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ABSTRACT
Rock art is an archaeological term for human-made markings on
stone, including carved markings, known as petroglyphs, and
painted markings, known as pictographs. It is believed that there
are millions of petroglyphs in North America alone, and the study
of this valued cultural resource has implications even beyond
anthropology and history. Surprisingly, although image
processing, information retrieval and data mining have had large
impacts on many human endeavors, they have had essentially zero
impact on the study of rock art. In this work we identify the
reasons for this, and introduce a novel distance measure and
algorithms which allow efficient and effective data mining of
large collections of rock art.
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1. INTRODUCTION
Rock art is an archaeological term for human-made markings on
stone, including petroglyphs, carvings into stone surfaces and
pictographs, paintings on stone. Figure 1 illustrates some
examples of each, which hint at the extraordinary variability of
rock art in terms of complexity.

Figure 1: A random selection of petroglyphs and pictographs, hinting
at their incredible variability, complexity and beauty

Petroglyphs and pictographs are one of the earliest expressions of
abstract thinking, and a true hallmark of humanity. They provide a

rich body of information on several different dimensions, beyond
their value as an aesthetic expression. Studies of rock art have
implications beyond anthropology and history. For example, a
recent study postulates the existence of a now-extinct Australian
bat species based on extraordinarily detailed pictographs known
to be at least 17,500 years old [19]; petroglyphs have been used in
studies of climate change; the changing inventories of species in
the Dampier Archipelago from the Pleistocene to the early
Holocene period have been reconstructed partly by petroglyph
evidence [3]. However, in spite of these successes, progress in
petroglyph research has been frustratingly slow.

A decade ago, Walt et al. summed up the state of petroglyph
research by noting, “Complete-site and cross-site research thus
remains impossible, incomplete, or impressionistic” [24].
Surprisingly, there has been little change in the intervening
decade, yet in the same time frame we have seen significant
advances in image processing and data mining. These advances
have resulted in fielded applications in domains as diverse as
medicine, entertainment, wildlife management, e-commerce,
biometrics, zoology [18], etc. Nevertheless, these advances have
had essentially zero impact on the analysis of petroglyphs and
pictographs.

We believe that this is because the extraordinarily diverse and
complex structure of rock art images defies most existing image
matching algorithms. Most approaches are simply not suitable to
capture the similarity of petroglyphs, and those that are, even in
limited cases, do not scale to large collections we need to
examine. In this work we introduce a novel distance measure for
rock art, and show that it can correctly capture the subjective (and
where available, objective) similarity between petroglyphs. We
show how we can use this distance measure as a basis of several
higher-level “data-mining” algorithms, for example finding
repeated motifs, clustering, or simply enabling query-by-content.
The rest of the paper is organized as follows. Section 2 contains
background information and a discussion of related work. In
Section 3 we review the Generalized Hough Transform, and show
how we can adapt it to produce a fast and robust distance measure
for petroglyphs. We test our ideas with a comprehensive set of
experiments in Section 4, before offering conclusions and
directions for future work in Section 5.

2. BACKGROUND AND RELATED WORK
The earliest petroglyphs have traditionally been associated with
the appearance of modern humans in Europe such as the famous
example from the Lascaux Cave, France, and an early one from
the Chauvet Cave, France which dates back to as early as 30,000
years ago [22]. Recent work has shown that the idea of
expressing abstract motif appears much earlier, 77,000 years ago



in South Africa [10]. Given this long history, it is one of the most
valuable sources of humanity that has persisted to the present
time.

Beyond their value as an aesthetic expression, petroglyphs
provide a rich source of information for researchers. Repeated
motifs can be identified and traced through time and space, which
in turn may shed light on the dynamic histories of human
populations, patterns of their migrations and interactions, and
even continuities to the present indigenous societies. However,
the nature of petroglyphs poses an extremely difficult challenge.
As in the case for any other artifacts of history, damages to
petroglyphs are permanent and irreversible. However, unlike
other artifacts that can be preserved and protected within the
confines of a controlled environment in a museum, petroglyphs
are mostly left in their natural settings, exposed to elements of
nature that will erode them inevitably with time. There is an
urgent need to identify petroglyphs and to archive them for
humanity.

2.1 Background on Rock Art
As we shall show in Section 3, our algorithm assumes the input
images are (relatively) low-resolution bitmaps with a 1-bit color
depth, one petroglyph per image. However, as Figure 1 illustrates,
obtaining such images may be non-trivial. With rare exceptions,
petroglyphs do not lend themselves to automatic extraction with
segmentation algorithms. For example, in the two images on the
left of Figure 1, segmentation algorithms find the “edges” due to
cracks in the rock to be more significant that the actual edges of
the petroglyphs. Moreover, these images were chosen for this
example for their high contrast and clarity; most petroglyphs
would be even more challenging. In spite of this, in the next two
sections we show how we easily obtained tens of thousands of
petroglyphs for this study, and how we plan to have at least one
million examples in the very near future.

