e

S e

S

A

CACHE IMPLEMENTATION FOR MULTIPLE MICROPROCESSORS

C. V. Ravishankar
James R. Goodman

Department of Computer Sciences
- University of Wisconsin-Madizon
Madison, WI 53708

ABSTRACT

This paper presents an organization for a cache
memory system for use in a micruprocessor-based sys-
tem structured around ihe Multibus® or some simiiar
bus. Standaré dynamic random access memory (DRAM)
is used to store the data in the cache. Information
necessary for the control of and access to the cache is
held in a specially designed VLS] chip. The feasibility of
this approach has been demonstrated by designing and
fabricating the VLS chip and a test facility. The critical
parameters and implementation details are discussed.

This implementation supports multiple cards, each
containing a processor and a cache, as described in
{GoocdmanB3). The techique involves monitoring the
bus for refersnces to main storage. The contention for
cache ¢ycles between the processor and the bus is
resoived by using two identical copies of the tag
TEMOry.

[niroduction

Microprocesser systems teday are frequently built
using a standard bus structure to connect the printed
cireuit boards., Of these standard buses, by far the most
popular is the Multibus or some variation, such as the
proposed IEEE P796 standard. The iypical configuration
of & processor card in such a system includes, along with
the processor, an amount of memery — typieally up to
18K bytes of ROM and 32K bytes of RAM, Usually the RAM
may be accessed by other bus masters through the bus,
and so is additional memory contained in memory
boards. However, the access rate over the bus is so low
that even a single processor suffers a severe speed
penally unless it accesses its iocal memory nearly all the
time,

This organization has been showp to be effective in
somne envirenments: where for example, each processor
is pre-assigned a fixed task. However, it has proved unsa-
tisfaclory in others, in particular when several proces-
sors attempt to share a common set of tasks. In such
cases, it has been difficult to partition the zet of tasks so
that the number of accesses over the bus is kept low.

Cne way around this probiem is to replace the local
memory with cache memory. Caches, which have long
been used on high performance computers [Liptay88],
have been designed into many minicomputers/Bell78,
DataG80l, and are now starting to appear in mierepro-
cessor systems [lsaakB2] They work by taking advan-
tage of the spatial and temporal iocality observed in

"y

bus i3 trademark of intel Cornoration.

CH1856-4/83/0000-034631.00 2 1983 |EEE

148

memory references patterns, and even with a Smﬁli
cache, 90% or more of accesses are typically to data held
in the cache. -

When main storage has to be accessed, a cache
expleits this spatial iocality by fetching a biock of words'
surrsunding the accessed word, as neighboring locationg
are most ikely to be referenced next. It exploits tems
peral locality in the way that it replaces entries in the
cache -- it aims ab throwing out the items that will not be
referenced for the longest time hence.

However, fatching large biocks of 4ata into the
cache each time resuits in highly undesirabie surges in’
the transfer rate across the bus., It has recently been
shown [Goodman83] that even if only temporal locality ig"
primarily present but task switching is relatively infre-’
quent, 2 cache can remain very effective by fetching
very small blocks. We believe that this technique is
applicable to microprocessor environments like the on
above, provided we have a sufficient number of
processor-cache pairs so thal each proceswor may be
assigned a single task. This approach, howsver, intro
duces a new problem, known as the séale datg problem.

Maintaining Cache Consistency

The stale data problem in cache schemes for il
tiprocessors arises since multiple coples of a datum
from main storage may be distributed amoeng the indivi
dual caches, [Censier78, Tang78] but the appearance of
exclusive sccess Lo main storage must be maintained a
the level of each processor. While the problem is well
understood, solutions tend to be messy, involving either
invalidation requests to all the caches every time any
datum is modified, or a complex bookkeeping structure |
which maintains information such as what data is in the
caches; and if the current copy of a datum is not in rmain
storage, which cache it is in.

Recently a ciean, consistent solution was proposed
for any system confaining a common bus for memoery ©
aceesses [Goodman83). This scheme, to be described |
presently, makes use of normal read and wrife signals to
maintain consistency,

It has the feature that while consistency iz main-
tained by all the bus masters acting in concert, the
operation of each of the masters is independent of the
others. In pariicular. any bus master depends only on
the knowledge of the contents of its own cache,

This technique has the advaniages of both the con-
ventional technigues for maintaining compatibility
between the cache and the main storage: write-through,
(where main storage is promptly apdated upon
modification of a datum in any cache), and write-back

fl

{where a block is not written out to main storage until
the replacement algorithm desides to purge the block
from the cache).

