
Florin Sultan,
Aniruddha Bohra,
Stephen Smaldone,
and Yufei Pan
Rutgers University

Pascal Gallard
IRISA/INRIA

Iulian Neamtiu
University of Maryland, College Park

Liviu Iftode
Rutgers University

Current Internet service architectures lack support for salvaging stateful client

sessions when the underlying operating system fails due to hangs, crashes,

deadlocks, or panics.The Backdoors (BD) system is designed to detect such

failures and recover service sessions in clusters of Internet servers by extracting

lightweight state associated with client service sessions from server memory.The

BD architecture combines hardware and software mechanisms to enable accurate

monitoring and remote healing actions, even in the presence of failures that

render a system unavailable.

Critical Internet services such as e-
commerce, online auctions, and
banking run on complex, multi-tier

architectures built with commodity (off-
the-shelf) machines and operating sys-
tems. These stateful services are sensitive
to server failures: active client sessions on
these servers are lost, although the state
associated with them might still be intact
in a failed machine’s memory.

We developed a recovery approach
that exploits hardware and software
redundancy in Internet service installa-
tions to reuse active clients’ session state
after OS failures (http://discolab.
rutgers.edu/bda). Our lightweight, appli-
cation-independent system provides both
failure detection and recovery, for use
with complex, multi-tier Internet services.
The core of the system is the novel Back-

doors (BD) architecture,1 which uses com-
modity programmable network interface
cards (NICs) with specialized firmware
and OS extensions to provide remote
access to lightweight application and OS
state in a machine’s memory without
relying on its OS or processors. Using BD,
machines in an Internet server cluster can
cooperatively observe each other’s health,
detect failures, and take over client ses-
sions from failed nodes.

In this article, we describe the BD archi-
tecture and our OS extensions for monitor-
ing and recovery of service sessions. We
have implemented a prototype in the
FreeBSD 4.8 kernel, using Myrinet Lanai-
XP programmable NICs (www.myri.com).
The results from our experiments with the
Rice University Bidding System (Rubis;
http://rubis.objectweb.org), a cluster-based

24 MARCH • APRIL 2005 Published by the IEEE Computer Society 1089-7801/05/$20.00 © 2005 IEEE IEEE INTERNET COMPUTING

R
ec

ov
er

y-
O

ri
en

te
d

C
om

pu
ti

ng

Recovering Internet
Service Sessions from
Operating System Failures

multi-tier Internet auction service modeled after
eBay, indicate that our approach is nonintrusive and
effective. Indeed, the system can recover all service
sessions from failed nodes in both the front-end and
middle tier within 25 milliseconds.

Motivation and Approach
Today’s Internet services employ servers organized
in clustered multi-tier architectures in which mul-
tiple nodes perform processing for a given client
session:

• front-end nodes handle HTTP requests,
• mid-tier nodes implement application logic,

and
• back-end nodes run database servers.

Machines in all tiers run commodity, general-pur-
pose OSs, which typically cannot tolerate failures
caused by OS bugs or misconfiguration.

An OS failure renders an entire system unus-
able because applications depend on core OS ser-
vices for memory allocation, process management,
and I/O. For noncritical or stateless services,
rebooting would be sufficient for recovery. More-
over, if the service is idempotent — generating the
same outcome in response to multiple copies of a
given request — clients can recover by simply reis-
suing their requests. Yet, the reboot approach pre-
sents at least two problems:

• reboots are destructive to currently executing
transactions, forcing the clients to reissue

them, and
• reboots are disruptive, incurring downtime for

both the service provider and clients.

While most applications and their clients can
tolerate the side effects of a reboot, such an
approach can be unacceptable for the critical,
transaction-oriented services. Depending on a
server’s load-balancing and admission policies,
clients are not guaranteed readmission to resume
their sessions. In addition, the service might pro-
vide guarantees that include uninterrupted deliv-
ery — at least to the extent the network permits.

