Final Code Generation

intermediate

src
—= frontend

pgm

final code | target

generator
pgm

symbol table

Input to Code Generator :

e intermediate code program

e symbol table

Output of Code Generator : target program. This
can be any of:

e assembly language program
e absolute machine-language program

e relocatable machine-language program

Translating 3-address code to final code

This is almost a macro expansion process. Examples:

3-Address Code MIPS assembly code

x = A[i] load i into reg,

la reg,, A

add reg,, reg,, Tr€gq
1w reg,, (reg,)

SW T€J5, X

X = y+z load y into reg,
load z into reg,
add regsz, regi, T€go

sW regs, X

if x >= y goto L | /load x into reg,
load y into reg,

bge reg,, 1€G5, L

The resulting code may not be very efficient, but can
be improved via various code optimization techniques.

Improving Code Quality : Peephole Optimization

We can traverse the sequence of intermediate code in-
structions looking for sequences that can be improved.
Examples of such improvements include:

e redundant instruction elimination, e.qg.:

goto L
L:

e flow-of-control optimizations, e.g.:

goto L1 goto L2

Ll: goto L2 L1: goto L2

e algebraic simplifications, e.qg.:

— instructions of the form x := x+0 or x := x*1 can
be eliminated.

— special case expressions can be simplified, e.qg.:
x := 2xy can be simplified to x := y+y.

Improving Code Quality : Register Allocation

A value in a register can be accessed much more effi-
ciently than one in memory, so we should try to keep
(frequently used) values in registers.

LLocal Register Allocation . considers only small seg-
ments of code (“basic blocks”) :

e If an expression will be used soon after it is evalu-
ated, try to compute it into an unused register.

e If there are no free registers, we can either compute
into memory (if addressing modes allow), or free
up a register by storing its contents into memory.
Choose the register cheapest to store to memory
and least likely to be accessed soon.

Global Register Allocation : considers the entire body
of a function or procedure:

e Tries to keep frequently accessed values in registers,
esp. across loops.

e Uses loop nesting depth as a guide to frequency of
access: variables in the most deeply nested loops
are assumed to be accessed the most frequently.

Improving Code Quality : Code Optimization

e Examine the program to find out about certain
properties of interest (“Dataflow Analysis").

e Use this information to change the code in a way
that improves performance. (“Code Optimization™).
Examples of optimizations include:

— Code Motion out of Loops : if a computation
inside a loop produces the same result for all
iterations (e.g., computing the base address of
a local array), it may be possible to move the
computation outside the loop.

— Common Subexpression Elimination : if the same
expression is computed in many places (e.g., ar-
ray addresse computations; results of macro ex-
pansion), compute it once and reuse the result.

— Copy Propagation : If we have an intermediate
code “copy” instruction ‘x := y', replace subse-
quent uses of x by y (where possible).

— Dead Code Elimination : delete instructions whose
results are not used.

Basic Blocks and Flow Graphs

e For program analysis and optimization, it is usu-
ally necessary to know control flow relationships
between different pieces of code.

e For this, we:

— group 3-address instructions into basic blocks
— represent control flow relationships between ba-
sic blocks using a control flow graph.

Example:

i

if x>y goto LO

L1:

L1: if x > y goto LO
t1 = x+1 —
x = t1 — E(l::t)f_l
LO: y =20
goto L1 LO:
; y =0
goto L1

Basic Blocks

Definition : A basic block is a sequence of consecutive
instructions such that:

1. control enters at the beginning;
2. control leaves at the end; and

3. control cannot halt or branch except at the end.

Identifying basic blocks :

1. Determine the set of leaders, i.e., the first in-
struction of each basic block:

(a) The first instruction of the function is a leader.

(b) Any instruction that is the target of a branch
is a leader.

(c) Any instruction immediately following a (con-
ditional or unconditional) branch is a leader.

2. For each leader, its basic block consists of itself
and all instructions upto, but not including, the
next leader (or end of function).

Example

N

/* dot product: prod = j{:a{ﬂ * b[i] */

No.
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)

leader?

Vv
Vv

=1

Instruction

prod = 0O
i=1

tl = 4%i
t2 = alt1]
t3 = 4%i
t4 = b[t3]
t5 = t2xt4
t6 = prod+tb
prod = t6
t7 = i+l

i = t7

if 1 < N goto (3)

basic block

NNNNNNNNNNNR -

Control Flow Graphs

Definition : A flow graph for a function is a directed
graph G = (V, E) whose nodes are the basic blocks
of the function, and where a — b € FE iff control can
leave a and immediately enter b.

The distinguished initial node if a flow graph is the
basic block whose leader is the first instruction of
the function.

Constructing the flow graph of a function :
1. Identify the basic blocks of the function.

2. There is a directed edge from block B; to block
B> if
(a) there is a (conditional or unconditional) jump

from the last instruction of B; to the first
instruction of By: or

(b) B> immediately follows B; in the textual order
of the program, and B; does not end in an
unconditional jump.

Predecessors and Successors : if there is an edge

a — b then a is a precedessor of b, and b is a
successor of a.

