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Greedy off-line textual substitution refers to the following
approach to compression or structural inference. Given a long
textstringx, a substringw is identified such that replacing all
instances ofw in x except one by a suitable pair of pointers
yields the highest possible contraction ofx; the process is then
repeated on the contracted textstring until substrings capable
of producing contractions can no longer be found. This paper
examines computational issues arising in the implementation of
this paradigm and describes some applications and experiments.
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quences, dynamic text compression, grammatical inference, off-line
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I. INTRODUCTION

In data compression by textual substitution (see, e.g.,
[1]–[3]), substrings with multiple occurrences in a textstring
are replaced by a suitable set of pointers to a unique common
copy [for instance, by giving: 1) a textstring position starting
from which the substring can be recopied and 2) the length
of that substring]. Disparate conventions, regarding issues
such as the location of the common copy and the mechanics
of the encoding-decoding process, give rise to variousmacro
schemesof compression. In general, the relative performance
of such schemes depends on many factors, including the
often subtle interplay between pointer sizes and dictionary
parameters (say, number of entries and average length).
Partly in response to this fact, techniques were devised for
the compact encoding of integers in an unbounded domain
(see, e.g., [4]–[6]). Unfortunately, however, the optimal
implementation of the majority of macro schemes translates
into -complete problems [3], even before the problem of
encoding of pointers is taken into account. One noteworthy
exception to this rule is represented by the well-known
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Lempel–Ziv (LZ) schemes [7]–[9], which attain asymptotic
optimality both in terms of compression achieved and
algorithmic complexity. In LZ data compression, data can
be processedon-lineas it is read, a feature that nicely fits the
standard paradigm of sequential transmission. The unidirec-
tional or “polar” nature of pointers is crucial in determining
the computational efficiency inherent to this scheme.

In some applications, like, for instance, in the production
of a CD-ROM or magnetic disk for massive data dissemina-
tion, one could afford to perform the compressionoff-line, in
particular, to issue pointers in either direction if this brings
an increase in compression. Off-line heuristics may be ex-
pected to introduce extra time by whatever sequential imple-
mentation, but their possible implementation on parallel, per-
haps dedicated architectures (see, e.g., [10], [11]), may be ex-
pected to achieve sufficient speed to process streams of large
consecutive textfile windows consecutively in real-time for
any practical purpose. Within the realm of sequential com-
putation, investing more time in the compression may be de-
sirable and feasible for information destined to be massively
distributed, as long as the decompression can be still carried
out fast and on-line [12]. In other situations, such as, e.g., in
backup archiving, the odds of having to restore the data might
be feeble enough that even the requirement that this phase be
on-line could be forfeited. Finally, as we briefly illustrate at
the end of this paper, the study and implementation of macro
schemes of the kind considered here may be of some interest
in the germane field of inference of hierarchical structures or
grammars for sequences (see, e.g., [13]–[15]).

The idea that some of the polarity or greediness inherent
to LZ schemes could be traded in for increased compres-
sion is intuitively appealing and not new. In [16]–[18], for
instance, the authors discuss variations such as, e.g., relaxing
the longest-match criterion in determining the next phrase
within an LZ parse. The underlying goal is to try and con-
verge faster to the entropy of the source. In view of the in-
tractability of optimal off-line macro schemes, we concen-
trate here on the implementation of approximate methods
such as one of the simplest possiblesteepest descentpara-
digm. This will consist of performing repeated stages in each
one of which we identify a substring of the current version of
the text yielding the maximum compression, and then replace
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Fig. 1. Overlapping and nonoverlapping occurrences.