This paper presents an irapiementation of a soiuytion
that requires a write through only at the frst
rpodification of & datum in & cache ~ a scheme that we
pall write-once. We have datermined that such a seheme
can be implemented using the standard Multibus,

+

The Write-Once Control Scheme

The current implemsntation is structured around
tne Intel “Multibus® as the communication-arbitration
umt: the Multibus has gained wide acceptance, and the
pew ISEE standard P798 is based on the Intel design,
Many menufacturers already offer Multibus-vompatible
cards. The Multibus also has a feature that is crucial to
our design: it has an inhibit line that may be raised by
any device on the bus to inhibit accesses from reaching
- the main store. As explained below, this feature ensures
" that we are ablelo maintain the appearance of exclusive

_ aceess to main storage from the perspective of sach pro-
cessor. The operation of the scheme 15 a8 follows:

{1) Each processor accesses its cache for reads and
writes. If the daia is present in the cache, the
operation completes successfully. If the data is not
restdent in the cache, a request is put out on the
bus to fetch the data.

{2) Whenever a word in a cache is modified, the cache
controiler controlling the cache sets a fag
{zorresponding to the "dirty” bit used in many other
implementations) to indicate this fact, Further, a
write to main storage is initiated immediately upon
the Frst modification of the datum: the asscciated
bus eontroller partition grabs the bus, and writes
through to main storage. Since all the other bus
controlier partitions monitor the bus, they all now
carn test if their cache holds & copy of the datum
being written out; the write to main storage serves
as the signal to them to invalidaie any such copies.
We therefore need no special “invalidate” signals.

{3) The response to read requests on the bus is a litile
different: whenever a partition records a requesi on
the bus for a datam of which its cache possesses a
valid copy. the partitien immediately inhibits the
request from reaching main store, and responds to
the reguest by placing on the bus the valid ‘¢opy it
chiainsg from its cache. Hence, the copy in main
storage need be updated only upon the first
modification - all subsequent requests are inhibited
frum reaching main storage, end are handied by the
preempting controller partition,

infermation regarding the contents of the cache is
held as usual in an address array. In our implementa-
tion, the address array alse holds information regarding
whether a datuym has been modified or oot and the LRU
information used in the replacement algorithm.

Since the bus controlier and the processor are both
constantly active, and need access to the information in
the address array, the potentiaily severs contention
hetween them is resolved by using two address arrays
holding identical tables: onz for the exclusive use of the
processor - the other for the bus coniroller. AL the heart
of the current implementation is a single VLE1 chip that
we have designed {in nMOS technology} that contains the
address array and some of iL's associated logic.

Overview of the Cache Design

in this paper we describe 2 reasonable cache organi-

zation for & single board processor intended for use in a
Multibus system. Refer to Fig. L

tag fleld ¥ feld 3 field
¥ig. 1. Breakdown of Address Word for Cache Organization.

The addrsss supplied by the processor is broken down
into three felds:

B This fBeld, consisting of b bils, specifies which
word is to be selected from within a biock.
R This field, consisting of r bits, specifies the rowin

which the addregsed block resides,

This field, consisting of ¢ bits, is the portion of the
address which iz saved in the address array te
gniguely identify the main memory location
currently resident in the cache block,

A note ahoct the use of the term werd, in this diseussion
we mean the armount of data written into the cache with
one bus zocess, Le., the width of the bus. For Multibus,
thiz iz 18 bits, but nothing in our irnplemantation
prevents the use of a wider bus. A larger word could also
be assembled by a sequence of transfers of data across
the bus. A word also is nermally the amount of data
available te the processor [rom the cache in a singie
access, though in fact only part of the data may actually
be transmitted to the CPU. Note that this usage may
vary from the normal meaning of a word and, in particu-
lar, means that we are ignoring in the description of Lhe
address those bits which specify a finer granularity of
aceess.

