
Formalizing Soundness of Contextual Effects

Polyvios Pratikakis, Jeffrey S. Foster, Michael Hicks, and Iulian Neamtiu

University of Maryland, College Park, MD 20742

Abstract. A contextual effects system generalizes standard type and
effect systems: where a standard effects system computes the effect of
an expression e, a contextual effects system additionally computes the
prior and future effect of e, which characterize the behavior of computa-
tion prior to, and following, respectively, the evaluation of e. This paper
describes the formalization and proof of soundness of contextual effects,
which we mechanized using the Coq proof assistant. Contextual effect
soundness is an unusual property because the prior and future effect of
a term e depends not on e itself (or its evaluation), but rather on the
evaluation of the context in which e appears. Therefore, to state and
prove soundness we must “match up” a subterm in the original typing
derivation with the possibly-many evaluations of that subterm during the
evaluation of the program, in a way that is robust under substitution.
We do this using a novel typed operational semantics. We conjecture
that our approach could prove useful for approaching other properties of
derivations that rely on the context in which that derivation appears.

1 Introduction

Type and effect systems are used to reason about a program’s computational
effects [5, 8, 11]. Generally speaking, a type and effect system proves judgments of
the form ε;Γ ` e : τ where ε is the effect of expression e. Recently, we proposed
generalizing such systems to track what we call contextual effects, which capture
the effects of the context in which an expression occurs [7]. In our contextual
effect system, judgments have the form Φ;Γ ` e : τ , where Φ is a tuple [α; ε;ω]
containing ε, the standard effect of e, and α and ω, the effects of the program
evaluation prior to and after computing e, respectively.

Our prior work explored the utility of contextual effects by working out two
applications in detail, one related to dynamic software updating correctness, and
the other to multi-threaded program analysis. This paper presents the formal-
ization and proof of soundness of contextual effects, which we have mechanized
using the Coq proof assistant [2]. Intuitively, for all subexpressions e of a given
program ep, a contextual effect [α; ε;ω] is sound for e if (1) α contains the actual,
run-time effect of evaluating ep prior to evaluating e, (2) ε contains the run-time
effect of evaluating e itself, and (3) ω contains the run-time effect of evaluating
the remainder of ep after e’s evaluation has finished. (Section 2)

There are two main challenges with formalizing this intuition to prove that
our contextual effect system is sound. First, we must find a way to define what



constitute the actual prior and future effects of e when it is evaluated as part
of ep. Interestingly, these effects cannot be computed compositionally (i.e., by
considering the subterms of e) as they depend on the relative position of the
evaluation of e within the evaluation of ep, and not on the evaluation of e itself.
Moreover, the future effect of e models the evaluation after e has reduced to a
value. In a small-step semantics, specifying the future effect by finding the end
of e’s computation would be possible but awkward. Thus we opt for a big-step
operational semantics, in which we can easily and naturally define the prior,
standard, and future effect of every subterm in a derivation. (Section 3)

The second challenge, and the main novelty of our proof, is specifying how
to match up the contextual effect Φ of e, as determined by the original typing
derivation of Φp;Γ ` ep : τp, with the effects of e recorded in the evaluation
derivation. The difficulty here is that due to substitution e may appear many
times and in different forms in the evaluation of ep. In particular, e may be passed
to a function λx.e′ such that x occurs several times in e′, and thus after evaluating
the application, e will be duplicated. Moreover, variables within e itself could be
substituted away by other reductions. Thus we cannot just syntactically match
a subterm e of the original program ep with its corresponding terms in the
evaluation derivation.

To solve this problem, we define a typed operational semantics in which each
subderivation is annotated with a typing derivation for the term under consider-
ation and its final value. Subterms in the original program ep are annotated with
subderivations of the original typing derivation Φp;Γ ` ep : τp. As subterms are
duplicated and have substitutions applied to them, our semantics propagates
the typing derivations in the natural way to the new terms. In particular, if Φ
is the contextual effect of a subterm e of the original program, then all of the
terms derived from e will also have contextual effect Φ in the typed operational
semantics. Given this semantics, we can now express soundness formally, namely
that in every subderivation of the typed evaluation of a program, the contextual
effect Φ in its typing contains the run-time prior, standard, and future effects of
its computation. (Section 4)

We mechanized our proof using the Coq proof assistant starting from the
framework developed by Aydemir et al [1]. We found the mechanization process
worthwhile, because our proof structure, while conceptually clear, required get-
ting a lot of details right. Most notably, typing derivations are nested inside of
evaluation derivations in the typed operational semantics, and thus the proofs
of each case of the lemmas are somewhat messy. Using a proof assistant made
it easy to ensure we had not missed anything. We found that, modulo some
typos, our paper proof was correct, though the mechanization required that we
precisely define the meaning of “subderivation.” (Section 5)

We believe that our approach to formally proving soundness of contextual
effects could be useful for other systems as well, in particular ones in which
properties of subderivations depend on their position within the larger derivation
in which they appear.



Expressions e ::= v | x | e e | refL e | ! e | e := e
Values v ::= n | λx.e | rL

Effects α, ε, ω ::= ∅ | 1 | {L} | ε ∪ ε
Contextual Effects Φ ::= [α; ε; ω]
Types τ ::= int | ref ε τ | τ −→Φ τ
Environments Γ ::= · | (Γ, x 7→ τ) | (Γ, r 7→ τ)
Labels L

Fig. 1. Syntax

2 Background: Contextual Effects

This section reviews our type and effect system, and largely follows our previous
presentation [7]. Readers familiar with the system can safely skip this section.