all those occurrences except one with a pair of pointers to the
untouched occurrence. This is somewhat dual with respect to
the bottom up offline scheme introduced by Rubin [19] and
recently revived by [20]. As we shall see, this simple scheme
already poses some interesting algorithmic problems, some
of which we discuss in detail. However, the main issue that
we try to address here is that of whether and to what extent a
greedy use of bidirectional pointers can yield good compres-
sion. As it turns out, the method does outperform all cur-
rent LZ implementations in most of the cases. More inter-
estingly, it performs quite well on biological sequences and
sequence families, where it beats all other generic compres-
sion methods, and approaches the performance of methods
specifically built around some peculiar regularities of DNA
sequences, such as tandem repeats and palindromes, that are
neither distinguished nor treated selectively here. The most
interesting performances, however, are obtained in the com-
pression of entire groups of genetic sequences formingfam-
ilies with similar characteristics. This is becoming a stan-
dard and useful way to group sequences in a growing number
of important specialized databases. On such inputs, the ap-
proach presented here yields scores that are not only better
than those of any other method, but also improve increasingly
with increasing input size. This is to be attributed to a certain
ability to capture distant relationships among the sequences
in a family, a feature the merits of which were dramatically
exposed in the recent paper [21].

Biological sequences, specially DNA, have been long
recognized among important classes of data for which the
two tasks of compression and interpretation are often and
subtly intertwined. (see, e.g., [22]). The deoxyribonucleic
acid (DNA) constitutes the physical medium in which all
properties of living organisms are encoded. The knowledge
of its sequence is fundamental in molecular biology. Im-
portant molecular biology databases (e.g., EMBL, Genbank,
DDJB, Entrez, SwissProt, etc.) have been developed to col-
lect hundreds of thousand of sequences of nucleotides and
amino-acids from biological laboratories all over the world.
The size of these databases, that is currently in the order
of thousands of gigabytes, grows at an exponential rate.
DNA compression by standard methods such as, e.g., the
LZ family of schemes does not seem to fully exploit the re-
dundancies inherent to those sequences. The design ofad
hocmethods for the compression of genetic sequences con-
stitutes, therefore, an interesting and worthwhile task. Along
these lines, a corpus of specialized approaches to DNA com-
pression has been developed in the recent past. As high-
lighted above, pendant notions of information content and
structure have been associated with the compressibility of a
sequence. From such a perspective, the amount of compres-
sion achievable on genetic sequences has been used in the

detection of fragments carrying biological significance, or
in assessing the relatedness of fragments and sequences. We
refer to, e.g., [23]–[32] and references therein for a sampler
of the rich literature existing on these subjects.

The structure of the paper is as follows. In Sections II and
III, we give some background and notation, and describe a
data structure used to gather the statistics of the text. The
overall design is presented in Section IV, which is followed
by a presentation of the main experimental results in Sec-
tion V. A discussion of finer implementation details and some
final remarks conclude the paper.

II. SUBSTRING STATISTICS WITHOUT OVERLAP

We use to denote analphabetof symbols. For astring
over , the number of consecutive symbols inis the

length of , and we write , to indicate
the th symbol in . In the following, we assume .
We use shorthand for thesubstring of composed
by where ,
and . Finally, substrings in the form
are calledprefixesof , and substrings in the form
are calledsuffixesof . For any substring of , we de-
note by the number ofnonoverlappingoccurrences of
in . Clearly, may be different from the total number of
occurrences of . For example, occurs 11 times
in , with starting
positions in the set
(see Fig. 1). However, occurrences starting at positions 4 and
6, or 12 and 14, etc., overlap with each other. We can have
no more than seven occurrences ofin so that no two of
them overlap. For instance, we could take those with starting
positions in . Thus, . To
understand our interest in the count of nonoverlapping oc-
currences, assume that a substringappears repeatedly in

. Then, replacing all occurrences of except one with a
pointer to the unique reference copy might yield a more com-
pact description of . If is known, then it is also possible
to assess beforehand the contraction in length thatwould
undergo following such an encoding. If, now, we were asked
to identify the one substring inducing the highest contrac-
tion on , we could clearly do so based on the-value and
length of the individual substrings. Choosing instead on the
basis of the total number of occurrences would neither guar-
antee nor allow us to precompute the best contraction.