We designed the BD architecture to support
remote healing,1,2 using remote memory access to
detect failures and perform automated recovery
actions. BD relies on a specialized network inter-
face that allows external access to a computer’s
resources (memory, I/O devices, and so on) with-
out involving its processors or OS. This allows the
recovery actions to be deferred until after the fail-
ure has occurred, adds only negligible overhead
during normal (failure-free) operation, and pro-
vides fast recovery. (For an overview, see “The
Backdoors Architecture” sidebar.)

Remote Recovery with Backdoors
Remote recovery with BD addresses system-hang
failures, in which a server cannot execute useful
work because the OS is unresponsive. Such failures
are caused by faulty OSs — for example, due to dri-
vers that leave interrupts disabled, deadlocks, or
misplaced panics. Our goal is to reliably detect

IEEE INTERNET COMPUTING www.computer.org/internet/ MARCH • APRIL 2005 25

Web Service Conversation Modeling

The Backdoors Architecture

According to the Telecom Glossary 2000
ANSI standard,a backdoor is “a hidden

software or hardware mechanism, usually
created for testing and troubleshooting.”1

The Backdoors architecture goes a step fur-
ther by providing an alternate path into a
system to enable automated remote healing
(recovery or repair) operations.

To implement BD, we use intelligent
(programmable) network interface cards (I-
NICs) with remote direct memory access
(RDMA) capability,which allows a machine
to access another’s memory for reading
and writing without involving its proces-
sor(s). RDMA makes BD nonintrusive to
system activity during normal operation,

and robust to OS failures.
Figure A shows how our model parti-

tions a computer between front-door com-
ponents,which are under the OS’s control,
run OS or application code, and interact
with the outside world, and backdoor com-
ponents, which are involved in monitoring
and recovery operations. Our crucial
assumptions are that the backdoor hard-
ware remains available after OS failures and
memory contents remain valid and acces-
sible over the system bus.

Reference
1. Telecom Glossary 2000 T1.523-2001,Am.Nat’l Stan-

dard Institute, 2001; www.atis.org/tg2k.

Figure A. System equipped with a
backdoor intelligent network interface
card.The backdoor I-NIC can access
its host system’s resources without
using the machine’s processor(s).

CPU MemoryEthernet NIC

Bus

Front door

Backdoor

Clients

Intelligent network
interface card

these failures and salvage the critical software state
residing in the OS memory. However, the OS’s
unavailability prevents the execution of monitor-
ing and recovery actions on the affected machine.

The BD system detects node failures via mutu-
al monitoring between nodes in a service tier. As
Figure 1a illustrates, each node runs a monitor
process that inspects the OS state of its successor
in a virtual ring.

Upon detecting a failure, a recovery node in the
same tier takes over the client sessions serviced by
the failed node. It extracts the critical state from
the failed node and injects it into its own memo-
ry. As all server nodes run the same application,
the recovery node can seamlessly use the extract-
ed state to continue client service (Figure 2b). This
also requires server nodes to have access to the
same resources (external file servers, databases,
and so on).

Operating System Support
To facilitate remote operations over BD, we
designed two extensions to an existing OS to sup-
port efficient monitoring and extraction of state
from a failed system.

Monitoring
For system-hang failure detection, BD uses the
sensor box (SB), an OS mechanism we developed
in previous work.2 The SB allows a monitor to
observe a target system’s “liveness” using only
remote memory reads.

An SB is a region in the target’s OS memory,
structured in records called sensors — configurable

tuples <ID; C; L; V>. ID is a unique identifier; C is
a class of sensors; L is a limiting threshold that
depends on the sensor class; and V is a scalar (the
actual sensor). Each monitor machine’s OS pro-
vides an API for remotely reading (fetching) a tar-
get SB through BD; the monitoring function can
thus be implemented through a user-level process.

