
Final Code Generation

front end
src

pgm

intermediate
code

o optimizer
final code

generator

target

pgm

symbol table

Input to Code Generator :

• intermediate code program

• symbol table

Output of Code Generator : target program. This
can be any of:

• assembly language program

• absolute machine-language program

• relocatable machine-language program

1

Translating 3-address code to final code

This is almost a macro expansion process. Examples:

3-Address Code MIPS assembly code

x = A[i] load i into reg1

la reg2, A

add reg2, reg2, reg1

lw reg2, (reg2)

sw reg2, x

x = y+z load y into reg1

load z into reg2

add reg3, reg1, reg2

sw reg3, x

if x >= y goto L load x into reg1

load y into reg2

bge reg1, reg2, L

The resulting code may not be very efficient, but can
be improved via various code optimization techniques.

2

Improving Code Quality : Peephole Optimization

We can traverse the sequence of intermediate code in-
structions looking for sequences that can be improved.
Examples of such improvements include:

• redundant instruction elimination, e.g.:

. . .

goto L

L:
. . .

⇒
. . .

L:

. . .

• flow-of-control optimizations, e.g.:

. . .

goto L1
. . .

L1: goto L2
. . .

⇒

. . .

goto L2
. . .

L1: goto L2
. . .

• algebraic simplifications, e.g.:

– instructions of the form x := x+0 or x := x*1 can
be eliminated.

– special case expressions can be simplified, e.g.:
x := 2*y can be simplified to x := y+y.

3

Improving Code Quality : Register Allocation

A value in a register can be accessed much more effi-
ciently than one in memory, so we should try to keep
(frequently used) values in registers.

Local Register Allocation : considers only small seg-
ments of code (“basic blocks”) :

• If an expression will be used soon after it is evalu-
ated, try to compute it into an unused register.

• If there are no free registers, we can either compute
into memory (if addressing modes allow), or free
up a register by storing its contents into memory.
Choose the register cheapest to store to memory
and least likely to be accessed soon.

Global Register Allocation : considers the entire body
of a function or procedure:

• Tries to keep frequently accessed values in registers,
esp. across loops.

• Uses loop nesting depth as a guide to frequency of
access: variables in the most deeply nested loops
are assumed to be accessed the most frequently.

4

Improving Code Quality : Code Optimization

• Examine the program to find out about certain
properties of interest (“Dataflow Analysis”).

• Use this information to change the code in a way
that improves performance. (“Code Optimization”).
Examples of optimizations include:

– Code Motion out of Loops : if a computation
inside a loop produces the same result for all
iterations (e.g., computing the base address of
a local array), it may be possible to move the
computation outside the loop.

– Common Subexpression Elimination : if the same
expression is computed in many places (e.g., ar-
ray addresse computations; results of macro ex-
pansion), compute it once and reuse the result.

– Copy Propagation : If we have an intermediate
code “copy” instruction ‘x := y’, replace subse-
quent uses of x by y (where possible).

– Dead Code Elimination : delete instructions whose
results are not used.

5

Basic Blocks and Flow Graphs

• For program analysis and optimization, it is usu-
ally necessary to know control flow relationships
between different pieces of code.

• For this, we:

– group 3-address instructions into basic blocks

– represent control flow relationships between ba-
sic blocks using a control flow graph.

Example:

L1: if x > y goto L0
t1 = x+1

x = t1

L0: y = 0
goto L1

⇒ x = t1

L1:

L0:
y = 0
goto L1

if x>y goto L0

t1 = x+1

6

Basic Blocks

Definition : A basic block is a sequence of consecutive
instructions such that:

1. control enters at the beginning;

2. control leaves at the end; and

3. control cannot halt or branch except at the end.

Identifying basic blocks :

1. Determine the set of leaders, i.e., the first in-
struction of each basic block:

(a) The first instruction of the function is a leader.

(b) Any instruction that is the target of a branch
is a leader.

(c) Any instruction immediately following a (con-
ditional or unconditional) branch is a leader.

2. For each leader, its basic block consists of itself
and all instructions upto, but not including, the
next leader (or end of function).

7

Example

/* dot product: prod =

N
∑

i=1

a[i] ∗ b[i] */

No. leader? Instruction basic block
(1)

√
prod = 0 1

(2) i = 1 1
(3)

√
t1 = 4*i 2

(4) t2 = a[t1] 2
(5) t3 = 4*i 2
(6) t4 = b[t3] 2
(7) t5 = t2*t4 2
(8) t6 = prod+t5 2
(9) prod = t6 2
(10) t7 = i+1 2
(11) i = t7 2
(12) if i ≤ N goto (3) 2

8

Control Flow Graphs

Definition : A flow graph for a function is a directed
graph G = (V, E) whose nodes are the basic blocks
of the function, and where a → b ∈ E iff control can
leave a and immediately enter b.