The computation of the statistics of all substrings of a
string is an easy application of thesuffix tree of . As
is well known, the latter is a trie (digital search tree) col-
lecting all the suffixes of , where $ is a special symbol not
included in . The tree in compact form is built by iterated
insertion of consecutive suffixes in worst case time
and expected time (see, e.g., [33]). A number of
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Fig. 2. The minimal augmented suffix tree forabaababaabaababaababa$ shows node
additions and weights needed to change a suffix tree into an index for statistics without overlaps. The
label of a leaf is the starting position of the suffix corresponding to that leaf. The label of a node is the
number of occurrences without overlap of the string on the path ending at that node or anywhere in
the middle of the preceding arc.

more clever constructions are available achieving linear time
for finite alphabets (see, e.g., [34]). The number of occur-
rences (with overlap) of a string of is trivially given by
the number of leaves reachable from the node closest to the
locus of in , irrespective of whether or not ends in the
middle of an arc. Thus, labeling every internal nodeof
with the number of the leaves in the subtree rooted at
yields this statistics for all substrings of.

The problem becomes more involved if we wanted to build
a similar index for the statistics without overlap. A perusal of
Fig. 2 shows that this transition induces a twofold change in
our structure: on the one hand, the weight in each node does
no longer necessarily coincide with the number of leaves;
on the other, extra nodes must be now introduced to account
for changes in the statistics that occur in the middle of arcs.
The efficient construction of this augmented index in min-
imal form (i.e., with the minimum possible number of unary
nodes) is quite elaborate [35]. For a string, the resulting
structure is denoted and called theMinimal Augmented
Suffix Treeof . It is not difficult to build in time
and space by embedding the necessary weighting as part of
the iterated suffix insertion procedure, hence, at an expected
cost of [33]. The time required by the construc-
tion given in [35] is instead in the worst case.
The number of auxiliary nodes was bounded by
in [35]. A tighter bound is implied by recent develop-
ments in [36].

III. I MPLEMENTING THE DATA STRUCTURES

When it comes to the actual allocation in memory of a
suffix tree, one faces a number of design choices, promi-
nent among which those pertaining to the implementation of
nodes. There are three main possibilities in this regard.

• The node is implemented as an array of size. This
yields fast searches, but is likely to introduce an un-
bearable amount of waste even for small alphabets.

• The node is implemented as a linked list (or, better, as a
balanced search tree). This keeps space to a minimum,
but introduces an overhead on the search.

• The adjacency of a node is realized as part of a global
hash coding. This yields expected constant time search
within overall space.

In our case, the space is of high practical concern, so that
we use the linked list. Fig. 2 displays the minimal augmented
suffix tree of our example textstring. As is customary, the
substrings representing edge labels are not stored explicitly
in the nodes but rather encoded each by an ordered pair of
integers to a unique common copy of, so as to achieve
overall linear space. However, even linear space can be prob-
lematic: at 20 bytes per node and with a number of nodes 1.5
times the number of symbols in the input string, as typically
featured in our experiments, a text of sizeneeds approxi-
mately bytes of storage space. In general, although the
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Fig. 3. The data structure allocating textstring
abaababaabaababaababa$ prior to and after the removal
of aba .

size of the suffix tree depends on the particular implementa-
tion, one might expect it to be never lower than 20 bytes per
input symbol (orbps) in the worst case. We refer to [37] for
a comparative study of various space-efficient allocations.

In general, these space savings are achieved at the expense
of higher complexity in either construction, or searching, or
both; thus, for instance, the suffix array and the PAT tree need

time for the construction [ on average for the
array] and when searching for a string.

We use to denote the node, if it exists, precisely at
the end of the path in labeled by the string . If, instead,

ends in the middle of an arc, then denotes the node
corresponding to the shortest extension ofthat ends in a
node. In our realization, contains the following items:

• two indices identifying an occurrence of in ,
i.e., such that ;

• one pointer to the list of children and one to the list of
siblings of ;

• one counter to store the number of nonoverlapping oc-
currences of in .