We can define several sensor classes for detect-
ing anomalous events in a system.2 In particular,
progress sensors (monotonically increasing health
meters, which a live OS is supposed to continuous-
ly update) are best suited to detecting failures.
Upon creating a progress sensor, a target system
specifies its detection deadline L. The target OS then
signals to its monitor that it is still alive by increas-
ing the sensor’s value V at intervals smaller than L.
The monitor periodically fetches the target’s SB and
scans it, comparing the current and previous val-
ues for each progress sensor. If a critical sensor’s
value does not change within the deadline interval
L, the target system is considered failed.

The monitor can ensure that all activity ceases
on a failed node by performing a remote OS-lock-
ing operation on the suspected node before initi-
ating recovery. Remote OS-locking stops schedul-
ing and interrupt handling in the target system,
effectively freezing it. This eliminates side effects
from potential false positives in failure detection.

Session Recovery
Recovery of live sessions is challenging because
Internet services are usually structured as multiple
communicating processes running on multiple
machines. Moreover, their states are highly

26 MARCH • APRIL 2005 www.computer.org/internet/ IEEE INTERNET COMPUTING

Recovery-Oriented Computing

Figure 1. Monitoring and recovery in an Internet service’s front-end tier. (a) Identical front-end servers run on nodes that
also perform mutual monitoring in a virtual ring. (b) A monitor detects a node failure, relocates client sessions, and
reconfigures the ring.

Monitor

Clients

Monitor

Clients

Monitor

Clients

(a)

Cluster
node

Monitor

Clients

Monitor

Clients

Monitor

Clients

(b)

Cluster
node

Cluster
node

Cluster
node

Cluster
node

Cluster
node

Server Server Server Server Server Server

dynamic and they operate under heavy client
loads. To support recovery, we developed the con-
tinuation box (CB), an OS abstraction that encap-
sulates fine-grained state associated with a service
session. The CB concept relies on the observation
that most of the software machinery involved in
providing services (OS, servers, applications, file
and database access mechanisms, and so on) is
already replicated on the other peer nodes in a tier.
This means that, after a failure, we must salvage
only the “essential” application and OS state for
the individual client sessions. The CB leverages our
previous work on service continuations for effi-
cient migration of live service sessions between
equivalent servers.3

A server application can use CBs to record
lightweight snapshots (LWSs) of session state. An
LWS must completely describe a well-defined point
from which a server process can safely resume an
ongoing service session after failure. In addition
to maintaining LWSs, CBs track state for the serv-
er application’s communication channels (inter-
process and client-server). For example, a CB for a
client performing a static HTTP transfer will con-
tain an LWS with the file name and the offset
reached in the transfer, and will track the client-
server TCP connection’s state. Figure 2 shows the
OS-specific components and application-specific
LWSs in a CB that spans two server processes com-
municating over interprocess communication (IPC)
channels. LWSs are opaque to the OS and the CB
extraction protocol.

The CB provides the following API, which
allows server processes to export and import state
snapshots:

cb = cb_create(conn)
cb_export_state(cb, state_buffer)
cb_import_state(cb, state_buffer)

where cb is the CB object associated with a client
session (an OS-specific identifier), conn is the
client connection, and state_buffer is an appli-
cation memory buffer that holds the LWS of the
client session state in a process. The server process
that accepts the client connection creates a CB
using cb_create. During execution, all server
processes use cb_export_state to save LWSs to
a CB. In case of a failure, a recovery node in the
same tier extracts the CB from the failed machine’s
memory. Server processes on the recovery node
then use cb_import_state to retrieve LWSs and
continue service.

The CB API establishes a contract between a
server process and the system. A process must
export LWSs periodically (during service) and
import the last LWS at the recovery node (during
recovery). In exchange, the OS of the recovery
node that takes over the client session extracts and
reinstates the CB locally and then synchronizes the
server processes’ state with that of their commu-
nication channels. (see the “Log-Based Continua-
tion Box Synchronization” sidebar.)

Case Study:
A Recoverable Auction Service
We have implemented the CB mechanism, includ-
ing support for TCP connections and OS pipes, in
the FreeBSD 4.8 kernel. A CB is associated with the
socket corresponding to a client and contains
pointers to state components (LWSs and commu-
nication logs) and log control information
(read/write pointers).