2.1.1 Human Computation to Process Petroglyphs
The last five years has seen a flurry of research on Human
Computation, much of it leveraging of the pioneering work of
Luis von Ahn at CMU [1]. The essence of human computation is
to have computers do as much work as possible to solve a given
problem, but to outsource certain critical steps to humans. These
steps are ones which are difficult for computers, but simple for
humans. One of the most famous examples is the Google Image
Labeler, which is a program that allows the user to label random
images to help improve the quality of Google’s image search
results. Like many such efforts, human time is donated for free,
because the task is embedded in a fun game, hence the recently
coined term, Games with a Purpose, or GWAP [2].

In a parallel ongoing research effort, we have created a tool called
PetroAnnotator which allows human volunteers to “help”
computer algorithms segment and annotate petroglyphs. While the
domain of interest does not have the broad appeal of Google
Image Labeler, and is difficult to frame as a game, this does not
matter. We tentatively estimate that if every grad student in
anthropology in the US were to donate just one hour a month to
the project, all the worlds’ rock art could be processed in just a
few years. We leave a detailed discuss of PetroAnnotator to a
future publication; however the interested reader can find more
details and working code at [27].

2.1.2 Existing Archives of Petroglyphs
Beyond the examples captured by our human computation system,
there are several other rich sources of rock art data to be mined.
For example, anthropologists have been sketching petroglyphs for
hundreds of years, and recent efforts to digitize historical
manuscripts have made at least hundreds of books, each with at
least a few thousand petroglyph images, freely available on the
web. In Figure 2 we show an example from the 1888 edition of a
series of government reports [20].

Figure 2: An excerpt from an 1888 government report [20]. The
original caption is “Petroglyph in Arizona”

Images of this type can be of particular interest because they may
refer to petroglyphs which have long since been destroyed.
Furthermore, although the petroglyphs in Figure 2 predate
photography, it is important to note that because petroglyphs often
do not reproduce well in photographs, the practice of hand
drawing or tracing petroglyphs is still used in modern
anthropological texts.

2.2 Background on Image Processing
An understanding of similarity must be at the heart of any effort to
analyze petroglyphs and other cultural artifacts. For example, an
image of a horseman incised on a fossilized ostrich eggshell
fragment was recently found among eolian deposits in the Gobi
Desert, Mongolia [14]. An obvious thing to do with such an
image in order to place it in a cultural context is to ask if a similar
image exists in the many petroglyphs in the region. Thus, we
began this project with careful consideration of shape similarity.

In soliciting feedback and advice for early previews of this work
from various researchers in the data mining and image processing
community, the feedback obtained was almost always of the form
“Very nice, but have you considered using X”, where X was
Geometric Hashing, Hausdorff Distance, Chamfer Matching,
Shape Contexts, Fréchet Distance, Skeleton Graphs, Zernike
moments, Earth Movers, etc. While we have considered (and in
some cases experimented with, see [27]) these distance measures,
space limitations prohibit a detailed review and discussion of the
pros and cons of each of them. Indeed, the preceding list is only a
small subset of the hundreds of shape similarity measures in
existence. See [23][26] and the references therein for an
overview. However, we argue that some of the unique properties
of petroglyphs render most of them unsuitable for the task at
hand. Consider the following difficulties illustrated by Figure 3.

 A single atomic petroglyph may contain several disconnected
parts. Thus, boundary based methods [12] and graph based
methods [4] cannot be applied, at least not directly (c.f.
Figure 12, which shows an example of a problem which
would defeat boundary and graph based methods).

 Geometric hashing is a very useful technique for indexing
large collections of shapes [25]. However, it is only well
defined for machine parts and architectural drawings with



many clearly defined right angles/intersections/circle centers,
etc. It has not been shown to have utility for more general
unconstrained shapes.

 There are many specialized distance measures which have
been introduced for indexing music notation, Japanese kanji,
mathematical symbols, pen-based computing, etc. At least
some subsets of these look like at least some subsets of
petroglyphs. However, it must be remembered that in these
domains there are only a finite (and relatively small) number
of possible classes, and we can at least imagine an idealized
prototype for each class (i.e. a perfectly drawn square root
sign). However, this is not the case for petroglyphs which do
not generally fall into discrete classes, and cannot generally
be seen as corrupted versions of an idealized template.