The data structure allocating the textstringshould sup-
port somewhat contrasting primitives such as, for instance,
efficient string searching and repeated substring deletions.
To accommodate the repeated contractions of, the latter is
maintained in a linked list of dynamic arrays, as follows. At
the beginning, the text is read from the source into a single
array of length . Subsequently, the removal of the occur-
rences of a substring will partition the array into
linked fragments, as shown in Fig. 3. These arrangements are
complemented by refresh cycles that will recombine the text
in a single array, from time to time, to counteract excessive
fragmentations.

Repeatedly building the suffix tree at each stage exacts a
considerable toll irrespective of the method adopted. Ideally,
one would like to build the tree once and then maintain it, to-
gether with updated statistics, following every substring se-
lection and removal. Linear time algorithms for dynamically
maintaining the tree under deletion of a string were originally

proposed by McCreight together with his construction. Sim-
ilar problems have been studied by Fiala and Green [17] in
the context of sliding window compression. More recently,
Larsson [38] showed that the algorithm by Ukkonen can be
easily extended to accommodate the sliding window update
of the suffix tree in amortized linear time. Guet al. [39]
introduced a new data structure for dynamic text indexing
that supports insertion and deletion of a single character in

time and the updates involving a substring that
occurs times in . Several
recent efforts address the dynamic maintenance of tries of
various nature. However, we did not find an existing satisfac-
tory solution to the problem of quickly modifying our statis-
tical index so as to reflect the deletion from the corresponding
textstring ofall the occurrences of a given substring. In our
experiments, every new version of the suffix tree was built
from scratch. In a later section, we present some heuristics
designed to alleviate such computation efforts.

IV. CHOOSING ANDCOMPUTING A GAIN MEASURE

By “gain measure,” we refer here to the functionthat
drives, at each stage, the selection of the substring that yields
the highest compression. In practice, it is not easy to define
precisely such a measure, as we explain below.

The main difficulty is due to the fact that at the time when
we need to compute the contraction that would be induced
by a particular substring, we lack some important costs such
as those associated with the optimal encodings of pointers or
integers, which can be computed precisely only at the outset.
Letting represent the number of bits needed to encode
integer , we assume for simplicity at the time
the gain is computed. Note that this choice does not affect
the appraisal of final compression, the latter being based on
purely empirical measures. Along the same lines, one could
choose an expression forthat reflects more accurately the
efficient encoding of integers in an unknown range [4]–[6].
However, as long as the ultimate encoding of the compressed
string is not based on those representations, but rather on
some statistical treatment (e.g., Huffman encoding), there is
hardly any sense in resorting to them and hardly any way to
compute accurately at this stage.

With this choice made, we describe now in succession
three possible measures of gain. Let us denote bythe word
that maximizes at some iteration and, therefore, is selected
to be replaced by pointers.

In Scheme 1, we assume thatall the occurrences of the
string are removed from the text, while itself is saved in
an auxiliary data structure that contains:

• the string , that is bits long, where
and ;

• the length of , at a cost of bits;
• the value of , at a cost of bits;
• the positions of in , at a global cost bounded by

bits.
Fig. 4 shows the original and compressed representations

for the textstring and the corresponding associated costs. The
expression underneath the top figure represents the original
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Fig. 4. Illustrating Scheme 1 withaba .

Table 1
Statistical Encoders Available to OFF-LINE

cost of the occurrences of as plain text: with ,
the copies of require bits in the plain text. In
practice, the value of is appraised based on the empirical
entropy of the source: the plain text is encoded with the best
statistical encoder from Table 1, and thenis set to the av-
erage length of a symbol.

The expression at the bottom of the figure is the cost of
representing the same occurrences ofbased on the external
dictionary and auxiliary structures. The difference between
the two expressions defines as follows:

In Scheme 2, we assume that one of thecopies of
is kept in the original text, marked by a “literal identifica-
tion” bit, while the remaining copies are encoded by
pointers, each pointer being preceded by a suitable identifi-
cation bit.