For remote monitoring and state extraction, we
modified the Myrinet GM 2.0 library to provide in-
kernel remote memory read/write operations. To
ensure atomic access to a system’s state and safe-
ly fail-stop a suspected system, BD provides a
remote OS-locking operation, which blocks all
scheduling and interrupt processing in the remote
OS.

A front-end recovery node extracts an estab-
lished client TCP connection from a failed
machine and uses IP address takeover to make the
fail-over transparent to the client’s TCP. Once the
recovery node has extracted the TCP endpoint, it
injects this state into the local TCP/IP stack as a
new connection placed on a server socket’s accept

IEEE INTERNET COMPUTING www.computer.org/internet/ MARCH • APRIL 2005 27

Web Service Conversation Modeling

Figure 2. Continuation box. A CB maintains application-specific state
components (in red) and the state of communication channels (in
green) associated with one client session. While servicing the client,
server processes periodically export lightweight snapshots (LWSs) of
application state to the CB.

Application
state 1

LWS1 LWS2

Operating
system

Client

Continuation box

TCP connection IPC
channel

Application
state 2

Export Export

Server
application
processes

queue. A listening server process accepts it,
imports the LWS from its associated CB, and
resumes service to the client.

We have used our BD-based system for session
recovery with Apache and Flash Web servers and

the Icecast audio-streaming server (www.icecast.
org). To test the system, we chose the Rubis online
auction service. This complex application uses a
multi-tier architecture to support item selling and
bidding, user accounts, and user ratings and com-

28 MARCH • APRIL 2005 www.computer.org/internet/ IEEE INTERNET COMPUTING

Recovery-Oriented Computing

Log-Based Continuation Box Synchronization

Arecovery node’s operating system uses
a limited form of log-based rollback

recovery to synchronize session state in
server processes with the current state of
the related communication channels.1 The
OS maintains logs of communication activ-
ity and uses them to replay a process’s com-
munication with peer processes (via
bytestream interprocess communication
channels) or with the client (over TCP).
Logging incurs no CPU overhead because it
uses the communication channels’ data
buffers, which the OS maintains already.

When extracting the continuation box
(CB), the recovery node’s OS first deter-
mines what portion of the failed node’s log
is necessary for application-level replay of
receive and read operations. During the
replay, server processes read data from logs
and change the session state to match the
failed node’s state before failure. Similarly,
the OS computes the number of bytes
already received at the other end of a com-
munication channel and discards duplicate
bytes generated during the replay of send
and write operations.

Figure B1 shows an example execution
replay in which a reader process R was
behind a writer process W in exporting its
lightweight state snapshot (LWS) to the CB
before the failure occurred.The vertical bar
represents a virtual infinite buffer abstract-
ing the channel over which the two
processes communicate. The moment a
process exports an LWS, the snapshot is
labeled with the sequence number of the
first byte it will read or write after the
snapshot. For R, lsr denotes the first byte to
read after taking its last snapshot LWSr. Sim-
ilarly, lsw denotes the first byte to be writ-
ten by W after its last snapshot LWSw.Given
that lsr < lsw in Figure B1,R will issue reads
for data that W can no longer supply upon
resuming service at the recovery node.

To support the replay of data read from
a communication channel before a failure,
the system extracts data from the failed
node that the writer at the recovery node
cannot generate. In the case depicted in Fig-
ure B1, the synchronization log includes
only the [lsr; lsw – 1] region of the buffer —
from the lsr byte up to, but excluding, the

lsw byte (the first to be regenerated by W’s
replay).The recovery OS can thus ignore
data for sequence numbers less than lsr
because R will not need them after restart.
The recovery OS can also ignore data in
the interval [lsw; failure] because W’s
replay will regenerate it after restart.

Figure B2 shows an example in which
the reader was ahead of the writer in tak-
ing its last snapshot before failure (lsr > lsw).
During replay, R will read only from
sequence numbers (starting with lsr) that
W’s replay can regenerate.Therefore, the
recovery OS does not need to extract read
logs from the failed node (when R took its
snapshot at lsr, the system actually discard-
ed any previous log). During replay, the
recovery OS discards any write issued by
W in the interval [lsw; lsr – 1].