2.1 Language

Figure 1 presents our source language, a simple calculus with expressions that
consist of values v (integers, functions or pointers), variables and function ap-
plication. Our language also includes updateable references, created with refL e,
along with dereference and assignment. We annotate each syntactic occurrence
of ref with a label L, which serves as the abstract name for the locations allo-
cated at that program point. Evaluating refL e creates a pointer rL, where r is
a fresh name in the heap and L is the declared label. Dereferencing or assigning
to rL during evaluation has effect {L}. Note that pointers do not appear in the
syntax of the program, but only during its evaluation. For simplicity we do not
model recursive functions directly, but they can be encoded using references.

An effect, written α, ε, or ω, is a possibly-empty set of labels, and may be 1,
the set of all labels. A contextual effect, written Φ, is a tuple [α; ε;ω]. If e′ is a
subexpression of e, and e′ has contextual effect [α; ε;ω], then

– The current effect ε is the effect of evaluating e′ itself.
– The prior effect α is the effect of evaluating e until we begin evaluating e′.
– The future effect ω is the effect of the remainder of the evaluation of e after

e′ is fully evaluated.

Thus ε is the effect of e′ itself, α ∪ ω is the effect of the context in which e′

appears, and therefore α ∪ ε ∪ ω is the effect of evaluating e.
To make contextual effects easier to work with, we introduce some shorthand.

We write Φα, Φε, and Φω for the prior, current, and future effect components,
respectively, of Φ. We also write Φ∅ for the empty effect [1; ∅; 1]—by subsumption,
discussed below, an expression with this effect may appear in any context. For
brevity, whenever it is clear we will refer to contextual effects simply as effects.



(TInt)
Φ∅; Γ ` n : int

(TVar)
Γ (x) = τ

Φ∅; Γ ` x : τ

(TLam)
Φ; Γ, x : τ ′ ` e : τ

Φ∅; Γ ` λx.e : τ ′ −→Φ τ
(TApp)

Φ1; Γ ` e1 : τ1 −→Φf τ2

Φ2; Γ ` e2 : τ1

Φ1 B Φ2 B Φf ↪→ Φ

Φ; Γ ` e1 e2 : τ2

(TRef)
Φ; Γ ` e : τ

Φ; Γ ` refL e : ref {L} τ
(TDeref)

Φ1; Γ ` e : ref ε τ
Φε

2 = ε Φ1 B Φ2 ↪→ Φ

Φ; Γ ` ! e : τ

(TAssign)
Φ1; Γ ` e1 : ref ε τ Φ2; Γ ` e2 : τ Φε

3 = ε Φ1 B Φ2 B Φ3 ↪→ Φ

Φ; Γ ` e1 := e2 : τ

(TLoc)
Γ (r) = τ

Φ∅; Γ ` rL : ref {L} τ
(TSub)

Φ′; Γ ` e : τ ′

τ ′ ≤ τ Φ′ ≤ Φ

Φ; Γ ` e : τ

(XFlow-Ctxt)

Φ1 = [α1; ε1; (ε2 ∪ ω2)] Φ2 = [(ε1 ∪ α1); ε2; ω2]
Φ = [α1; (ε1 ∪ ε2); ω2]

Φ1 B Φ2 ↪→ Φ

(SInt)
int ≤ int

(SRef)
τ ≤ τ ′ τ ′ ≤ τ ε ⊆ ε′

ref ε τ ≤ ref ε′
τ ′

(SFun)
τ ′1 ≤ τ1 τ2 ≤ τ ′2 Φ ≤ Φ′

τ1 −→Φ τ2 ≤ τ ′1 −→Φ′
τ ′2

(SCtxt)
α2 ⊆ α1 ε1 ⊆ ε2 ω2 ⊆ ω1

[α1; ε1; ω1] ≤ [α2; ε2; ω2]

Fig. 2. Typing

2.2 Typing

Figure 2 presents our contextual type and effect system. The rules prove judg-
ments of the form Φ;Γ ` e : τ , meaning in type environment Γ , expression e has
type τ and contextual effect Φ.

Types τ , listed in Figure 1, include the integer type int ; reference types
ref ε τ , which denote a reference to memory location of type τ where the reference
itself is annotated with a label L ∈ ε; and function types τ −→Φ τ ′, where τ and
τ ′ are the domain and range types, respectively, and the function has contextual
effect Φ. Environments Γ , defined in Figure 1, are maps from variable names or
pointers to types.

The first two rules, (TInt) and (TVar), assign the expected types and the
empty effect, since values have no effect. (TLam) types the function body e and
annotates the function’s type with the effect of e. The expression as a whole
has no effect, since the function produces no run-time effects until it is actually



called. (TApp) types function application, which combines Φ1, the effect of e1,
with Φ2, the effect of e2, and Φf , the effect of the function. We specify the
sequencing of effects with the combinator Φ1 B Φ2 ↪→ Φ, defined by (XFlow-
Ctxt). Since e1 evaluates before e2, this rule requires that the future effect of e1

be ε2 ∪ ω2, i.e., everything that happens during the evaluation of e2, captured
by ε2, plus everything that happens after, captured by ω2. Similarly, the past
effect of e2 must be ε1 ∪ α1, since e2 is evaluated just after e1. Lastly, the effect
Φ of the entire expression has α1 as its prior effect, since e1 is evaluated first;
ω2 as its future effect, since e2 is evaluated last; and ε1 ∪ ε2 as its current effect,
since both e1 and e2 are evaluated. We write Φ1 B Φ2 B Φ3 ↪→ Φ as shorthand
for (Φ1 B Φ2 ↪→ Φ′) ∧ (Φ′ B Φ3 ↪→ Φ).