Because of the additional bit, the plain text representation
of all the occurrences of requires bits. The
pointer-based representation costs are as follows (see Fig. 5):

• bits for the original copy of ;
• bits for the pointers.

The difference of these expressions definesas follows:

w w

w w w

Fig. 5. Illustrating Scheme 2 foraba ; L andP are used to mark
literals and pointers, respectively; the pair(p; l) denotes a pointer
to a reference copy that has lengthl and that isp symbols away.

w w

w w w

Fig. 6. Illustrating Scheme 3 forw = aba ; d is the size of the
dictionary, “(1)” denotes a pointer to the first entry in the dictionary,
L andP mark literals and pointers, respectively.

In Scheme 3, words in the textfile are replaced by pointers
to their corresponding entries in an external dictionary. Thus,
following the selection of at the generic iteration, is
added as a new entry into the dictionary andall of its oc-
currences become pointers to that entry. Also in this case, an
auxiliary bit-vector is required in general in order to distin-
guish between pointers and literals at the outset, both in the
text and in the dictionary. However, if pointer recursion is
forbidden as we assume in our construction, then the words
in the dictionary cannot contain pointers, and a bit-vector is
not needed there.

The plain text representation of all the occurrences of
requires bits. The costs of the pointer-based
representation are (see Fig. 6):

• bits for the string in the dictionary;
• to store the length ;
• for the pointers inside the text, whereis

the size of the dictionary.
The corresponding expression for is then

We point out that, for any of the above specifications of
and any word in , is a monotone increasing function
of . Moreover, the maximum number of nonoverlapping
occurrences of in does not change in the middle of an arc
of . Therefore, the word maximizing the gain at each stage
alwaysends on a node of . If now is this word, then its
occurrences are suitably encoded, and the whole process is
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Fig. 7. A run of OFF-LINE on our example textstring.

repeated until the gain becomes zero or negligible, according
to some predetermined threshold.

The three schemes just described were embedded
in as many encoders, respectively called OFF-LINE,
OFF-LINE , and OFF-LINE. As an example, the iterations
of OFF-LINE are highlighted in Fig. 7. The first iteration
results in the choice of ; the second, of . The collec-
tion of data representing the output encoding appears in the
bottom part of the figure. Several implementation details
will be given later.

V. RESULTS

The encoders described in the previous section were coded
in C using the Standard Template Library (STL) [40]
and extensively tested. Table 2 offers a first glance of the
performances of the three encoders on two typical inputs,
namely,paper2 from the Calgary Corpus andmito , the
mitochondrial DNA sequence of the yeast (Saccharomyces
Cerevisiae). Running times are in the order of 2 or 3 min
for files of about 80 KB on a 300-Mhz machine running
under Solaris. In terms of compression, the best encoder is
OFF-LINE , followed by OFF-LINE and, at some distance,
OFF-LINE .

Table 3 compares performances among textual substitu-
tion methods over the entire Calgary Corpus. OFF-LINE
outperforms the other two encoders on most inputs. As a
whole, OFF-LINE encoders perform better than the rest on
most inputs, and loose marginally to GZIP where they do.
However, a thoroughly faithful comparison to GZIP is made
difficult by the many heuristics embedded in that program.

Crossing the boundary of textual substitution methods, the
recent block-sorting techniques called BZIP and BZIP2, based
on [41], outperform GZIP and OFF-LINE on the whole Cal-
gary Corpus (see Table 4). As seen next, a different scenario
is displayed when we turn to biological data sets.

We compare the performance of OFF-LINE encoders with
those of standard compression programs in Table 5. The en-
coder OFF-LINE outperforms each and every general pur-
pose encoder on the fourteen chromosomes and the mito-
chondrial DNA of the yeast. It should be noted that the actual
compressions are very small and sometimes negative.

In fact, raw biological sequences (notably, those coming
from coding regions [42]) are known to be hard to com-
press. However, even comparing our encoders with programs

Table 2
A First Glance at the Three OFF-LINE Encoders’ Performances on
a 300-MHz Solaris Machine

specifically designed to compress DNA, the difference in
performance is not large, as shown in Table 6.

