm for inferring hierarchical grammatical structures in se-
quences. Fig. 9 displays the grammar inferred for our ex-
ample string by the &uiTur algorithm by Nevill-Manning
et al.[15], which is essentially patterned after an LZ parsing

. . [17]
scheme. Except for the one involving the start synthqiro-
ductions are constrained to have right-hand sides consisting [18]
of digrams. A grammar subtended by the strings of Fig. 7 is
shown in Fig. 10. Reiteration of the treatment would expose
productions of the forn’ — AAB andD — AB, and, fi-
nally, S — CCD.

The rationale to build grammar based on some measure of (20]
compression can be justified by th®€cam’s razot prin-
ciple. Occam’s razor is therinciple of parsimonyn exper-
imental sciences. In machine learning, its expressed goal is
to discover the simplest hypothesis (or model) that is consis-
tent with the training data. In this context, the grammar that
our encoder is looking for is the shortest “explanation” of the
original string in terms of information content.

[13]

[15]

[16]

[19]

[21]

[22]

[23]

[24]
ACKNOWLEDGMENT

The authors are thankful to E. Rivals, J. Storer, and F. Tahi

for helpful discussions.
[25]

REFERENCES

[1] T. C. Bell, J. G. Cleary, and |. H. WittenText Compres-
sion Englewood Cliffs, NJ: Prentice-Hall, 1990.

[2] J. A. Storer,Data Compression: Methods and TheoryRockville,
MD: Computer Science, 1988.

[26]

APOSTOLICO AND LONARDI: OFF-LINE COMPRESSION BY GREEDY TEXTUAL SUBSTITUTION

J. A. Storer and T. G. Szymanski, “Data compression via textual
substitution,”J. ACM vol. 29, pp. 928-951, Oct. 1982.

A. Apostolico and A. Fraenkel, “Robust transmission of un-
bounded strings using Fibonacci representatiodEEE Trans.
Inform. Theory vol. 33, no. 2, pp. 238-245, 1987.

S. Even and M. Rodeh, “Economical encoding of commas between
strings,” Commun. ACMvol. 21, pp. 315-317, Apr. 1978.

P. Elias, “Universal codeword sets and representations of the
integers,”|IEEE Trans. Inform. Theoryvol. IT-21, pp. 194-202,
Mar. 1975.

A. Lempel and J. Ziv, “On the complexity of finite sequences,”
IEEE Trans. Inform. Theoryol. IT-22, pp. 75-81, Jan. 1976.

J. Ziv and A. Lempel, “A universal algorithm for sequential data
compression,”IEEE Trans. Inform. Theoryvol. IT-23, p. 337,
May 1977.

——, “Compression of individual sequences via variable-rate
coding,” IEEE Trans. Inform. Theoryol. IT-24, Sept. 1978.

M. Crochemore and W. Rytter, “Efficient parallel algorithms to
test square-freeness and factorize stringsform. Process. Lett.
vol. 38, pp. 57-60, Apr. 1991.

L. M. Stauffer and D. S. Hirschberg, “PRAM algorithms for
static dictionary compression,” iRroc. 8th Int. Symp. Parallel
ProcessingH. J. Siegel, Ed. Los Alamitos, CA: IEEE Computer
Society Press, Apr. 1994, pp. 344-348.

] S. De Agostino and J. A. Storer, “On-line versus off-line compu-

tation in dynamic text compressionlitform. Process. Lett.vol.

59, no. 3, pp. 169-174, 1996.

K. S. Fu and T. L. Booth, “Grammatical inference: Introduction
and survey—Part |,IEEE Trans. Syst., Man, Cybermol. 5, pp.
95-111, 1975.

——, “Grammatical inference: Introduction and survey—Part II,”
IEEE Trans. Syst., Man, Cyberwol. SMC-5, no. 1, pp. 112-127,
1975.

C. Nevill-Manning, C. lan H., C. Witten, and D. Maulsby, “Com-
pression by induction of hierarchical grammars,” Data Com-
pression Conf.J. A. Storer and M. Cohn, Eds. Snowbird, UT:
IEEE Computer Society Press, TCC, 1994, pp. 244-253.

A. Apostolico and E. Guerrieri, “Linear time universal compres-
sion techniques based on pattern matchingPiiac. 21st Allerton
Conf. Communication, Control and ComputingMonticello, IL:
Univ. lllinois Press, 1983, pp. 70-79.