(TRef) types memory allocation, which has no effect but places the annota-
tion L into a singleton effect {L} on the output type. This singleton effect can be
increased as necessary by using subsumption. (TDeref) types the dereference
of a memory location of type ref ε τ . In a standard effect system, the effect of
! e is the effect of e plus the effect ε of accessing the pointed-to memory. Here,
the effect of e is captured by Φ1, and because the dereference occurs after e is
evaluated, (TDeref) puts Φ1 in sequence just before some Φ2 such that Φ2’s
current effect is ε. Therefore by (XFlow-Ctxt), Φε is Φε

1 ∪ ε, and e’s future
effect Φω

1 must include ε and the future effect of Φ2. On the other hand, Φω
2 is

unconstrained by this rule, but it will be constrained by the context, assum-
ing the dereference is followed by another expression. (TAssign) is similar to
(TDeref), combining the effects Φ1 and Φ2 of its subexpressions with a Φ3

whose current effect is ε. (TLoc) gives a pointer rL the type of a reference to
the type of r in Γ .

Finally, (TSub) introduces subsumption on types and effects. The judgments
τ ′ ≤ τ and Φ′ ≤ Φ are defined at the bottom of Figure 2. (SInt), (SRef), and
(SFun) are standard, with the usual co- and contravariance where appropriate.
(SCtxt) defines subsumption on effects, which is covariant in the current effect,
as expected, and contravariant in both the prior and future effects. To understand
the contravariance, first consider an expression e with future effect ω1. Since ω1

should contain (i.e., be a superset of) the locations that may be accessed in
the future, we can use e in any context that accesses at most locations in ω1.
Similarly, since past effects should contain the locations that were accessed in
the past, we can use e in any context that accessed at most locations in α1.

3 Operational Semantics

As discussed in the introduction, to establish the soundness of the static seman-
tics we must address two concerns. First, we must give an operational semantics
of the language that specifies the run-time contextual effects of each subterm e
appearing in the evaluation of a term ep. Second, we must find a way to match
up subterms e that arise in the evaluation of ep with the corresponding terms e′

in the unevaluated ep, to see whether the effects ascribed to the original terms
e′ by the type system approximate the actual effects of the subterms e. This



section defines an operational semantics that addresses the first concern, and
the next section augments it to address the second concern, allowing us to prove
our system sound.

3.1 The Problem of Future Effects

Consider an expression e appearing in program ep. We write ep = C[e] for a
context C, to make this relationship more clear. Using a small-step operational
semantics, we can intuitively view the contextual effects of e as follows:

C[e] → · · · →︸ ︷︷ ︸
prior effect α

C ′[e]

evaluation of e︷ ︸︸ ︷
→ C ′[e′] → · · · →︸ ︷︷ ︸

standard effect ε

C ′[v]→ · · · → vp︸ ︷︷ ︸
future effect ω

(The evaluation of ep could contain several evaluations of e, each of which could
differ from e according to previous substitutions of e’s free variables, but we
ignore these difficulties for now and consider them in the next section.)

For this evaluation, the actual, run-time prior effect α of e is the effect of the
evaluation that occurs before e starts evaluating, the actual standard effect ε of
e is the effect of the evaluation of e to a value v, and the actual future effect ω of
e is the effect of the remainder of the computation. For every expression in the
program, there exist similar partitions of the evaluation to define the appropriate
contextual effects.

However, while this picture is conceptually clear, formalizing contextual ef-
fects, particularly future effects, is awkward in small-step semantics. Suppose
we have some contextual effect Φ associated with subterm e in the context C ′[e]
above. Then Φω, the future effect of subterm e, models everything that happens
after we evaluate to C ′[v]—but that happens some arbitrary number of steps
after we begin evaluating C ′[e], making it difficult to associate with the subterm
e. We could solve this problem by inserting “brackets” into the semantics to
identify the end of a subterm’s evaluation, but that adds complication, espe-
cially since there are many different subterms whose contextual effects we wish
to track and prove sound.

Our solution to this problem is to use big-step semantics, since in big-step
semantics, each subderivation is a full evaluation. This lets us easily identify
both the beginning and the end of each sub-evaluation in the derivation tree,
and gives us a natural specification of contextual effects.