Fig. 2 shows the cache model The organization con-
taing r rows and is known as n-way get-associative. It
consists of n kientical columns, each consisting of two
spgments: the data memory and the tag memory. In
addition, the cache includes an LRU segment conlaining
information used by the replacement algorithm for
determining the column which contains the block to be
purged when a new block is fetched. This segment con-
Mbits each to indicate an LRU

TAG

tains r rows of p =
ordering among the n colurmns.
The data memory contains the data correspanding

ts a given location in main memory. Each block of 2¢
words in main memory can be stored in any of the n
places of the appropriate row. The tag metnory contains
a tag correspending to esch biock data identifying the
corresponding ruain memory biock whence this data
came. In addition, it containg some other information:
{1) v = 2° pairs of mode bils indicating which words of
memory are present {some may not have been
fotched and are thersfore empty).

(23 2 bits to indicate the validity of the data.

Fach biock from main memory may be siored in any of
the n places in the appropriate row.

Wnen a request is received from the processor, the
R-fleld is used as a row index into the iag and data
memories simultaneousty. Bach of the tag fieids read
put {from the tag memory) for the appropriats row is
compared against the tag field of the address. i a
mateh gorurs, and ihe corrssponding mode fiald indi-
patoe vaid data, a hil is signaled, and the cache suppiiss
the duta Lo the processor. If no malsh is found, or if the
mods Geld indicates that the word is not present, then a
miss is indigated, and a main memory aperation is ini-
tiated. During this time a block is chosen as vigtimn to be
purged Lo make way for the new bicck. This choice is

347

made on the basiz of the p-bits which may be inter-

reted as a list of the sel elements in order of their
reference. The least recently refersnced block is
chosen.

The cache can be implemented with conveniional
dynaric random access memory for the data part. and a
special VLEI chip for the tag part. This solution is partic-
ulariy appropriate for VLSL while il allows the use of the
cheapest form o»f semiconductor memory available -
dynarnic RAM organifed as one bit per chip. it nicely par-
titions the problem intec pieces which have minimal inter-
communicatlon requirements: only the refults of the
comparisons need to be reported off the chip, and this
requires about [g,n pins.

At each access, at most one word of the data need
be read out from the data memory, and a multiplexing of
the muitiple ouiputs for this purpose can actually be
accomplished inside the dynamic RAM by selecting the
appropriate set through addressing. If the VL3I part
implernenting the tag array ig fast enough to be able to
supply the addressing bits in time for the column decode
within the RAM, the data can still be read at the max-
irmum rate of the dynamic RAM.

Cache Degign Parameters

T demonstrate the feasibility of this approach, we
have designed and subrmitted for fabrication a circuit
which implements a major piece of the tag memory in
VLSI using nMCS technology. Because of the limitations
of the technolegy available to us, we fvund it necessary
to partition the part inte multiple (but identical) chips.
but it does seern that a siate-of-the-art implementation
couid preduce the entire tag memory on a single chip.

In choosing the parameters for the implementation,
we recognized that we were demonstrating the feasibility
of ans architecture rather than designing a commerciaily
viable product. We planned tc use the Mead-Conway
{Mead80] approach to build a chip whichk consisted
largely of memory. For memory intensive designs, the
Mead-Conway tools may not be particularly effective.
Enormous effort is usually expended in optimizing the
design of a single memory cell because of its great
impact on the ultimate size of the chip. We thus recog-
nized that, while we might end up with a large chip, it
would contain far less than that possible with state-of-
the-art commercial design capability. Therefore we par-
titioned the chip in & way tha! we could design only one,
but use several to accomplish what is commercially
feasible on a single chip. This was done by partitioning
the chip into columns, with each chip containing the tag
memory for one column plus two bits to implement the
LRU segment. This allows us to build a cache up to 4-way
set asgociative,

We picked 84 rows {r=B8) arbitrarily, since ocur stu-
dies have indicated that this is both a reasonable and
typical number of rows, The tag field we used was large,
perhaps larger than appropriate, but we wanted to be
able to evaluate our system with one of several possible
processors, and the tag field is not readily expandable.

At the time we initiated the design., we had not
evaluated the effectiveness of the partial block retrieval,
s0 we assumed one tag for each word of memory {Le.,
v =1, or & =0). Sihee that tims, studies reported in
[GoodmanB3] have indicated that the optimal vaiue for v
is probably eight or sixteen.