It is worthwhile to highlight such DNA-specific analyzers
and compressors. As mentioned, information theoretic ana-
lyzes of biological sequences mingle with the very dawn of
bioinformatics studies (see, e.g., [22]), but this area has re-
cently known a considerable revival of interest in view of the
massive production of genomic sequences of various kinds.
In this context, the detection of redundancy serves not only
the purpose of achieving more compact descriptors, but also,
and perhaps more importantly, may act as a filter of possibly
relevant biological functions. The tenet there is that an in-
compressible string is more random and, thus, less likely than
a repetitive one to carry some biological function.

Due to mutations, errors in the sequencing process, and
other biological events, a substantial part of the redundancy
present in DNA manifests itself in the form of consecutive
(tandem) repeats of the same word ormotif, and palindromes.
However, such tandem repeats and palindromes are not exact.
Rather, they may occur with substitutions, insertions, or dele-
tions of symbols. Moreover, palindromes are actuallycom-
plemented, meaning that in the reverse half of the word the
baseA is mirrored by aT (and vice–versa), whileC is mir-
rored by aG (and vice–versa).

Among the recent dedicated approaches to DNA com-
pression, the one by Grumbach and Tahi [25], [26], called
BIOCOMPRESS2, extends LZ-77 to catch very distant repeats
and complementary palindromes.

Loewenstern and Yianilos [27] consider the problem of
computing good estimates of the entropy of DNA sequences
by building a PPM-like predictive model. With respect to
the original PPM, they extend the context model by allowing
mismatches. Their algorithm estimates the parameters of the
model, called CDNA, via a learning process that tries to op-
timize a complex objective function. The general problem is
known to be -complete, but they devise more realistic
approximation schemes.

Allison et al.propose the most computationally intensive
approach to DNA compression [43]. They search for both
approximate repeats and approximate palindromes. Their
primary purpose is not to compress the text, but rather to
model the statistical properties of the data as accurately as
possible and to find patterns and structures within them.
They build a model with parameters such as the probability
of repeats, of the length of repeats, and of mismatches within
repeats. The parameters of the model are estimated by an
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Table 3
The Variants of OFF-LINE Against the Other Textual Substitution Compressors, on the
Calgary Corpus

Table 4
Comparing OFF-LINE with Context-Sorting Encoders on the Calgary Corpus

expectation maximization algorithm that takes time
at each iteration. Their results may well be taken to represent
the current “state of the art,” but as said the algorithm is
extremely slow.

Finally, we run OFF-LINE on families of related and un-
related genetic sequences. Entries in most genetic databases
are flat text files containing one or more sequences that are
usually functionally related, with some annotations. The
fasta format is the most commonly used standard for
storing and exchanging genetic files. The genericfasta

file contains one or more blocks. Each block is composed by
one or more annotation lines each starting with the symbol

, followed by the genetic sequence.
Table 7 shows the results of running OFF-LINEon

several families of sequences of the yeast genome. The
complete dataset is available at http://www.cs.purdue.
edu/homes/stelo/Off-line/. The file
is artificially obtained by concatenating
with itself, in an attempt to probe into extreme cases of
intersequence correlation [21]. The last two families (8 and
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Table 5
Comparing OFF-LINE with Other Compression Programs on the Chromosomes of the Yeast

Table 6
Comparing OFF-LINE with DNA-Specific Compression Programs
on the Third Chromosome (chrIII ) of the Yeast (315 344 bps). The
ParameterbpcRepresents the Average Number of Bits Per
Character in the Compressed Representation (Some Final Sizes are
Extrapolated from Table 1 of [43])

9) are a segment ofall the upstream regions of the yeast
and, thus, not strongly related. Table 7 shows that not only
the absolute performance of OFF-LINE, but also its relative
advantage over the other methods improves as the input
size increases. Likewise, as soon as the input files contain
sequences not as strongly related, the improvements, while
still present, decay immediately, as shown for files 8 and
9 in the table. The ability to capture distant relationships
is enhanced in the comparison with GZIP and BZIP2 as we
move from their default window sizes (900 Kb in BZIP2) to
smaller sizes. The results, shown in Table 8, suggest that the
relative advantage of OFF-LINE will increase as it will be
applied to larger and larger families.