Figure 3: (left) An Ibex petroglyph taken from [21] has its two rear
hoofs fused. It is not clear if this is an artifact of scanning or the
artist’s intent, and it does make a critical difference to graph based
methods. (center) This bighorn sheep from a classic work [9] has a
disconnected leg and horn, which will greatly affect its representation
for graph based methods. (right) Two petroglyphs from Easter Island
are clearly distinct, yet identical in graph based representations

Instead of attempting an exhaustive discussion of why we have
discounted existing shape distance measures, we will briefly
review the positive reasons for why we choose the GHT measure.

 As we shall show, on real, but unlabeled anthropological
datasets, the GHT produced subjectively correct answers (cf.
Section 4.1). Furthermore, on labeled datasets which are very
similar to petroglyphs, GHT produces results which are
competitive with state-of-the-art approaches.

 As we will demonstrate in this work, we are able to tightly
lower bound the GHT, allowing for very efficient searches in
large datasets. Moreover, we show that we can make a slight
variant of the GHT obey the triangular inequality, thus
allowing us to use off-the-shelf data mining algorithms, for
example to find motifs.

 The GHT makes essentially no assumptions about the data,
and thus is defined for open/closed boundaries, for
connected/disconnected shapes, etc. This is important
because, as hinted at in Figures 1, 2 and 3, petroglyphs are
extraordinarily diverse.

We are now in a position to give some intuition as to why we
intend to do data mining on a relatively low resolution of the
petroglyph images. Using our PetroAnnotator, we asked two
individuals to trace a petroglyph of a bighorn sheep petroglyph
found in Arizona; the resulting two skeletons are shown in Figure
4.A. The skeletons are on a bitmap of 340 by 250. Although the
two images are very similar, less than 3.5% of the pixels from
each image overlap. We can contrast this with the situation after
converting the images to a down sampled representation as shown
in shown in Figure 4.B. Here the images are transformed to a
mere 30 by 23 grid representation. However, of the 130 pixels that
form each image, 75.6% of the pixels are common to both.

Figure 4: A) Two overlaid skeleton traces of the same image of a
Bighorn sheep, B) The same two images after downsampling

In essence, the original image representation has spurious
precision. This precision is unwarranted because there is some
uncertainty introduced by the human element of the algorithm1.
The quantizing produced in the downsampling step also
introduced some uncertainty, but this is completely dwarfed by
original uncertainty. Furthermore, as we shall see, the lower
resolution representation has several unique advantages which we
can leverage off. In Section 5, we provide forceful empirical
evidence that appropriate amounts of downsampling significantly
improve accuracy in objective tests.

3. GENERALIZED HOUGH TRANSFORM
We begin by reviewing the classic generalized Hough Transform
algorithm and then introduce our modifications and extensions.

3.1 Classic Generalized Hough Transform
The Hough transform [11][8] is a useful method for two-
dimensional shape detection, but it is limited to analytic curves. It
was generalized to detect arbitrary shapes in [5][15]; however,
these works did not explicitly encode a similarity measure.

We note that there are many variants of the Hough transform, and
the notation in the literature is inconsistent. The particular variant
of the algorithm we consider, and the notation we will describe it,
is most similar to Merlin and Farber’s [15], in which shapes are
constituted of edge points. Edge points are simply the dark pixels
in our one-bit representation of shapes. Suppose we have a
candidate shape C defined as:
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and we want to find the best fit of a query shape Q defined in the
same way as C. That is, given a reference point R in Q, to find the
best point R’ in C, if we put C onto Q (with only translation in the
plane is allowed) and points R and R’ coincide, then the number
of matched edge points would be the maximal.

For clarity, we use a very simple example to illustrate the
algorithm. Figure 5 shows a query shape Q and a candidate shape
C. Note that the shapes can be disconnected, as in Q.

Figure 5: Toy examples of a query Q and a candidate match C. Each
cell is a pixel, and the dark colors denote edge points of shapes

1
For those rare petroglyphs that can be processed without human intervention, there

is uncertainty introduced by camera angle, focal length, etc.

Q C

A B

Key: Black pixels are common to both. Red or blue
pixels are in one image, but not the other



As shown in Figure 6, the first step is to mark a reference point R
in Q (usually the center of mass of all edge points) and rotate edge
points of Q around R by 180° (left and center of Figure 6). We
then draw vectors from R to each edge point (as shown in the right
of Figure 6). These vectors form a “star-like” pattern which we
will use to determine the best fit of Q in C.

Figure 6: (left and center) The shape Q is rotated 180° around center
of mass R. (right) four vectors of Q form a “star pattern”

To find both the best alignment of Q to C, together with a numeric
evaluation of their similarity, we do the following. The “star”
vectors are superimposed on each edge point of C (as shown in
Figure 7.left). An accumulator matrix A of the same dimensions as
C is used to record the number of vector-ends (i.e. the arrowheads)
that fall into each cell (Figure 7.right shows the final accumulator).