E. R. Fiala and D. H. Greene, “Data compression with finite
windows,” Commun. ACMvol. 32, pp. 490-505, Apr. 1989.

R. N. Horspool, “The effect of nongreedy parsing in Ziv—Lempel
compression methods,” iData Compression ConfJ. A. Storer
and M. Cohn, Eds. Snowbird, UT: IEEE Computer Society Press,
TCC, 1995, pp. 302-311.

M. Frank Rubin, “Experiments in text file compressioGdmmun.
ACM, vol. 19, pp. 617-623, Nov. 1976.

N. J. Larsson and N. J. Alistar Moffat, “Offline dictionary-based
compression,” irProc. IEEE Data Compression Copd. A. Storer
and M. Cohn, Eds. Snowbird, UT, Mar. 1999, pp. 296-305.

J. Bentley and D. Mcllroy, “Data compression using long common
strings,” in Proc. IEEE Data Compression ConMar. 1999, pp.
287-295.

L. Gatlin, Information Theory and the Living Systemd$New
York: Columbia Univ. Press, 1972.

L. Allison and C. N. Yee, “Minimum message length encoding
and the comparison of macro-moleculeBfill. Math. Biol, vol.

52, no. 3, pp. 431-453, 1990.

M. Farach, M. Noordewier, S. Savari, L. Shepp, A. Wyner, and
J. Ziv, “On the entropy of DNA: Algorithms and measurements
based on memory and rapid convergence,’A@M-SIAM Annu.
Symp. Discrete Algorithm$an Francisco, CA, Jan. 22—-24, 1995,
pp. 48-57.

S. Grumbach and F. Tahi, “Compression of DNA sequences,”
in Data Compression Conf.J. A. Storer and M. Cohn,
Eds. Snowbird, UT: IEEE Computer Society Press, TCC, 1993,
pp. 340-350.

——, “A new challenge for compression algorithms: Genetic
sequences,Inf. Process. Managgevol. 30, no. 6, pp. 875-886,
1994.

1743

Alberto Apostolico (Senior Member, |IEEE)
received the Dr. Eng. degreeum laud¢ in
electronics engineering from the University of
Naples, Naples, Italy, in 1973, and the diploma
of specialization in computer sciencesufn
laudg from the University of Salerno, Salerno,
Italy, in 1976.

A Fulbright Scholar in 1974-1975 at
Carnegie-Mellon University, Pittsburgh, PA,
he has visited extensively and held positions at

[27] D. M. Loewenstern and P. N. Yianilos, “Significant lower entropy
estimates for natural DNA sequences,’Data Compression Conf.

J. A. Storer and M. Cohn, Eds. Snowbird, UT: IEEE Computer
Society Press, TCC, 1997, pp. 151-160.

[28] D. M. Loewenstern, H. M. Berman, and H. Hirsch, “Maximum a
posteriori classification of DNA structure from sequence informa-
tion,” presented at the Pacific Symp. Biotech., Jan. 1998.

[29] D. M. Loewenstern, H. Hirsh, P. Yianilos, and M. Noordewier,
“DNA sequence classification using compression-based induction,”
DIMACS, Tech. Rep. 95-04, Apr. 1995.

[30] A. Milosavljevic and J. Jurka, “Discovery by minimal length en- institutions in the United States (University of
coding: A case study in molecular evolutionMach. Learn, vol. lllinois at Urbana-Champaign, Rensselaer Polytechnic Institute, Purdue
12, no. 1, 2, 3, pp. 69-87, 1993. University) and Europe (IASI-CNR in Rome, University of Paris, Univer-

[31] E. Rivals, J. P. Delahaye, M. Dauchet, and O. Delgrange, “A guar- sity of London, King’s College London). Prior to joining Purdue University,
anteed compression scheme for repetitive DNA sequenceBAta West Lafayette, IN, in 1983 as an Associate and then Full Professor, he
Compression ConfJ. A. Storer and M. Cohn, Eds. Snowbird, UT: was an Associate Professor with the Department of Computer Science,
IEEE Computer Society Press, TCC, 1996, p. 453. University of Salerno, Italy. In 1987, he became a Professor of Computer