The distinguished initial node if a flow graph is the
basic block whose leader is the first instruction of
the function.

Constructing the flow graph of a function :

1. Identify the basic blocks of the function.

2. There is a directed edge from block B1 to block
B2 if

(a) there is a (conditional or unconditional) jump
from the last instruction of B1 to the first
instruction of B2; or

(b) B2 immediately follows B1 in the textual order
of the program, and B1 does not end in an
unconditional jump.

Predecessors and Successors : if there is an edge
a → b then a is a precedessor of b, and b is a
successor of a.

9

Example :

L1: prod = 0

i = 1

L2: t1 = 4*i
t2 = a[t1]

t3 = 4*i
t4 = b[t3]

t5 = t2*t4
t6 = prod+t5

prod = t6

t7 = i+1
i = t7

if i ≤ N goto L2

⇒

prod = 0
i = 1

t1 = 4 * i
t2 = a[t1]
t3 = 4 * i

B2:

t4 = b[t2]
t5 = t2 * t4
t6 = prod + t5
prod = t6
t7 = i + 1
i = t7

if i<=N goto B2

B1:

10

Representing Basic Blocks in a Flow Graph

Many different representations are possible, with differ-
ent tradeoffs. One possibility:

struct bblk_struct {
int bblno;
instruction *first_inst;
instruction *last_inst;
struct bblk_struct *preds, *succs;
struct bblk_struct *prev, *next;

/* + information computed during analysis */

}

11

Global Register Allocation by Graph Coloring

• When a register is needed but all registers are in use,
a register has to be freed by storing its contents in
memory (“spilling”).

Graph coloring is a systematic way of allocating
registers and managing spills.

• Graph coloring uses two passes:

1. Target machine instructions are selected as though
there are infinitely many symbolic registers.

2. Physical registers are assigned to symbolic reg-
isters in a way that minimizes the cost of spills.

• Basic Idea : Construct an interference graph:

Nodes : symbolic registers;

Edges : there is an edge between nodes m and n

if m and n are simultaneously “live.”

Then “color” this graph using k colors (k = no. of
available registers) such that adjacent nodes don’t
get the same color.

12

Register Interference Graphs

• Nodes ' variables or symbolic registers.

• There is an edge between two nodes if they can be
simultaneously live.

• If there are k assignable registers, we try to k-color
the interference graph.

This problem is NP-complete in general. The fol-
lowing heuristic works well in practice:

repeat

if a node n has fewer than k neighbors, we
can always find a color for it. Delete n and
its edges from the graph and try to k-color
the resulting graph.

until either

– we get the empty graph: in this case, work back-
wards to produce a k-coloring of the original
graph; or

– we get a graph where every node has ≥ k neigh-
bors: in this case, choose a node to spill to
memory, delete this node from the graph, and
repeat the above process.

General rule for spilling: avoid introducing code into
inner loops.

13

Live Ranges

Definition : A live range is an isolated and connected
group of basic blocks in which a variable is live.

• Usually, a live range begins at a definition point of
a variable and ends at its last uses.

• Different variables may have different live ranges.

(⇒ a given basic block may be part of many differ-
ent live ranges.)

• A given variable may have several different live ranges.

live ranges for y

live ranges for x

use x

define x
define y

use x

use x

use x

use x

use y

define x
use y

14

Variable Liveness

Definition : A variable is live at a point in a program if
it may be used at a later point before being redefined.

Example :

x

not livex

livex

livex

livex

not livex

live

y = y-x

x = 1

x = x+1

y = x+y

x = 2

z = z+1

Using liveness information:

1. If a variable x is in a register r at a program point,
and x is not live, then r can be used for another
variable without having to store x to memory.

2. For constructing the interference graph for register
allocation by graph coloring.

15

Computing Liveness Information (within a basic block)

Suppose we know which variables are live at the exit
from the basic block. Then:

• Scan backwards from the end of the block. At the
point immediately before an instruction

I : x := y op z

we have:

– y and z are live; and

– x is not live (unless x = y or x = z).

16

Computing Liveness Information (dataflow analysis)

We compute IN[B] and OUT[B], the sets of variables
that are live at the beginning and end of each basic
block, respectively, in a flow graph, as follows:

Initialization:
IN[B] = ∅ for all B

OUT[B] =

{

all globals if B is an exit block
∅ otherwise

Propagation: For each non-exit block B:

– OUT[B] =
⋃

B′∈successors(B)

IN[B′]

– IN[B] = (OUT [B] − KILL[B])
⋃

GEN [B], where

GEN [B] = {v : variable v is read before being written}
KILL[B] = {v : variable v is defined in B}

Since a flow graph may have cycles, we need to
iterate this step until there is no change to any IN
or OUT set.

17