Figure 7: Placement of vectors on each edge point of C (left) and the
final accumulator A (right)

The cell in A with the maximal value is the best point R’ we want
to find, and its value equals the maximal number of edge points
can be matched between Q and C. This is 3 in our example. Note
that while R is the center of mass of Q by definition, point R’ is
not necessarily the center of mass of C.

Based on this maximal value, we can further obtain the minimal
unmatched edge points (MUE) of Q. This is simply the number of
edge points in Q minus maximal matched points. This MUE can
be used as a distance measure. In our toy example, with similar
shapes, its value is 1. If Q were exactly the same as C, the MUE
would be 0, meaning D(Q,C) = 0. As we shall later see, it can be
useful to normalize and adjust this number before using it as a
distance measure.

For concreteness we show the algorithm to compute the minimal
unmatched edge points in Table 1.

Table 1: The minimal unmatched edge points (MUE) from Q to C

Procedure [MUE] = Classic_GHT (Q, C)

1
2
3
4
5
6
7
8
9
10
11
12
13

(Rx,Ry) center of mass of Q;
foreach edge points (x,y) in Q

x 2×Rx – x; Vx x – Rx;
y 2×Ry – y; Vy y – Ry;
add (Vx,Vy) to the set Vectors;

endfor
Initialize a matrix A with the same size of C to 0;
foreach edge points (x,y) in C

foreach vector (Vx,Vy) in Vectors
A(x + Vx,y + Vy)++;

endfor
endfor
MUE number of edge points of Q – max(A);

If Q and C have S×S pixels, and we denote the number of edge
points in Q and C by NQ and NC respectively, then the time
complexity of this algorithm is O(NQ×NC + S2×logS2).

3.2 A New Cell Incrementation Strategy
The classic GHT algorithm can be seen as a cell value
incrementation process of the accumulator (as reflected line 8-12
in Table 1), and we need to wait for all of the incrementation to
finish before we can obtain the value for any particular cell. Here
we propose a new cell value incrementation strategy which allows
obtaining the cell values one by one. This will allow us, for the
first time, to use a lower bounding strategy for the GHT.

Instead of superimposing vectors on edge points and increasing
the value of the corresponding cell, we reverse this process by
checking all positions that are possible to increase the value of
one particular cell. To achieve this, we need to reverse the
direction of vectors.

Figure 8 shows this simple idea (using the same example as in the
last section): first we draw vectors from R to each edge point of Q,
but without rotating Q (on the left); if we want to calculate the
value of a particular cell, say, the one at the third row and second
column, we superimpose all vectors on that cell (on the right).
Then we check every cell with a vector falling into it: if this is
also an edge point, we increase the cell value by 1 (because it is
guaranteed, when using classic GHT, one vector superimposed on
this edge point would fall into the target cell). Finally, after
checking four cells, we obtain the value 2 for this cell.

Figure 8: Four vectors of Q (left) and placement of vectors on one cell
of C (right)

It is obvious that our new cell value incrementation strategy is
equivalent to the classic one. However, this strategy has one
advantage in that it allows for the implementation of the cell
incrementation process in parallel, which avoids nesting for-loops
in the classic GHT (line 8-12 in Table 1). In this paper, we are not
going to discuss this. We will utilize the nice property “obtaining
cell value one by one” as a basis to explore a lower bound of
minimal unmatched edge points in the next two sections.

3.3 The Intuition behind Lower Bounding
As noted above, the time complexity of the GHT is quite high,
and this limits its applicability for larger datasets. The classic data
mining solution to the problem of time consuming distance
measures is to find an efficiently computable tight lower bound to
the distance measure, and to use this bound to cheaply prune off
unpromising candidates [12].

We are now in a position to show the first known lower bound of
the GHT-based distance. Our idea is based on extracting one-
dimensional “signatures” from the two-dimensional query and
candidate images. While we extract signatures from both the rows
and columns, for ease of exposition we begin by showing just the
column signature, which we denote as SigCx.

For a candidate shape C with m rows and n columns, we have:
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1 2 3 2 1

0 1 1 1 0

AC

R R



},...,,{
1 ],[1 ],2[1 ],1[  


m

i in

m

i i

m

i i CCCSigCx

In other words, we are simply counting all of the edge points in
each column of C. For example, the truncated-corner square shape
shown on the Figure 9.right has SigCx = {0,0,0,3,2,2,2,3,0,0,0}

Figure 9: We can extract “signatures” from shapes by summing up
the number of edge points in each column

We can extract these signatures as part of the preprocessing of the
images, and store them in an index. At query time, we can use an
identical technique to extract a signature, SigQx, from the query
image Q. As shown in the Figure 10.left the only difference is that
we truncate any leading or trailing 0’s from the SigQx signature.