[32] E. Rivals, O. Delgrange, J. P. Delahaye, M. Dauchet, M. O. De- Science in the Italian, University of Padova, Italy, in 1992, where he holds
lorme, A. Henaut, and E. Ollivier, “Detection of significant patterns the Chair of Theoretical Computer Science in the School of Engineering.
by compression algorithms: The case of approximate tandem repeatsHis main research interests are in the area of analysis and design of
in DNA sequences,CABIOS vol. 13, no. 2, pp. 131-136, 1997. algorithms. His recent work focuses on pattern matching algorithms and

[33] A. Apostolico and W. Szpankowski, “Self-alignment in words and applications, notably, to string searching and comparison, the subject of
their applications,J. Algorithmsvol. 13, no. 3, pp. 446-467,1992. more than 90 published papers in the major international journals and

[34] E. Ukkonen, “On-line construction of suffix trees&lgorithmica conferences and several coedited books. He serves on the editorial boards
vol. 14, no. 3, pp. 249-260, 1995. of Theoretical Computer SciencBarallel Processing Letterslournal of
[35] A. Apostolico and F. P. Preparata, “Data structures and algorithms Computational BiologyChaos Theory and Applicationand was a Guest
for the strings statistics problem,Algorithmica vol. 15, pp. Editor of a special issue oklgorithmicadevoted to String Algorithmics
481-494, May 1996. and its Applications. He has been keynote speaker or lecturer at more than
[36] A.S.Fraenkeland J. Simpson, “How many squares can a string con- 25 international conferences and advanced schools, and on the program
tain,” J. Combin. Theory Ser.,Ao0l. 82, pp. 112-120, 1998. committees of as many international conferences, advanced schools, and
[37] S. Kurtz, “Reducing the space requirements of suffix treBsftw.- workshops.
Pract. Exp, vol. 29, no. 13, pp. 1149-1171, 1999. Dr. Apostolico is the recipient or co-recipient of U.S., French, British,
[38] N. J. Larsson, “Extended application of suffix trees to data com- Italian, and International (Fulbright, NATO, ESPIRIT) research grants. He
pression,” inData Compression ConfJ. A. Storer and M. Cohn, also served as referee/reviewer for most TCS journals and major confer-
Eds. Snowbird, UT: IEEE Computer Society Press, TCC, 1996, ences:NSF, Canadian SERC, NATO, Israel Science Council, the Hong Kong
pp. 190-199. and the Finnish Sci. Acad., among others.

[39] M. Gu, M. Farach, and R. Beigel, “An efficient algorithm for dy-
namic text indexing,” irProc. 5th Annu. ACM-SIAM Symp. Discrete
Algorithms Arlington, VA, 1994, pp. 697-704.

[40] D. R. Musser and A. A. Stepanov, “Algorithm-oriented generic li-
braries,”Softw.-Pract. Exp.vol. 24, pp. 623-642, July 1984.

[41] M. Burrows and D. J. Wheeler, “A block-sorting lossless data
compression algorithm,” Digital Equipment Corporation, Tech.
Rep. 124, May 1994.

[42] C. Nevill-Manning and |. H. Witten, “Protein is incompressible,”
in Proc. IEEE Data Compression Cond. A. Storer and M. Cohn,
Eds. Snowbird, UT, Mar. 1999, pp. 257-266.

[43] L. Allison, T. Edgoose, and T. I. Dix, “Compression of strings with
approximate repeats,” imtell. Syst. Mol. Biol. '98 June 1998, pp.

Stefano Lonardi (Student Member, |EEE)
received the “Laurea” degreeym laud¢ from

the University of Pisa, Pisa, Italy, in 1994. He
is currently a Ph.D. candidate at the Department
of Computer Sciences, Purdue University, West
Lafayette, IN.

In 1996, he joined the graduate program at
Purdue University. His main research interests
include data compression, algorithms on strings,
computational molecular biology, and statistical

8-16. analysis of sequences.

[44] S. Lonardi, “Off-line data compression by textual substitution,” In 2000, Mr. Lonardi received the Student Research Award from the
Ph.D. dissertation, Dipartimento di Ingegneria Elettronica e Infor- Purdue Chapter of Upsilon Pi Epsilon. He is a Member of the ACM and
matica, Univ. Padova, Feb. 1999. the honor societies Upsilon Pi Epsilon and Phi Kappa Phi.

1744 PROCEEDINGS OF THE IEEE, VOL. 88, NO. 11, NOVEMBER 2000