3.2 Big-Step Semantics

Figure 3 shows key rules in a big-step operational semantics for our language.
Reductions operate on configurations 〈α, ω, H, e〉, where α and ω are the sets
of locations accessed before and after that point in the evaluation, respectively;
H is the heap (a map from locations r to values); and e is the expression to be
evaluated. Evaluations have the form

〈α, ω, H, e〉 −→ε 〈α′, ω′,H ′, R〉



Heaps H ::= ∅ | H, r 7→ v

[Id]
〈α, ω, H, v〉 −→∅ 〈α, ω, H, v〉

[Ref]
〈α, ω, H, e〉 −→ε 〈α′, ω′, H ′, v〉 r /∈ dom(H ′)

〈α, ω, H, refL e〉 −→ε 〈α′, ω′, (H ′, r 7→ v), rL〉

[Deref]
〈α, ω, H, e〉 −→ε 〈α′, ω′ ∪ {L}, H ′, rL〉 r ∈ dom(H ′)

〈α, ω, H, ! e〉 −→ε∪{L} 〈α′ ∪ {L}, ω′, H ′, H ′(r)〉

[Assign]

〈α, ω, H, e1〉 −→ε1 〈α1, ω1, H1, rL〉
〈α1, ω1, H1, e2〉 −→ε2 〈α2, ω2 ∪ {L}, (H2, r 7→ v′), v〉

〈α, ω, H, e1 := e2〉 −→ε1∪ε2∪{L} 〈α2 ∪ {L}, ω2, (H2, r 7→ v), v〉

[Call]

〈α, ω, H, e1〉 −→ε1 〈α1, ω1, H1, λx.e〉
〈α1, ω1, H1, e2〉 −→ε2 〈α2, ω2, H2, v2〉

〈α2, ω2, H2, e[x 7→ v2]〉 −→ε3 〈α′, ω′, H ′, v〉
〈α, ω, H, e1 e2〉 −→ε1∪ε2∪ε3 〈α′, ω′, H ′, v〉

[Call-W]
〈α, ω, H, e1〉 −→ε1 〈α′, ω′, H ′, v〉 v 6= λx.e

〈α, ω, H, e1 e2〉 −→∅ 〈α, ω, H, err〉

[Deref-H-W]
〈α, ω, H, e〉 −→ε 〈α′, ω′, H ′, rL〉 r /∈ dom(H ′)

〈α, ω, H, ! e〉 −→∅ 〈α, ω, H, err〉

[Deref-L-W]
〈α, ω, H, e〉 −→ε 〈α′, ω′, H ′, rL〉 r ∈ dom(H ′) L /∈ ω′

〈α, ω, H, ! e〉 −→∅ 〈α, ω, H, err〉

Fig. 3. Operational Semantics

where ε is the effect of evaluating e and R is the result of reduction, either a
value v or err, indicating evaluation failed. Intuitively, as evaluation proceeds,
labels move from the future effect ω to the past effect α.

The reduction rules are straightforward. [Id] reduces a value to itself without
changing the state or the effects. [Ref] generates a fresh location r, which is
bound in the heap to v and evaluates to rL. [Deref] reads the location r in
the heap and adds L to the standard evaluation effect. This rule requires that
the future effect after evaluating e have the form ω′ ∪ {L}, i.e., L must be in
the capability after evaluating e, but prior to dereferencing the result. Then L
is added to α′ in the output configuration of the rule. Notice that ω′ ∪ {L} is
a standard union, hence L may also be in ω′ (this allows the same location to
be accessed multiple times). Also note that we require L to be in the future
effect at the result of the premise, but not in ω. This is not necessary since we
prove below that ω = ω′ ∪ {L} ∪ ε, and, moreover, the same property holds
for all evaluations, as part of a lemma on adequacy of operational semantics.



[Assign] behaves similarly to [Deref]. [Call] evaluates the first expression to
a function, the second expression to a value, and then the function body with the
formal argument replaced by the actual argument. Our semantics also includes
rules [Call-W], [Deref-H-W] and [Deref-L-W] that produce err when the
program tries to access a location that is not in the input capability, or when
values are used at the wrong type. Our system includes similar error rules for
assignment (not shown).

3.3 Standard Effect Soundness

We can now prove standard effect soundness. First, we prove an adequacy prop-
erty of our semantics that helps ensure they make sense:

Lemma 1 (Adequacy of Semantics). If 〈α, ω, H, e〉 −→ε 〈α′, ω′,H ′, v〉, then
α′ = α ∪ ε and ω = ω′ ∪ ε.

This lemma formalizes our intuition that labels move from the future to prior
effect during evaluation.

We can then prove that the static Φε associated to a term by our type and
effect system soundly approximates the actual effect ε of an expression. We ignore
actual effects α and ω by setting them to 1. The standard effect soundness lemma
is:

Theorem 1 (Standard Effect Soundness). If

1. Φ;Γ ` e : τ ,
2. Γ ` H and
3. 〈1, 1,H, e〉 −→ε 〈1, 1,H ′, R〉

then there is a Γ ′ such that:

1. R is a value v for which Φ∅; (Γ ′, Γ ) ` v : τ ,
2. (Γ ′, Γ ) ` H ′ and
3. ε ⊆ Φε.

Here (Γ ′, Γ ) is the concatenation of environments Γ ′ and Γ . The proof of this
theorem is by induction on the evaluation derivation, and follows traditional
type-and-effect systems proofs, adapted for our semantics.

Next, we prove that if the program evaluates to a value, then there is a
canonical evaluation in which the program evaluates to the same value, starting
with an empty α and ending with an empty ω. This will produce an evaluation
derivation with the most precise α and ω values for every configuration, which
we can then prove we soundly approximate using our type and effect system.

Lemma 2 (Canonical Evaluation). If 〈1, 1,H, e〉 −→ε 〈1, 1,H ′, v〉 then there
exists a derivation 〈∅, ε,H, e〉 −→ε 〈ε, ∅,H ′, v〉.