Figure 10: (left) A query image Q has its signature SigQx extracted.
(right) By noting how many edge points it needs C to have at each
column, and how many edge points the column as C actually has, we
can derive a lower bound of D(Q,C)

As it happens, the MUE distance in this case is 4, a number we
can compute using the algorithm in the previous section.
However, we can compute a lower bound to this value by looking
at just the respective signatures.

We can obtain the intuition behind the lower bound by imagining
that Q “wants” to match perfectly to C, with no missing edge
points. As we place “star” vectors to one cell on the center column
of C, if Q “wants” all vectors to fall into edge points of C, a
necessary, but not sufficient, condition for this to happen is that
the number of vectors falling into each column is less than or
equal to the number of edge points in that column. This is
equivalent to checking whether each value in a SigQx cell is less
than or equal to the corresponding cell in SigCx (as shown in
Figure 10).

Referring to Figure 10, we can see that in the slot SigQx1 we need
two edge points, and the corresponding slot in SigCxi actually has
three. There is no penalty for SigCx having a surfeit of edge
points. In the next slot SigQx2 we need two edge points, and the
corresponding slot in SigCxi+1 has the two required edge points.

However, in the slot SigQx3 we need four pixels, but the
corresponding slot in SigCxi+1 has only two pixels. Thus, we are
guaranteed that no matter how the pixels are arranged, this
column will contribute at least two to the number of missed edge
points in the accumulator. As we continue, we find that neither of

the two remaining slots contributes to the lower bound, because in
each case there are at least enough pixels in SigCx to satisfy
SigQx. Thus, we can say that in this alignment, the lower bound
LB(SigQx,SigCx[4:8]) = 2.

Note that this lower bound is only for the particular alignment
shown in Figure 10; if we had shifted SigQx one to the left, the
lower bound would be 12, and if we had shifted SigQx one to the
right, the lower bound would also be 12. If we test all alignments,
we must choose the smallest value discovered as the true lower
bound for the columns, which we denote as LB(SigQx,SigCx) = 2.

Finally, as hinted at above, we can do the same thing for the rows,
using SigQy and SigCy. The final global lower bound to D(Q,C) is
then simply the larger of the two individual lower bounds

3.4 A Formal Description of the Lower Bound
We expand the intuition presented in the last section to introduce
a formal description of the lower bound. We again begin by
considering the lower bound for just the columns. The algorithm
is formalized in Table 2, which takes in a query shape Q and the
column signature of candidate shape C. As described in the
previous section, to obtain LB(SigQx,SigCx), we need to shift
SigQx from left to right of SigCx by aligning the center of mass of
SigQx to each cell of SigCx (lines 5,7 and 8 of Table 2). In each
alignment, we calculate the lower bound for each column of C.
Note that when some cells of SigQx shift out of SigCx, the edge
points in these cells cannot find points in C to match them and
then all contribute to the number of missed points (line 9-10 of
Table 2). Finally, LB(SigQx,SigCx) is the minimal value of all
these lower bounds (reflected in line 21-23 of Table 2).

One important optimization we use here is early abandoning.
When calculating the lower bound for a column, if the number of
missed points exceeds the current best (smallest) lower bound, we
can stop calculations and shift to the next position (line 17-19 of
Table 2). For a better pruning, we can align SigQx and SigCx by
their centers of mass first, and then shift stepwise to two sides
(omitted in Table 2 for brevity).

Table 2: Algorithm to calculate the column lower bound of GHT by
giving the query shape Q and column signature of candidate shape C

Procedure [LBx] = LB_GHT(Q,SigCx)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

SigQx column signature of Q;
LBx number of edge points in Q;
Rx center of mass of SigQx;
left Rx – 1;
for i 1: length(SigCx)

missed 0;
for j 1: length(SigQx)

k (i – left) + (j – 1);
if k < 1 || k > length(SigCx)

missed missed + SigQx[j];
else

delta SigQx[j] – SigCx[k];
if delta > 0

missed missed + delta;
endif

endif
if missed > LBx

break;
endif

endfor
if missed < LBx

LBx missed;
endfor

endfor

0 0 3 2 2 2 3 00 0 00 0 0 2 8 2 0 00 0 0

0 0 3 2 2 2 3 00 0 0
2 2 4 2 2

2 2 4 2 2
In this column Q needs 2 pixels in C, and has 3
In this column Q needs 2 pixels in C, and has 2
In this column Q needs 4 pixels in C, and has only 2
In this column Q needs 2 pixels in C, and has 2
In this column Q needs 2 pixels in C, and has 3

Q C

SigQx =
SigCx =



In summary, we have:

),( ]1)(:[

)(

1
min 



 SigQxlengthleftilefti

SigCxlength

i

SigCxSigQxLB

SigCx)LB(SigQx,

To get the final lower bound, we simply run the algorithm in
Table 2 again, this time with SigCy instead of SigCx, and with all
column operators changed to row operations. After then
calculating LB(SigQy,SigCy), the final lower bound LB(Q,C), is
simply max[LB(SigQx,SigCx), LB(SigQy,SigCy)].