Since we began this work, a commercial product

with apparently similar goals has been announced [T182],
This cohip, known as the TMS 2150 Cache Address

Cumparator, has four times as much on-chip memory
curs. The designers of the T! part aiso chose o
Rather than being 4-way sel associative, as we sugges
is implemented as ene very tall column (512 rows), Ty
means that constructing a 2-way set-asseciative oa
reguires a minimurn of two chips, providing fa
minimum of 1024 blocks. Based on cur simulation st
dies, we believe that our crganization is more ¢
effective, particularly for an implemeniation wh
v » 1. The Tl design also apparently is not intended ¢
multiprocessor environment.,

Implemented Solution

As explained above, the cache as planned was to
4-way sel associative, and the implementation was to
in VL31 Since i seemed unlikely that it would be po
bie to house the entire amount of storage on a si
chip, an early decision was made o partition the ¢
troller so that each chip as visualized held oniy on
the four address arrays. Such a vertical partition
seemed the most reasonable approach. .

The current implementation therefors uses f
identical VL3I chips that essentially house the addr
arrays and some of the logic, IL may be remarked tha
is easy to implement an n-way Set-associative cach
using n such chips supperied by seme external logir
This was part of the motivation for the mode of partitio
The address array uses no ¢lock and is essentially re
through in design: it operates in the "read” mode
iong as the "write"” line is low. This was done since i
reascnable to expect most of the accesses Lo be rea
and so for reasons of speed the design aimed at havin
the data on reads available essentially after the addr
lires stabilized. A static RAM was preferred for th
address array storage to ensure faster response,
because the chip as designed uses no clock. Since”
implementation was in nM0S8, a pre-charge signal
specified in order that the accesses be speeded up
3o thal no complicated differential sensing schem
need be used in this preliminary version to control
precharging for the dual ported memory cells.

Implementation Details

Most of the arsa on the chip is occupied by
storage and the decoders. The basic storage cell is da
ported. and hence the complement of the data bit i als
available. The address size is 24 bils, which is parti
tioned into a B bit index into the address array. and thi
remaining 18 bits are compared with the corresponding
contents of the address array to signai a2 hit or miss. "A
decoder js used at both ends of the address select line
to speed up the response of the memory.

The pins are as below:

Input pins

Address lines 24
Pracharge 1
Read/write from proc. J 3
{lear valid Bit 1
Mary & ¥rite signal 1
Load into Address Array signal | 1
LRU inputs . R
Dutpul pins

Hit signal 1
¥rite through signal 1
LRU outputs 2
Dirty bit L
Valid bit i
Total: : T T3g

Mpdifications are being turrently made to the oul-
put sigrals from the chip 't indicate write-batk when
data has been modified more than once {refer beiow for
details). This alss would alter the pin count slightly when
impiemented.”)

The functioning ¢f the chip is as follows: Note that
singe the chip does not use a clock, it relles on the
precharge signal and assumes that address data can be
input onto the pads at the same time. The chip also
deperids upon the cache controller for some of the exter-
nally driven functions.

a) The "read” mode:
1) ‘Precharge is raised and address piaced on 24
©0 U addresspias 0T T e
2) A hit/miss is signaled according as data is
present/absent in cache and the following
data is output: (1) LRU (i) dirty bit (iii)
valid Bit
b} The “wriif*”_.mi::g_lﬁ:

1) The pmchar_gé iy raised and address placed on

24 address:pins.

2} The read/write gignal is raised to-indicate -

“write.”

4} The chip signals a miss if the datum is not
present. If it is present then a write-
through is signaled if this is the first
modification of the datum. The sther oul-
puts' are the same as in the case of a read.

The mark & write signal deserves special comment.

The reason for this signalis that the LRU information is
input from the controlier, and in the time taken to com-
pute the new LEU the processor may have plaged a new
address value on the inpoi pins thereby selecling a
diferent row of the storage array. If a wrile is per-
farmed now to load the LRI, the information will clearly
be written into the wrong row. To circumvent this possi-
nility, the mark & wrilte line is raised by the controlier
as soon as the row selection is compiete in the storage
array. Thisz now latches aspecial “rpark cell” that drives
the gelect iines io the LEU corresponding io the row
being reeessed and cuis off this part of the select Hne
from the rest. The LRY cells now remain selected even
though the rest of the cells may not. The LRU may be
lcaded as long as the mark & write signal remains high.