4 Contextual Effect Soundness

Now we turn to proving contextual effect soundness. We aim to show that the
prior and future effect of some subterm e of a program ep approximate the
evaluation of ep before and after, respectively, the evaluation of e. Suppose for
the moment that ep contains no function applications. As a result, an evaluation
derivation Dp of ep according to the operational semantics in Figure 3 will be
isomorphic to a typing derivation Tp of ep according to the rules in Figure 2. In
this situation, soundness for contextual effects is easy to define. For any subterm
e of ep, we have an evaluation derivation D and a typing derivation T :

D :: 〈α, ω, H, e〉 −→ε 〈α′, ω′,H ′, v〉 T :: Φ;Γ ` e : τ

where D is a subderivation of Dp and T is a subderivation of Tp. Then the prior
and future effects computed by our contextual effect system are sound if α ⊆ Φα

(the effect of the evaluation before e is contained in Φα) and ω′ ⊆ Φω (the effect
of the evaluation after v is contained in Φω).

For example, consider the evaluation of ! (refL n).

(Deref)

(Ref)

(Id)
〈∅, ∅ ∪ {L},H, n〉 −→ 〈∅, ∅ ∪ {L},H, n〉

〈∅, ∅ ∪ {L},H, refL n〉 −→ 〈∅, ∅ ∪ {L}, (H, rL 7→ n), rL〉
〈∅, ∅ ∪ {L},H, ! (refL n)〉 −→{L} 〈∅ ∪ {L}, ∅, (H, rL 7→ n), n〉

Here is the typing derivation (where we have rolled a use of (TSub) into (Tint)):

(TDeref)

(TRef)

(TInt’)
[∅; ∅; {L}]; · ` n : int

[∅; ∅; {L}]; · ` refL n : ref L int
[∅; {L}; ∅]ε = {L} [∅; ∅; {L}] B [∅; {L}; ∅] ↪→ [∅; {L}; ∅]

[∅; {L}; ∅]; · ` ! (refL n) : int

We can see that these derivations are isomorphic, and thus it is easy to read the
contextual effect from the typing derivation for refL n and to match it up with
the actual effect of the corresponding subderivation of the evaluation derivation.

Unfortunately, function applications add significant complication because Dp

and Tp are no longer isomorphic. Indeed, a subterm e of the original program
ep may appear multiple times in Dp, possibly with substitutions applied to it.
For example, consider the term (λx. !x; ! x) refL n (where we introduce the
sequencing operator ; with the obvious semantics, for brevity). The evaluation
derivation has the following structure:

(Call)

〈∅, ∅ ∪ {L},H, (λx. !x; ! x)〉 −→ 〈∅, ∅ ∪ {L},H, (λx. !x; ! x)〉 (1 )
〈∅, ∅ ∪ {L},H, refL n〉 −→ 〈∅, ∅ ∪ {L},H ′, rL〉 (2 )

〈∅, ∅ ∪ {L},H ′, (!x; ! x)[x 7→ rL]〉 −→{L} 〈∅ ∪ {L}, ∅,H ′, n〉 (3 )

〈∅, ∅ ∪ {L},H, (λx. !x; ! x) refL n〉 −→{L} 〈∅ ∪ {L}, ∅,H ′, n〉

where H ′ = (H, rL 7→ n). Subderivations (1) and (2) correspond to the two
subderivations of (TApp), but there is no analogue for subderivation (3), which



captures the actual evaluation of the function. Clearly this relates to the func-
tion’s effect Φf , but how exactly is not structurally apparent from the derivation.
Returning to our example, we need to match up the effect in the typing derivation
for ! x, which is part of the typing of the function (λx. !x; ! x), with evaluation
of ! rL that occurs when the function is evaluated in subderivation (3).

To do this, we instrument the big-step semantics from Figure 3 with typing
derivations, and define exactly how to associate a type derivation with each de-
rived subterm in an evaluation derivation. The key property of the resulting typed
operational semantics is that the contextual effect Φ associated with a subterm e
in the original typing derivation Tp is also associated with all terms derived from
e via copying or substitution. In the example, the relevant typing subderivation
for ! x in Tp will be copied and substituted according to the evaluation so that
it can be matched with ! rL in subderivation (3).

4.1 Typed Operational Semantics

In our typed operational semantics, evaluations have the form:

〈T, α, ω, H, e〉 −→ε 〈T ′, α′, ω′,H ′, v〉

where T is a typing derivation for the expression e, and T ′ is a typing derivation
for v:

T :: Φ;Γ ` e : τ T ′ :: Φ∅; (Γ ′, Γ ) ` v : τ

Note that we include T ′ in our rules mostly to emphasize that v is well-typed
with the same type as e. The only information from T ′ we need that is not
present in T is the new environment (Γ ′, Γ ), which may contain the types of
pointers newly allocated in the heap during the evaluation of e.

Figure 4 presents the typed evaluation rules. New hypotheses are highlighted
with a gray background. While these rules look complicated, they are actually
quite easy to construct. We begin with the original rules in Figure 3, add a typing
derivation to each configuration, and then specify appropriate hypotheses about
each typing derivation to connect up the derivation of the whole term with the
derivation of each of the subterms. We discuss this process for each of the rules.

[Id-A] is the same as [Id], except we introduce typing derivations Tv and
T ′

v for the left- and right-hand sides of the evaluation, respectively. Tv may be
any typing derivation that assigns a type to v. Here, and in the other rules in
the typed operational semantics, we allow subsumption in the typing derivations
on the left-hand side of a reduction. Thus Tv may type the value v under some
effect Φ that is not Φ∅. The output typing derivation T ′

v is the same as Tv,
except it uses the effect Φ∅ (recall the only information we use from T ′

v is the
new environment, which is this case is unchanged from Tv).