The time complexity of our lower bound algorithm is O(S2). Note
that it is independent of the number of edge points in images. As
we shall show in Section 4.3, similarity search using the lower
bound achieves a one to two order of magnitude speed-up.

3.5 Variants on the Basic Distance Measure
While the MUE is in itself a useful distance measure, it is helpful
to consider slight variations of it to enable higher-level data
mining algorithms. Note that in every case, we can still use the
lower bound technique to speed up the high-level data mining
algorithms. Below we consider three useful variants, and in the
next section we empirically evaluate them.

Query-by-Content: In the simple examples we have considered
thus far, we have implicitly assumed that the number of edge
points in Q and C was the same. While MUE is surprisingly
robust to small deviations from this assumption (say, less than a
factor of two differences) it is clear that it has a bias. In particular,
images that have relatively numerous edge points simply tend to
be somewhat similar to everything. Since any large collection of
images will invariably contain a few of these “rich” images, they
can distort the results of any nearest neighbor searches. To
mitigate this problem we define the nearest neighbor distance
from Q to C as:
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Note that we do not use MUE directly, but the inverse of “NQ –

MUE” (i.e. maximal matched edge points). The term QC NN / is

an explicit penalty for the problem NC >> NQ. Note that we can
still use the lower bound of MUE to lower bound Dnn (Q,C).

Clustering: The Dnn measure is perfect for similarity searching,
which requires one-to-all matching. However, clustering requires
all-to-all matching. In this case, with all things being equal, the
Dnn measure would be biased into claiming that two images with
many edge points are more similar than two images with few edge
points. We can use Dclustering (Q,C) to compensate for this:

)],(),([),( QCDCQDNNCQD nnnnCQclustering 

Finding Motifs: Many data mining algorithms explicitly require a
distance measure that obeys the triangular inequality. As a
concrete example, we recently introduce an efficient and exact
algorithm for finding motifs (approximately repeated patterns)
[16], which makes no assumptions about the data or distance
measure, other than the triangular inequality. We can modify
MUE to obtain such a distance with:

)),((2/)(),( CQMUENNNCQD QCQmotifs 

The proof of triangular inequality can be found at [27].

4. EXPERIMENTAL RESULTS
We have designed all experiments such that they are not only
reproducible, but easily reproducible. To this end, we have built a
webpage [27] which contains all datasets and code used in this
work, together with spreadsheets which contain the raw numbers
displayed in all the figures. The webpage also contains many
additional experiments which we did not include for brevity;
however, we note that this paper is completely self-contained. All
of the experiments are performed on a computer with an Intel i7-
920 processor and 6.0GB of DDR3 memory.

4.1 Evaluation of Utility
We begin with simple sanity checks. We took a collection of
petroglyphs from the Southwest USA and extracted fourteen
images that would reasonably be grouped into seven pairs. Figure
11 shows the clustering obtained by our distance measure.

Figure 11: (left) A group-average linkage hierarchical clustering of
typical Southwestern USA petroglyphs, with the Dclustering measure.
(right) While the dendrogram to the left shows the full resolution
images for clarity, the images input to the distance measure have
binarized, thinned and scaled to fit in a 30 by 30 bounding rectangle

Not only does the measure correctly group the seven pairs, but the
higher level structure of the dendrogram correctly groups the
images into Bighorn Sheep/Anthropomorphs/Atlatls2. Note that
due to the thinning preprocessing step, the measure seems
invariant to the hollow/solid nature of the Atlatls.

2
An Atlatl is a spear-throwing device.
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In the 1920’s Dr. Stephen Chauvet noticed that many of the
petroglyphs discovered on Easter Island showed humans in poses
very similar to petroglyphs created by the Harappa culture (in
what is now modern-day Pakistan). He noted these similarities in
his 1935 text [7], which inspired a flurry of speculation about the
origin of the Easter Island peoples3. It is natural to ask if our
proposed distance measure could have “noticed” this similarity.
This is a very difficult challenge for a distance measure, because
the Harappa culture used stick-figures, whereas the Easter Island
petroglyphs used highly stylized outlines. Nevertheless, as we can
see in Figure 12, our method can capture the intuitive similarities.

Figure 12: The GHT distance is able to find the intuitive similarity
between pairs of anthropomorphic figures, in spite of the different
styles of representations

4.2 Evaluation of Accuracy
Because there currently no large collections of objectively labeled
petroglyphs, in this section we will test two publicly available
datasets that are very similar to (some kinds of) petroglyphs. With
these experiments we intend to show:

 Competitive or superior accuracy for query-by-content
compared to some state-of-the-art algorithms.