Reference
1. F. Sultan,A. Bohra, and L. Iftode,“Service Continu-

ations: An Operating System Mechanism for

Dynamic Migration of Internet Service Sessions,”

Proc. Symp.Reliable Distributed Systems (SRDS), IEEE

CS Press, 2003, pp. 177–186.

Figure B. Synchronization of communication channel endpoints. Synchronization during recovery replay depends on
the relative positions of reader and writer processes upon resuming service from their last lightweight snapshots
(LWSs) of state. (1) If the reader was behind the writer before failure, the OS replays reads. (2) If the writer was
behind the reader, the OS discards duplicate writes.

Reader Writer

LWSr

LWSw

Time/seq#

lsr

lsw

Log

Failure

(1)
Reader Writer

LWSr

LWSw

Time/seq#

lsr

lsw
Discard
replay

Failure

(2)

IEEE INTERNET COMPUTING www.computer.org/internet/ MARCH • APRIL 2005 29

Web Service Conversation Modeling

ments. The typical workload is a mix of browsing
and updating of persistent data.

Base System
We run Rubis in a three-tier architecture with Web
servers on front-end nodes (FEs), application
servers in the mid-tier nodes (MTs), and a transac-
tional database system (DB) on back-end nodes.
All FE and MT nodes run FreeBSD 4.8 with our SB
and CB extensions. We run Apache 2.0.47 on FEs;
the Tomcat 4.1 servlet container and JBoss 3.2.2
Enterprise JavaBeans (EJB) server on MTs; and
MySQL 4.0.15 as the DB server. Client requests
enter the system at the FE, pass from Apache to the
specified application servlet running on the MT in
the Tomcat container, and then on to JBoss, where
Rubis EJBs implement the application logic. From
there, the application queries the DB server.

In Rubis, bidders’ typical behavior (placing last-
moment bids) makes their requests critical in the
moments before an auction closes. If a node on the
request path fails, reissuing a client’s request risks
missing the deadline, generating a duplicate trans-
action, or failing to be readmitted to an overloaded
system.

Recoverable Rubis
To make Rubis recoverable, we ran it on a cluster
in which we installed BD on the FEs and MTs. We
assume the back-end nodes achieve fault-toler-
ance through well-known methods such as data-
base replication. We modified Apache and the
Rubis beans to use the CB API, adding only 500
lines of code to Apache and 30 lines to Rubis,
compared to code bases of 15,000 and 36,000
lines, respectively. The programmer identifies
points of nondeterminism and then exports non-
deterministic state changes. To implement our
changes, we had to understand the way the servers
and Rubis application work. Programmers who are
knowledgeable about their servers’ and applications’
internals should be able to integrate BD recovery
support with minor effort.

A client interacts with the service by sending
HTTP requests to an FE node. When a client’s
request enters the system, an FE tags it with a glob-
ally unique request ID, which identifies a given ses-
sion’s CB-encapsulated state. On an FE node, a ses-
sion’s LWS contains the request, its ID, and the
offset reached in the output stream sent to the client.
On an MT node, where the request is translated into
a DB transaction, the LWS contains the request ID,
transaction identifier, and transaction result (one

database record). These LWSs average only 99 and
44 bytes in FE and MT nodes, respectively.

If an FE node fails, its monitor notifies a recov-
ery FE node to extract the session CBs from it and
reissue pending requests to the MT. If an MT node
fails, its monitor notifies all FEs to reissue requests
serviced by the failed MT node. For requests
replayed during recovery, an MT node obtains the
transaction status (abort or commit) from the
database and retrieves the transaction result from
the CB. The MT node uses this information to
decide whether to reissue the transaction, or to
rebuild the reply to the client if the transaction has
already been executed.

