Proof of
 the Triangular Inequality of Motif Distance

Qiang Zhu
Feb, 2009

Notations

- $\mathrm{N}_{\mathrm{A}}=$ number of edge points in image A
- $A B_{m}=$ the set containing maximal number of edge points that match between A and B.
- $\left|A B_{m}\right|=$ size of the set $A B_{m}$
- In section 3.5 of our paper, we define:

$$
\mathrm{D}_{\text {motif }}(\mathrm{A}, \mathrm{~B})=(\mathrm{A}+\mathrm{B}) / 2-\left(\mathrm{N}_{\mathrm{A}}-M U E(\mathrm{~A}, \mathrm{~B})\right)
$$

Now we can rewrite it as:

$$
\mathrm{D}_{\text {motif }}(\mathrm{A}, \mathrm{~B})=(\mathrm{A}+\mathrm{B}) / 2-\left|\mathrm{AB} \mathrm{~B}_{\mathrm{m}}\right|
$$

Given any three images A, B and C, we are going to prove:

$$
D(A, B)+D(B, C) \geq D(A, C) \text {. }
$$

By the distance definition, we can have :

$$
\left[\left(N_{A}+N_{B}\right) / 2-\left|\mathrm{AB}_{\mathrm{m}}\right|\right]+\left[\left(\mathrm{N}_{\mathrm{B}}+\mathrm{N}_{\mathrm{C}}\right) / 2-\left|\mathrm{BC}_{\mathrm{m}}\right|\right] \geq\left[\left(\mathrm{N}_{\mathrm{A}}+\mathrm{N}_{\mathrm{C}}\right) / 2-\left|\mathrm{AC}_{\mathrm{m}}\right|\right]
$$

That is:

$$
\begin{equation*}
N_{B} \geq\left|A B_{m}\right|+\left|B C_{m}\right|-\left|A C_{m}\right| \tag{*}
\end{equation*}
$$

Lemma 1: $\left|A B_{m} \cap B C_{m}\right| \leq\left|A C_{m}\right|$

The proof is trivial. Because:

$$
A B_{m} \cap B C_{m} \subseteq A, A B_{m} \cap B C_{m} \subseteq C
$$

And $A C_{m}$ contains maximal matched edge points between A and C, so:

$$
A B_{m} \cap B C_{m} \subseteq A C_{m}
$$

Then:

$$
\left|A B_{m} \cap B C_{m}\right| \leq\left|A C_{m}\right|
$$

Lemma 2: $\left|A B_{m} \cap B C_{m}\right| \geq\left|A B_{m}\right|+\left|B C_{m}\right|-N_{B}$

$\left|A B_{m} \cap B C_{m}\right|=N_{B}-\left|\overline{A B m \cap B C_{m}}\right|$

$$
\begin{aligned}
& =N_{B}-|\overline{\mathrm{ABm}} \cup \overline{\mathrm{BCm}}| \\
& \geq N_{B}-|\overline{\mathrm{ABm}}+\overline{\mathrm{BCm}}| \\
& \geq N_{B}-\left[\left(N_{B}-\left|A B_{m}\right|\right)+\left(N_{B}-\left|\mathrm{BC}_{m}\right|\right)\right] \\
& \geq\left|A B_{m}\right|+\left|B C_{m}\right|-N_{B}
\end{aligned}
$$

Combine Lemma 1 and 2, we can obtain the (*) on page 3.

Proof done.