 Relative insensitivity to amount of downsampling, which
would mean our method is essentially parameter-free.

 As claimed in Figure 4, very high resolution imagery hinders
rather than helps accuracy.

The first dataset is the NicIcon dataset [17], which contains
24,441 images from the 14 categories shown in Figure 13. Thirty-
three participants were asked to sketch these icons in different
sizes (small, medium and large) and a digital tablet was used to
record the data (spatial, time and pressure coordinates). Note that
counter to the original intention for the data and subsequent
algorithms, our algorithm only considers the shape, and
completely ignores pen speed and pressure information.

Figure 13: Examples of 14 categories from NicIcon dataset

We did both writer dependent (WD) and writer independent (WI)
tests, in both cases, randomly choosing 60% of data as the train
set and the rest as the test set, the same division as used the
original paper [17].

The original data is 234×234 pixels. To explore the sensitivity of
our algorithm to the amount of downsampling (its only user-
specified parameter), we tested on six resolutions from 5×5 to

3
DNA analyses now shows that this speculation was wrong; the Easter Island people

are descended from Polynesians.

50×50 for both WD and WI tests, using the simple one-nearest-
neighbor classifier. Figure 14 shows the results.

Figure 14: Error rate vs. Resolution. WD and WI tests on NicIcon
dataset in 6 resolutions. Error rate makes little difference once the
resolution is larger than 10×10

This plot suggests the sampling rate is not critical. The error rate
only increased significantly when resolution was reduced to 5×5,
which is clearly highly undersampled for any non-trivial dataset.

We obtained the best error rate 4.78% for WD and 8.46% for WI
with the size of 20×20 pixels. The dataset creators tested on the
online data using three classifiers [17]: the multilayered
perceptron, the linear multi-class SVM classifier and a Dynamic
Time Warping Based (DTWB) algorithm. The reported error rate
for WD is from 1.94% to 15.61% and 5.3% to 20.01% for WI.
Only the DTWB is better than our method, and recall that the
DTWB had access to information about the pen speed, pen
pressure, and the direction in which the lines were drawn, all of
which is unknown to our algorithm. While the original authors do
not measure time for classification, each comparison with the
DTWB measure requires DTW calculations to be performed a
number of times which are quadratic in the number of line strokes
(i.e, the number of pen-ups) in each image, which is clearly very
expensive.

We also tested without any downsampling, and the error rate
increased dramatically: 31.75% for WD and 35.75% for WI, even
worse than the ultra-low resolution 5×5. This verifies our analysis
in Section 2.2.

Another petroglyph-like dataset is introduced by Khosravi and
Kabir [13]. It is a very large dataset of handwritten Farsi digits
extracted from about 11,942 registration forms. They obtained
102,352 binary images of Farsi digits, and chose 60,000 for
training and 20,000 for testing (see samples in Figure 15).

Figure 15: Sample digits from Farsi dataset. Note: number 2, 3 and 4
are very similar (3 and 4 in the third row are even impossible for
human to distinguish); some digits have different styles (4 and 6);
some digits are in bad quality (7, 8 and 9 in the third row)

The size of images in the Farsi dataset is smaller than in the
NicIcon dataset: the minimum bounding rectangle (MBR) of the
largest digits is 54×64 pixels. We tested on four downsampling
resolutions from 5×5 to 30×30, using a one-nearest-neighbor
classification using the same train and test data splits. The results
are shown in Figure 16.
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Figure 16: Error rate vs. Resolution. One-nearest-neighbor
classification on Farsi dataset with four resolutions. Note that the
error rate varies little when the resolution is greater than 10×10

We obtained the best error rate of 4.54% in the resolution of
20×20 (the same as the best resolution for the NicIcon dataset).
Borji et al. [6] performed extensive empirical tests on this dataset,
testing multiple algorithms, 3-NN, ANN, SVMpolynomial, SVMlinear

and SVMRBF, each with four parameter choices (two choices of
filters times two numbers of orientations). Of the twenty reported
error rates, the mean was 8.69% and only four combinations beat
our approach with a best performance of 2.36%. However, it is
important to note that in addition to the two explicit parameter
choices, there are at least four other parameters set “in the
background” here.

Having shown that low resolution images can produce high
accuracy in our domain, we have fixed the resolution to 30×30
pixels in all remaining experiments in this paper.