[Ref-A] is a more complicated case. Here the type derivation T must (by
observation of the rules in Figure 2) assign refL e a type ref ε τ and some effect
Φ. By inversion, then, we know that T must in fact assign the subterm e the
type τ as witnessed by some typing derivation T ′, which we use in the typed
evaluation of e. We allow Φ′ ≤ Φ to account for subsumption applied to the



[Id-A]
Tv :: Φ; Γ ` v : τ T ′

v :: Φ∅; Γ ` v : τ

〈Tv, α, ω, H, v〉 −→∅ 〈T ′
v, α, ω, H, v〉

[Ref-A]

〈T ′, α, ω, H, e〉 −→ε 〈Tv, α′, ω′, H ′, v〉 r /∈ dom(H)

T :: Φ; Γ ` refL e : ref ε τ T ′ :: Φ′; Γ ` e : τ

Tv :: Φ∅; Γ
′ ` v : τ Tr :: Φ∅; (Γ

′, r 7→ τ) ` rL : ref ε τ Φ′ ≤ Φ

〈T, α, ω, H, refL e〉 −→ε 〈Tr, α
′, ω′, (H ′, r 7→ v), rL〉

[Deref-A]

〈T ′, α, ω, H, e〉 −→ε 〈Tr, α
′, ω′ ∪ {L}, H ′, rL〉 r ∈ dom(H ′)

T :: Φ; Γ ` ! e : τ T ′ :: Φ1; Γ ` e : ref ε′
τ ′

Tr :: Φ∅; Γ
′ ` rL : ref ε′

τ ′ Tv :: Φ∅; Γ
′ ` H ′(r) : τ

Φ′ ≤ Φ τ ′ ≤ τ Φ1 B [α1; ε
′; ω1] ↪→ Φ′

〈T, α, ω, H, ! e〉 −→ε∪{L} 〈Tv, α′ ∪ {L}, ω′, H ′, H ′(r)〉

[Assign-A]

〈T1, α, ω, H, e1〉 −→ε1 〈Tr, α1, ω1, H1, rL〉
〈T2, α1, ω1, H1, e2〉 −→ε2 〈Tv, α2, ω2 ∪ {L}, (H2, r 7→ v′), v〉

T :: Φ; Γ ` e1 := e2 : τ T1 :: Φ1; Γ ` e1 : ref ε τ ′

Tr :: Φ∅; Γ1 ` rL : ref ε τ ′ T2 :: Φ2; Γ1 ` e2 : τ ′

Tv :: Φ∅; Γ2 ` v : τ ′ T ′
v :: Φ∅; Γ2 ` v : τ

Φ′ ≤ Φ τ ′ ≤ τ Φ1 B Φ2 B [α3; ε; ω3] ↪→ Φ′

〈T, α, ω, H, e1 := e2〉 −→ε1∪ε2∪{L} 〈T ′
v, α2 ∪ {L}, ω2, (H2, r 7→ v), v〉

[Call-A]

〈T1, α, ω, H, e1〉 −→ε1 〈Tf , α1, ω1, H1, λx.e〉
〈T2, α1, ω1, H1, e2〉 −→ε2 〈Tv2 , α2, ω2, H2, v2〉

〈T3, α2, ω2, H2, e[v2 7→ x]〉 −→ε3 〈Tv, α′, ω′, H ′, v〉
T :: Φ; Γ ` e1 e2 : τ T1 :: Φ1; Γ ` e1 : τ1 −→Φf τ2

Tf :: Φ∅; Γ1 ` λx.e : τ1 −→Φf τ2 T2 :: Φ2; Γ1 ` e2 : τ1

Tv2 :: Φ∅; Γ2 ` v2 : τ1 T3 :: Φf ; Γ2 ` e[x 7→ v2] : τ

Tv :: Φ∅; Γ3 ` v : τ Φ1 B Φ2 B Φf ↪→ Φ′ Φ′ ≤ Φ

〈T, α, ω, H, e1 e2〉 −→ε1∪ε2∪ε3 〈Tv, α′, ω′, H, v〉

Fig. 4. Typed operational semantics

term refL e. Note that this rule does not specify how to construct T ′ from T .
Later on, we will prove that if there is a valid standard reduction of a well-typed
term, then there is a valid typed reduction of the same term. Continuing with
the rule, our semantics assigns some typing derivation Tv to v. Then the output
typing derivation Tr should assign a type to rL. Hence we take the environment



Γ ′ from Tv, which contains types for locations in the heap allocated thus far,
and extend it with a new binding for r of the correct type.

[Deref-A] follows the same pattern as above. Given the initial typing deriva-
tion T of the term ! e, we assume there exists a typing derivation T ′ of the appro-
priate shape for subterm e. Reducing e yields a new typing derivation Tr, and
the final typing derivation Tv assigns the type τ to the value H ′(r) returned by
the dereference. As above, we add subtyping constraints Φ′ ≤ Φ and τ ′ ≤ τ to
account for subsumption of the term ! e. The most interesting feature of this rule
is the last constraint, Φ1 B [α1; ε′;ω1] ↪→ Φ′, which states that the effect Φ ≥ Φ′

of the whole expression ! e (from typing derivation T ) must contain the effect Φ1

of e followed by the some contextual effect containing standard effect ε′. Again,
we will prove below that it is always possible to construct a typed derivation
that satisfies this constraint, intuitively because [Deref] from Figure 2 enforces
exactly the same constraint. [Assign-A] is similar to [Deref].