Example :

L1:

L2:

prod = 0O
i=1

tl = 4%i
t2 = al[t1]
t3 = 4%i
t4 = b[t3]
tb = t2xt4
t6 = prod+tb
prod = t6
t7 = i+l
i=1t7

if i < N goto L2

B1l:

B2:

prod = 0
i =1
tl =4 * |
t2 = a[t1l]
t3 =4 *
t4 = b[t2]
ts =12 * t4
t6 = prod + t5
prod =16
t7 =i + 1
I = t7
I f 1 <=N goto B2

10

Representing Basic Blocks in a Flow Graph

Many different representations are possible, with differ-
ent tradeoffs. One possibility:

struct bblk_struct {
int bblno;
instruction *first_inst;
instruction *last_inst;
struct bblk_struct *preds, *succs;
struct bblk_struct *prev, *next;

/* + information computed during analysis */

11

Global Register Allocation by Graph Coloring

e \When a register is needed but all registers are in use,
a register has to be freed by storing its contents in
memory (“spilling”).

Graph coloring is a systematic way of allocating
registers and managing spills.
e Graph coloring uses two passes:

1. Target machine instructions are selected as though
there are infinitely many symbolic registers.

2. Physical registers are assigned to symbolic reg-
isters in a way that minimizes the cost of spills.

e Basic Idea : Construct an interference graph:

Nodes : symbolic registers;

Edges : there is an edge between nodes m and n
if m and n are simultaneously ‘“live.”

Then “color” this graph using k& colors (kK = no. of
available registers) such that adjacent nodes don't
get the same color.

12

Register Interference Graphs

e Nodes ~ variables or symbolic registers.

e T here is an edge between two nodes if they can be
simultaneously live.

e If there are k assignable registers, we try to k-color
the interference graph.

This problem is NP-complete in general. The fol-
lowing heuristic works well in practice:

repeat

if @ node n has fewer than k neighbors, we
can always find a color for it. Delete n and
its edges from the graph and try to k-color
the resulting graph.

until either

— we get the empty graph: in this case, work back-
wards to produce a k-coloring of the original
graph; or

— we get a graph where every node has > k£ neigh-
bors: in this case, choose a node to spill to
memory, delete this node from the graph, and
repeat the above process.

General rule for spilling: avoid introducing code into
inner loops.

13

comple U] Beyiten Allowohicn

D

l % D A+
{ 3'?6\6? Ig

| Recd C
% D=3 .
) pDop+C

Uumhe v .,4 Yoty = 3
< ;\ < 2 il gy
L {\/u emoyg 3 A %D iﬂ
@ e C
Coloy (n yeverse viler:
2N R FI
WOLE SN
1 SR 7 @/ L Y
y\ L)
@~ D1

Live Ranges

Definition :

A live range is an isolated and connected
group of basic blocks in which a variable is live.

e Usually, a live range begins at a definition point of
a variable and ends at its last uses.

e Different variables may have different live ranges.

(= a given basic block may be part of many differ-
ent live ranges.)

e A given variable may have several different live ranges.

define x
define y

use X

use X

usey

use X

define x
use y

use X

use X

Q live ranges for x
O live ranges for y

14

Variable Liveness

Definition : A variable is live at a point in a program if
it may be used at a later point before being redefined.

Example :

X live <:i:(

X not live -

X not live --

Using liveness information:

1. If a variable x is in a register r at a program point,
and x is not live, then r can be used for another
variable without having to store x to memory.

2. For constructing the interference graph for register
allocation by graph coloring.

15

Computing Liveness Information (within a basic block)

Suppose we know which variables are live at the exit
from the basic block. Then:

e Scan backwards from the end of the block. At the
point immediately before an instruction
I:x :=y op z
we have:
— y and z are live; and

— x is not live (unless x = y or x = z).

16

Computing Liveness Information (dataflow analysis)

We compute IN[B] and OUT[B], the sets of variables
that are live at the beginning and end of each basic
block, respectively, in a flow graph, as follows:

Initialization:
IN[B] =0 for all B
__J all globals if B is an exit block
OUTIB] = { 0 otherwise

Propagation: For each non-exit block B:

— OUT[B] =) IN[B]
B’esuccessors(B)
— IN[B] = (OUT|[B] — KILL[B))|JGEN[B], where
GEN|[B] = {v : variable v is read before being written}
KILL[B] = {v : variable v is defined in B}

Since a flow graph may have cycles, we need to
iterate this step until there is no change to any IN
or OUT set.

17

Live VYARIABLES

"N[B] - set C{v&ru‘ahles that are hve, a én‘l’Y_y C# Ixzsie ,;19(1(3

OUT[B] _ o + . I € Iz ’” e)".t’ 6'4 BC!,H'(,’;40 e ,g

(.TFNL‘B]: EV‘I variable vy vused 5:@,(;»«? heing, H'v-’.tf;atf n A J
kL [R]): (V. vheble T defimed in B
ourisl- L iz
B'e su« ()
(cut B - K;LL[@?) U GENE]

IN[B] =

Alvonthm :
v

for eads bloue B do
(f 13 s the «nrt blode +hen
our Bl - st ot Gl bod vonachles
IN[i3) = (SLTTR)- Kitinz)) U GENGE)

elre o N
ouT ()= IND3) =54

€ ndef
Qnd.{r/‘.
Done = {alee
while nck PONE dyu
DONE = trux
for each B3 which r& ot the exi b btk do
New - u IN [13']
g'(— Suc(i3)
:;(Ne v 74. OQTEBJ +he n
DONE = -‘-(LL,Q
ou,—[,;;] = n¥u '
(NT) = (cur(i) - A GEN[B]
<~m;
anUfiev
and vl