4.3 Evaluation of Speed and Scalability
As noted in Section 2, while we currently have only thousands of
petroglyphs, we expect to shortly have on the order of a million.
Therefore, we will test our algorithm dataset containing more than
one million objects. To make this possible, we made our own
synthetic petroglyphs dataset. We obtained the twenty-two
petroglyphs (samples are shown in the top row of Figure 17).
Then ten volunteers were asked to duplicate the petroglyphs by
drawing them with an HP pavilion tx2510us tablet PC. A total of
250 petroglyphs were created in this way as our basic dataset
(samples are shown in the second row of Figure 17). We then
applied a random second-order Polynomial Transformation to
each image in the basic dataset to make [39 79 159 319 639 1,279
2,559 5,119] distorted copies of each (as shown in the third row
of Figure 17). With this basic dataset, we finally created eight
datasets from size 10,000 to 1,280,000.

Figure 17: The Synthetic Petroglyphs Dataset. first row: samples of
petroglyphs templates; second row: sample petroglyphs of the basic
“human-copied” dataset; third row: samples of distorted petroglyphs.
Note for each template, we have copies in different scales,
translations, orientations and non-linear distortions

We first did a leave-one-out one-nearest-neighbor test. For each
dataset, we randomly picked an image as the testing sample,
removed it from the dataset and found its nearest neighbor using
our lower bound based algorithm. We repeated this process ten
times; Figure 18 shows the result.

Figure 18: Time taken for the 1-NN query on eight synthetic
petroglyphs datasets. For each dataset, maximal, average and minimal
time of 10 runs are reported. Note log scale is used in x axis

We can see that the range between the maximal and minimal time
is relatively small. When viewed on a normal scale plot (see [27]),
we can see that the average running time is linear to the size of the
dataset. While this is a test of scalability, we note in passing that
the accuracy of this 22-class problem is 100% for all experiments.

It is natural to ask how much of the effectiveness of the search can
be attributed to our lower bound. We measured the pruning rate:

searchforcebrutenscalculatioGHTofnumber

searchboundlowernscalculatioGHTofnumber
ratepruning

,

,
1

for each of the 10 runs; the result is shown in Figure 19.

Figure 19: Pruning rate of our lower bound algorithm on eight
synthetic petroglyphs datasets. For each dataset, maximal, average
and minimal rates are reported. Note log scale is used in x axis

The results show that the pruning is extremely effective,
particularly for larger datasets. The average prune rate exceeds
99.0% when examining 80,000 objects, and even the minimal
prune rate is more than 96.9% at that point.

We also did a similar experiment with the brute force algorithm.
Figure 20 compares the percentage of execution time for our
lower bound algorithm relative to the brute force algorithm.
Notice that for the largest dataset, our lower bound time is only
2% of the brute force one.

Figure 20: Percentage of execution time for our lower bound
algorithm relative to the brute force algorithm. Note log scale is used
in x axes

In addition to query-by-content, we also tested our ability to find
motifs in these datasets. We can use the Dmotifs distance measure
combined with the algorithm recently published in [16] to
efficiently find a pair of images whose distance is the smallest in a
given dataset. Figure 21 shows the running time of finding motifs
in our synthetic petroglyphs datasets.
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Figure 21: Time of finding motifs in eight synthetic petroglyphs
datasets. Note log-log scale

A brute force algorithm to find motifs requires time quadratic in
the size of dataset. But from a normal scale plot (see [27]), we
find that our algorithm scales linearly. This is because we only
need to calculate a tiny fraction of the exact distance between two
images: even for the smallest dataset with 10,000 objects, we can
prune 99.84% of the calculations, and by the time we are
considering 1,280,000 images we are pruning more than 99.99%
of the calculations. In Figure 22 we show the explicit speed-up
over the brute force search. Even for the smallest dataset, our
algorithm is 712 times faster and by the time we see the largest
dataset, our algorithm is more than 100,000 times faster.

Figure 22: Speed-up of our lower bound algorithm against brute force
algorithm of finding motifs in increasingly large petroglyphs datasets.
For the brute force algorithm, we only ran it on the 10,000 datasets
and extrapolated other values. Note log scale is used in x axis

While these results show that we can make the otherwise
intractable task of finding motifs in large datasets tenable, it does
not consider the effectiveness. Normally motif discovery cannot be
evaluated directly in terms of accuracy, since we assume
unlabeled data. However, since we actually know the labels in this
case, we can measure the accuracy. For example when testing the
dataset with 80,000 petroglyphs images (from 22 classes) over
100 runs on random sets of 80,000 objects (taken from a pool of
1280K) , we found that on 99 occasions the labels agreed.

5. CONCLUSIONS AND FUTURE WORK
In this work we consider, for the first time, the problem of mining
large collections of rock art. We introduced an explicit framing of
the GHT algorithm as a similarity measure, and showed that by
lower bounding the measure we can effectively mine large data
archives. Future work includes achieving rotation invariance and
supporting partial shape matching.
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