[Call-A] is the most complex of the four rules, but the approach is exactly
the same as above. Starting with type derivation T for the function application,
we require that there exist typing derivations T1 and T2 for e1 and e2, where the
type of e2 is the domain type of e2. Furthermore, Tf and Tv2 assign the same
types as T1 and T2, respectively. Then by the substitution lemma, we know there
exists a type derivation T3 that assigns type τ to the function body e in which
the formal x is mapped to the actual v2. The output typing derivation Tv assigns
v the same type τ as T3 assigns to the function body. We finish the rule with
the usual effect sequencing and subtyping constraints.

4.2 Soundness

The semantics in Figure 4 precisely associate a typing derivation—and most
importantly, a contextual effect—with each subterm in an evaluation derivation.
We prove soundness in two steps. First, we argue that given a type derivation of
a program and an evaluation derivation according to the rules in Figure 3, we
can always construct a typed evaluation derivation. We say heap H is well-typed
under Γ , written Γ ` H, if dom(Γ ) = dom(H) and for every r ∈ dom(H), we
have Φ∅;Γ ` H(r) : Γ (r).

Lemma 3 (Typed evaluation derivations exist). If T :: Φ;Γ ` e : τ and
D :: 〈α, ω, H, e〉 −→ε 〈α′ω′,H ′, v〉 where Γ ` H then there exists Tv such that

〈T, α, ω, H, e〉 −→ε 〈Tv, α′, ω′,H ′, v〉

The proof is by induction on the evaluation derivation D. For each case, we show
we can always construct a typed evaluation by performing inversion on the type
derivation T , using T ’s premises to apply the corresponding typed operational
semantics rule. Due to subsumption, we cannot perform direct inversion on T .
Instead, we used a number of inversion lemmas (not shown) that generalize the
premises of the syntax-driven typing rule that applies to e, for any number of
following [TSub] applications.



Next, we prove that if we have a typed evaluation derivation, then the contex-
tual effects assigned in the derivation soundly model the actual run-time effects.
Below, the notation E1 ∈ E2 denotes that E1 is a subderivation of E2.

Lemma 4 (Soundness in subexpression evaluation). If

1. E1 :: 〈T1, α1, ω1,H1, e1〉 −→ε1 〈Tv1 , α
′
1, ω

′
1,H

′
1, v1〉 with T1 :: Φ1;Γ1 ` e1 : τ1,

2. E2 :: 〈T2, α2, ω2,H2, e2〉 −→ε2 〈Tv2 , α
′
2, ω

′
2,H

′
2, v2〉 with T2 :: Φ2;Γ2 ` e2 : τ2,

3. E1 ∈ E2

4. Γ2 ` H2

5. α2 ⊆ Φα
2

6. ω2 ⊆ Φω
2

then

1. Γ1 ` H1

2. α1 ⊆ Φα
1

3. ω1 ⊆ Φω
1

The proof is by induction on E1 ∈ E2. The one interesting feature of the proof is
that we assume the lemma for E2 and use that to show the lemma for E1. This
is the natural direction for this proof, because we first need to know that E2’s
contextual effect soundly models its context before arguing that a subderivation
E1’s contextual effects also soundly model the context.

Given these two lemmas, we can state and prove contextual effect soundness.

Theorem 2 (Contextual Effect Soundness). Given a program ep with no
free variables, a type derivation T and a (standard) evaluation D according to
the rules in Figure 3, we can construct a typed evaluation derivation E such that
for every subderivation E′ of E:

E′ :: 〈T ′, α, ω,H, e〉 −→ε 〈Tv, α′, ω′,H ′, v〉

with T ′ :: Φ;Γ ` e : τ , it is always the case that α ⊆ Φα, ε ⊆ Φε, and ω′ ⊆ Φω.

Soundness follows as a corollary of Lemmas 3 and Lemma 4, since the initial
heap and Γ are empty, and the whole program is typed under [∅; ε; ∅] where ε
soundly approximates the effect of the whole program by Theorem 1.

The full (paper) proof can be found in a technical report [6].

5 Mechanization

We encoded the above formalization and soundness proof using the Coq proof as-
sistant. The source code for the formalization and the proof scripts can be found
at http://www.cs.umd.edu/∼polyvios/publications/contextual-coq.tgz.
We were pleased that the mechanization of the system largely followed the paper
proof, with only a few minor differences.



First, we used the framework developed by Aydemir et al. [1] for modeling
bound and named variables, whereas the paper proof assumes alpha equivalence
of all terms and does not reason about capturing and renaming.

Second, Lemma 4 states a property of all subderivations of a derivation. On
paper, we had left the definition of subderivation informal, whereas we had to
formally define it in Coq. This was straightforward if tedious. E is a subderivation
of E′ (recall we write this as E ∈ E′) if E either occurs in the hypotheses of E′ or
is transitively a subderivation of one of the hypotheses of E′. We define E ∈ E′

as an inductive relation, with one case for each premise of each evaluation rule.
While our mechanized proof is similar to our paper proof, it does have some

awkwardness. Our encoding of typed operational semantics is dependent on typ-
ing derivations, and the encoding of the subderivation relation is dependent on
typed evaluations. This causes the definitions of typed evaluations and subderiva-
tions to be dependent on large sets of variables, which decreases readability. We
were unable to use Coq’s system for implicit variables to address this issue, due
to its current limitations.