349

As mentioned, u feature that is currently under
implementation is a provision for kesping rack of
whether a given datum has been modified more than
snee. 1 the replagement aigorithm wishes al some pont
to.pverwrite a cache lccation with soms newly fetehed
data, a write pack Lo memory is necessary only if the
datum has been modified mors than once since a write
through was performed to main store at the first
modificalion. 1t is possible to use the four stales
corresponding to differant values of the dirty and valid
pits to represent the conditions invalid. valid, written
nnoe and written more than onee. A “write back” is sig-
naled if the datum bas been modified more than once.
The current version of the chip bhas a finite siale
maching on it to perform ihis {decoding) function.

The chip is currently being fabricaied and we expect
to have it available for testing soon. Testability was a
concern during the design of the chip, and while there.

is't'a great geal of on-chip logic spegifically intended’to SR

help during testing, the testing scheme for this chip is
fairly “straight forward,: Some additional off-chip logic
would be Tequired, but sinee ail such’logic is expected to
sein TTL. testing and debugging is not:an nverwhelming
eoneern.. PR T
Summary

We have prasented a cache memory system for use
in a microprocessor-based systemn organized around the
Muitibus or another similar bus, The technigue involves
monitoring the bus {or references to main storage. We
presented the block diagram for the cache, which.
rasides on - the same Multibus card with the processor.
The cache comprises a speciaily-designed VLS! chip to
store the necessary information for control of and
acpess to the cache, and -standard dynamic random

“aceess memory (DRAM} to'store the dala in-the: ecache..
Muitiple processors: can be supported as deseribed in

[GoodmanB3] by this implementation.. ‘The competition
for cache cycles between the processor and the busis’
resoived by using two copigs of the tag memory.

The approach has been fotlowed up-by designing and
fabricating a VLSl chip and est bed. The pritical param-
eters and implementation details were presented.

- Atknowledgements: We would like to thank Steve
Chan, whe was one of the two persons who actually did
the design'znd layout of the VL3I chip, and Randy Katz
whose suggestions and adviee were of great help during
the design and layoutl phase.

Relerences

[Bell 78] C. G. Beil J. . Mudge. and J. E. MeNamara,
Computer Engineering: A DEC wiew of hardware
systgms design. Digital Press, Bedford, Mas-
gachusetis, 1978, :

* [Censier 78] L. M. Censier and P. Feautrier, "A new solu-

tion to cohersnce problems in multicache sys-
tems,” IEEE Trans. sm Cemputers, Vol C-27, Ho.
12, December 1978, pp. 1112-1118.

[DataG 80! “Eciipse MV/8000 Principles of Operation.”
Ordering No. 014-000648, Data General Corperation,
Westbors, Massachusetts.

[Goodman 83] J. Goodman, "Using Cache ic Reduce
Processor/Memery Bandwidth,” submitted to I0th
Symp. on Computer Arch., (Tune 1983}

[lssak B2] 4.
B80S,

Isaak, “Squeezing the most sut of the

Hini-Micrs Systems, Yol 15 No. 184,

{Qctober 1982), pp. 195-202.

[Liptay 88] J. 8. Liptay, "Structural aspects of the Sys-
terft /360 Model 85, 1L The cache”, JEM Systfernse
Journal, Vel 7, No. L, (Januery 1968), pp. 15-21.

iMead 80] €. Yead apd L. Conway, Mmiroduction to VLSS
Systems, Addison-Wesiey, 1880,

-

Fig. 2. Details of Cache Memory Strueture.

[Tang 761 C. K. Tang, "Cache system aemge on g
tightly coupled mulliprocessor system,” AFIEE
FProo., NOC Yol 45, pp. 743-753, 1878, :

[TI82] Tezas instruments MOS Hemory Duta Bog
Texas Instruments, Ine., MOS Memory Divisig
Houston, Texas, pp. 108-111, 1982,

colO | coll col2 eol(rn-1)
D-part A-part LRU-part
i
r DATA TAG mode(1)) mode(2) |.. mode() LRU
rows|{v waords) {t bits) | (2bits) (2 bits} {2 bits) (p bits)