This scheme relies on simple DB support for
reconnects to preserve DB transactions while
(re)generating replies. To implement it, we modi-
fied MySQL to support database reconnects and
queries for transactions’ status. Alternatively, we
could have modified the database schema to
include a table of transaction IDs along with the
status. The application would have had to main-
tain the transaction status in this table during nor-
mal execution and query it during recovery.

Implications
Extracting critical state from a failed system using
BD is a last-resort recovery action, suited for the
most severe system-hang failures. However, our
approach is limited to failures that do not corrupt
memory: if a CB is corrupted, we cannot recover
its corresponding session. Yet, the evidence from
field-error data,4 synthetic fault-injection tests,5

and problem-report databases for open-source ker-
nel development (www.freebsd.org/cgi/query-pr-
summary.cgi) suggests that memory corruption is a
fairly rare and localized event when an OS fails.

Our fine-grained recovery model is potentially
more robust to propagation of such corrupted
(bad) state than heavy-weight approaches, which
recover large amounts of unstructured state
(checkpointing, process migration, virtual-
machine migration, hot backups, and so on).

Table 1. Cost of continuation box (CB)
system calls and state extraction.

State size Export Import CB extraction
(Kbytes) (µs) (µs) (µs)
1 11 8 158
5 20 10 258
10 28 24 358

30 MARCH • APRIL 2005 www.computer.org/internet/ IEEE INTERNET COMPUTING

Recovery-Oriented Computing

Smaller state components enable recovery of
“good” state by identifying and filtering occur-
rences of bad state. For example, computing
checksums over application LWSs can detect cor-
rupted state and prevent the injection of a single
bad CB into another healthy system. In contrast,
moving a whole process context or virtual
machine indiscriminately reinstates all the bad
state it might encapsulate.

Experimental Evaluation
We evaluated our system’s performance and cor-
rectness in a multi-tier setup consisting of two FEs,
two MTs, and one back-end node, all of which
were Dell PowerEdge 2600 2.4-GHz dual-proces-
sor machines with 1-Gbyte RAM, interconnected
by 1 Gbit/sec Ethernet, and running FreeBSD 4.8.
The FEs and MTs run our BD prototype, imple-
mented with the Myrinet Lanai-XP NICs.

Nodes in each tier monitor each other and
detect failures using progress sensors that track
the number of interrupts and context switches. We
injected OS failures in one node in each tier and
recovered sessions serviced by the victims on the
alternate nodes in the same tier. For fault injec-
tion, we introduced bugs in Ethernet network dri-
vers to cause system crashes. We also subjected
victim nodes to synthetic failures (processor halt,
disabling the interrupt controller, or disabling
device interrupts) or froze them by entering the
kernel debugger from the console at random
moments in time.

API Overhead and Extraction Cost
We measured call latency to evaluate the runtime
overhead incurred by updating the SB and using
the CB API. Updating sensor values in the SB is
extremely lightweight as it simply involves writing
integer values to memory. Table 1 shows the cost
of export and import CB calls for three differ-
ent CB state sizes. It shows that monitoring and
recovery support should be lightweight on server
nodes because the CB API imposes little runtime
overhead for updating and retrieving CB state.

The last column in Table 1 shows the cost of
extracting a CB, consisting of a TCP connection
and an application LWS, from an FE node. For
comparison, the raw latency of a remote memory
read was roughly 16 µs for 4-byte payloads and
118 µs for a 10-Kbyte payload.

Monitoring Overhead
A monitor node’s overhead includes the monitor-
ing cost (reading the local view of the monitored
SB, comparing counter values, and so on) and the
cost of transferring the remote SB from the moni-
tored node. We measured a monitor process’s CPU
usage while varying the sampling rate of a remote
SB with 100 progress counters. In the worst case,
when sampling the SB in an infinite loop, CPU
usage was 46 percent. Sampling at the timer’s low-
est granularity (10 milliseconds), CPU usage was
roughly 5 percent, and it dropped below 1 percent
for 100-millisecond sampling intervals. This shows
that monitor nodes can perform fast failure detec-
tion while maintaining low overhead.