VI. FINE TUNING AND OTHER IMPLEMENTATION DETAILS

The most time-consuming activity of the compression
phase is the construction of the index trie and its annotation
with the values of the gain. We employed three heuris-
tics to overcome the high computational demands of a
“full-fledged” version of the compressor.

Table 9 shows the results achieved by one of these heuris-
tics on the basic algorithm, in which more than just one sub-
string selection and substitution is performed between two
consecutive updates of the statistical index. Of course, such
an approach saves time on one hand, but it risks blurring the
perception of the best candidates for substitution. In our im-
plementation, a heap is maintained with the statistical index,
containing at each step the best words in terms of , for
some chosen value of the parameter. Between any two con-
secutive index reconstructions, thestrings in the heap are
retrieved and used in succession in a contraction step for the
text. It is possible at some point that a string from the heap
will no longer be found in the contracted text. In fact, part of
the words in the heap turn out to be useless in general. In any
case, as soon as all words in the heap have been considered,
a new augmented trie is built on the contracted text.

As the table displays, the number of individual substring
substitution passes over the text grows with the maximum
allowed size of the heap. On the other hand, we spend less
and less time building weighted tries. The overall result is,
within a wide interval, a considerable speed up with respect
to the eager version of OFF-LINE without substantial penalty
in compression performance. When the size of the heap be-
comes too large (approximately in our experi-
ments), only a small subset of the words in the heap is used:
most of the computational effort is spent in pattern searching,
which results in deterioration of both speed and compression.
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Table 7
Comparing OFF-LINE With Other Compression Programs on Families of Sequences of the
Yeast. The Figures in Parentheses Report Percentage Gains Achieved by OFF-LINE, k is
the Number of Upstream Sequences in Each Family, Individual Sequence Length is 800 bps
Except in the Last Two Rows, Where it is 2000. The Alphabet Consists of About 50 Symbols.
The Input Strings 1–9 Correspond, in this Order, to the Families ofSpor EarlyII:fasta,
Spor EarlyI:fasta, Helden GCN:fasta, Spor Middle:fasta, Helden All:fasta,
Spor All:fasta,Spor All 2x:fasta, All Up 400k:fasta, All Up 1M:fasta

Table 8
Constraining the Competitors to Work on Small Windows
Enhances the Gain of OFF-LINE. Here, the Input Strings 6 and 7
Correspond, Respectively, to the Families ofSpor All:fasta,
Spor All 2x:fasta (see Table 7 for their Respective Statistics)

Table 9
Performances of OFF-LINEfor Different Choices of the
Size of the Candidates Heap. We Fixedmin occ = 2,
min length = 2, l = 100

Whenever one can assume it as being highly unlikely that
very long words occur frequently in a text, then building the
statistics forall the substrings can be a waste of resources.
Pruning the tree speeds up the implementation considerably
and saves large amounts of memory. Pruning the tree does not
mean that we could completely miss the word involved in a
long substitution. If the current best substitution is a word
longer than the threshold, then the encoder will eventually

Table 10
Comparing the Performance of OFF-LINEfor Different Choices
of the Maximum Allowed Length of a Candidate for Substitution.
We Fixedmin occ = 4; l = 4; Q = 10

choose some substring ofof length because that substring
occurs without overlap at least as many times as. Table 10
shows that the pruned version of OFF-LINEat per-
forms almost ten times faster and achieves exactly the same
compression as the version that builds the complete tree.

The collective speed-up gained from these heuristics com-
bined is significant: Our original implementation took sev-
eral hours to compress those files while, afterwards, it would
complete in a few minutes. What is even better, the corre-
sponding loss of efficiency in terms of compression is almost
negligible.