In total, the formalization and proof scripts for the contextual effect system
takes 5046 lines of Coq, of which we wrote 2235 lines and the remaining 2811
lines came from Aydemir et al [1]. It took the first author approximately ten days
to encode the definitions and lemmas and do the proofs, starting from minimal
Coq experience, limited to attending a tutorial at POPL 2008. It took roughly
equal time and effort to construct the encodings as to do the actual proofs. In
the process of performing the proofs, we discovered some typographical errors
in the paper proof, and we found some cases where we had failed to account
for possible subsumption in the type and effect system. Perhaps the biggest
insight we gained was that to prove Lemma 4, we needed to do induction on the
subderivation relation, rather than on the derivation itself.

6 Related Work

Our original paper on contextual effects [7] presented the same type system and
operational semantics shown in Sections 2 and 3, but placed scant emphasis on
the details of the proof of soundness in favor of describing novel applications.
Indeed, we felt that the proof technique described in the published paper was
unnecessarily unintuitive and complicated, and that led us to ultimately discover
the technique presented in this paper. To our knowledge, ours is the first mech-
anized proof of a property of typing and evaluation derivations that depends on
the positions of subderivations in the super-derivation tree.

Type and effect systems [5, 8, 11] are widely used to statically enforce re-
strictions, check properties, or in static analysis to infer the behavior of compu-
tations [4, 9, 3, 10, 12]. Some more detailed comparisons with these systems can
be found in our previous publication [7]. Talpin and Jouvelot [11] use a big-step
operational semantics to prove standard effect soundness. In their system, opera-
tional semantics are not annotated with effects. Instead, the soundness property
is that the static effect, unioned with a static description of the starting heap,



describes the heap at the end of the computation. In addition to addressing
contextual effects, our operational semantics can also be used as a definition
of the actual effect (prior, standard, or future) of the computation, regardless
of the static system used to infer or check effects. The soundness property for
standard effects by Talpin and Jouvelot immediately follows for our system from
Theorem 1.

7 Conclusions

This paper presents the proof of soundness for contextual effects [7]. We have
mechanized and verified the proof using the Coq proof assistant.

Contextual effect soundness is interesting because the soundness of the effect
of e depends on the position of e’s evaluation within the evaluation derivation of
the whole program ep. That is, the prior and future effects of e depend not on
the evaluation of e itself, but rather on the evaluation of ep prior to, and after,
evaluating e, respectively. Adding further complication, a subterm e within the
original program, for which the contextual effect is computed by the type and
effect system, may change during the evaluation of ep. In particular, it may be du-
plicated or modified due to substitutions. To match up these modified terms with
the term in the original typing derivation, we employ a novel typed operational
semantics that correlates the relevant portion of the typing derivation with the
evaluation of every subexpression in the program. In mechanizing our proof, we
discovered a missing definition in our formal system (of subderivations), and we
gained much more assurance that our proof, which had to carefully coordinate
the many parts of typed evaluation derivations, was correct.

We conjecture that our proof technique can be used to reason about other
non-compositional properties that span a derivation, such as the freshness of a
name, or computations that depend on context.

References

1. Brian Aydemir, Arthur Charguéraud, Benjamin C. Pierce, Randy Pollack, and
Stephanie Weirich. Engineering formal metatheory. In POPL ’08: Proceedings of
the 35th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, pages 3–15, New York, NY, USA, 2008. ACM.

2. The Coq proof assistant. http://coq.inria.fr.
3. Michael Hicks, Jeffrey S. Foster, and Polyvios Pratikakis. Lock Inference for Atomic

Sections. In TRANSACT, 2006.
4. Atsushi Igarashi and Naoki Kobayashi. Resource Usage Analysis. In POPL, Port-

land, Oregon, 2002.
5. John M. Lucassen. Types and Effects: Towards the Integration of Functional and

Imperative Programming. PhD thesis, MIT Laboratory for Computer Science,
August 1987. MIT/LCS/TR-408.

6. Iulian Neamtiu, Michael Hicks, Jeffrey S. Foster, and Polyvios Pratikakis. Con-
textual Effects for Version-Consistent Dynamic Software Updating and Safe Con-
current Programming. Technical Report CS-TR-4920, Dept. of Computer Science,
University of Maryland, November 2007.



7. Iulian Neamtiu, Michael Hicks, Jeffrey S. Foster, and Polyvios Pratikakis. Contex-
tual effects for version-consistent dynamic software updating and safe concurrent
programming. In Proceedings of the ACM Conference on Principles of Program-
ming Languages (POPL), pages 37–50, January 2008.

8. Flemming Nielson, Hanne R. Nielson, and Chris Hankin. Principles of Program
Analysis. Springer-Verlag, 1999.

9. Christian Skalka, Scott Smith, and David Van Horn. Types and trace effects of
higher order programs. Journal of Functional Programming, July 2007.

10. Fred Smith, David Walker, and Greg Morrisett. Alias types. In ESOP, 2000.
11. Jean-Pierre Talpin and Pierre Jouvelot. The type and effect discipline. Inf. Com-

put., 111(2):245–296, 1994.
12. David Walker, Karl Crary, and Greg Morrisett. Typed memory management in a

calculus of capabilities. TOPLAS, 24(4):701–771, July 2000.