As documented in some additional tables, a few hundred
iterations of the word selection loop of OFF-LINE suffice
on inputs of the order of 100 000 symbols. This suggests
that dedicated fine-grained parallel architectures of this kind
would implement virtually instantaneous encoders for biose-
quences and general inputs alike. Tables 11 and 12 show the
modest number of iterations of the main loop performed by
OFF-LINE on our inputs, which would be negligible in a
parallel context. Therefore, the most expensive tasks, rep-
resented by the tree constructions, can be limited consider-
ably in a parallel implementation, turning the method into an
on-line, even real-time, application.
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Table 11
Iterations of the Main Loop of OFF-LINE for the Calgary
Corpus Files

Table 12
Iterations of the Main Loop of OFF-LINE for the Chromosomes
of the Yeast

Since the number of iterations performed determines the
size of the vocabulary, whence ultimately of pointers, this
generates “quantization” phenomena in the neighborhood of
certain values that play critical roles in a computer program.
Fig. 8 displays the sensitivity of the current implementations
to pointer encodings at the crossing of 1 byte. The two curves

Fig. 8. Compressed sizes of (a)mito and (b)paper2 versus
number of iterations of OFF-LINE.

plot the sizes of the compressed stringsmito andpaper2 ,
respectively, at all consecutive stages of the iterated substitu-
tions performed by OFF-LINE. Following a steady increase
until iteration 256, the compression starts decreasing as soon
as OFF-LINE must employ more than 1 byte to represent
a pointer. In addition to this, the erratic shape of the plot for
paper2 suggests, with its several local minima, that it is
hard at run time to pin down precisely the best moment when
to stop the iterations.

VII. CONCLUDING REMARKS

We have presented a small battery of compressors that per-
form well on all data but especially well on biological data.
The basic paradigm is uncluttered, relatively easy to pro-
gram, and acceptably fast in comparison toad hoc, consid-
erably slower and more involved methods.

Besides the obvious challenge of developing versions
specifically tailored to biological sequence data, a number
of interesting questions emerged in the course of the exper-
iments that would warrant additional effort. These include
possible provisions for variable window sizes, better ways
to approximate the gain function , the feasibility and
usefulness of reiteration of treatment following the first
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Fig. 9. Hierarchical grammar produced by SEQUITUR for
abaababaabaababaababa$ .

Fig. 10. First layer of grammar produced by OFF-LINE.

application of OFF-LINE, and several issues pertaining to
the computational efficiency achievable by sequential and
parallel implementations. Among the latter, a prominent
concern would be to devise efficient algorithms that avoid
building the statistical index from scratch after each word
selection, and better storage and matching algorithms for
our data structure. In fact, as documented in our tables, a few
hundred iterations of the word selection loop of OFF-LINE
suffice on inputs of the order of 100 000 symbols. This
suggests that dedicated fine-grained parallel architectures of
this kind would implement virtually instantaneous encoders
for biosequences and general inputs alike.

In view of the discussion in the previous section, it is in-
teresting for a moment to regard OFF-LINE also as a para-
digm for inferring hierarchical grammatical structures in se-
quences. Fig. 9 displays the grammar inferred for our ex-
ample string by the SEQUITUR algorithm by Nevill–Manning
et al. [15], which is essentially patterned after an LZ parsing
scheme. Except for the one involving the start symbol, pro-
ductions are constrained to have right-hand sides consisting
of digrams. A grammar subtended by the strings of Fig. 7 is
shown in Fig. 10. Reiteration of the treatment would expose
productions of the form and , and, fi-
nally, .

The rationale to build grammar based on some measure of
compression can be justified by the “Occam’s razor” prin-
ciple. Occam’s razor is theprinciple of parsimonyin exper-
imental sciences. In machine learning, its expressed goal is
to discover the simplest hypothesis (or model) that is consis-
tent with the training data. In this context, the grammar that
our encoder is looking for is the shortest “explanation” of the
original string in terms of information content.
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