Detection Deadlines and False Positives
To avoid false positives at a monitor — wrongly
declaring a healthy node to have failed — we
must carefully choose each progress counter’s
detection deadline L to match the counter’s
expected behavior.

A trade-off exists between fast failure detec-
tion and a low rate of false positives (ideally, 0). To
illustrate, we artificially induced false positives
using a progress counter based on the number of
scheduling decisions. A remote monitor sampled
the counter at intervals equal to its detection dead-
line while a CPU-bound task ran on the node. The
task does not block; thus, no scheduling decision
can occur within a time slice. When the detection
deadline is smaller than the time slice (100 mil-
liseconds), the counter could stall and lead the
monitor to declare the node faulty.

Figure 3 shows the fraction of false positives

Figure 3. False positives in failure detection. Context-switch counters
with detection deadlines less than the scheduler time slice (100
milliseconds) cause monitor nodes to generate false positives in error
detection; their frequency increases at shorter deadlines.

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100 120

W
ro

ng
 d

ec
is

io
ns

 (
%

)

Detection deadline (msec)

that occurred as we increased the detection dead-
lines — in turn, increasing the chance that the OS
would make a scheduling decision before the dead-
line. Deadlines of less than the scheduler time slice
induced incorrect detection, whereas scheduling
activity in the system eliminated false detection for
deadlines of more than 85 milliseconds. This shows
that the system is sensitive enough to expose
errors in failure detection caused by unrealistic
detection deadlines.

Failure-Free Overhead
To estimate the impact of BD’s recovery support
on client-perceived performance, we ran load
experiments on Rubis using both an unmodified
“base” system and a recoverable version in which
servers (Apache in FE and JBoss in MT) used the
CB API. Using a methodology similar to that used
by Cecchet, Marguerite, and Zwaenepoel6 and
think times (intervals between successive requests)
as specified by the Transaction Processing Perfor-
mance Council Web benchmark (TPC-W; www.
tpc.org/tpcw/), we created a workload that emu-
lates client browsers.

Figure 4 shows the aggregate throughput and
latency perceived by clients for the base case,
recoverable FE, and recoverable FE and MT. All
three systems have identical behavior: the curves
overlap when the system is underloaded and show
small variations due to nondeterministic system
behavior after saturation, which demonstrates that
recovery support imposes no performance penalty.

Fail-Over Correctness
We evaluated the system’s correctness through

crash-test runs under a load of 200 clients gener-
ating a heavy synthetic workload. Each request
performs a database transaction consisting of mul-
tiple queries and an update on the same table.
After each run, we checked session fail-over cor-
rectness via two types of tests:

• Communication-path integrity tests ensure that
every client request is correctly matched by its
expected reply.

• Database integrity tests ensure that the database
includes no missing or duplicate transactions.

All runs validated our system’s correctness, as each
client request received the correct reply and every
database transaction completed properly.

Fail-Over Latency
To evaluate the impact of failure detection and
recovery on client-perceived performance, we ran
crash tests under a workload of 200 clients. Each
client generated browse transactions in 90-sec
runs with normally distributed think times with 7-
sec mean and a slow-down factor of 0.5.6 With
this workload, CPU utilization is about 45 percent
on FE nodes and 15 to 30 percent on MT nodes.
We used the number of network interrupts and
context switches as progress counters with a fail-
ure-detection deadline of 10 milliseconds (the
timer granularity), and emulated crashes in FE,
MT, and both.

Figure 5 shows the event timeline from crash
detection to the end of recovery for the last
recovered session. We define the end of recovery
for a session as the moment the FE sends the first

IEEE INTERNET COMPUTING www.computer.org/internet/ MARCH • APRIL 2005 31

Web Service Conversation Modeling

Figure 4. Backdoors overhead. Backdoors’ recovery support does not affect (a) throughput or (b) latency in the recoverable
version of the Rice University Bidding System (Rubis).

(b)(a)

 0

 1,000

 2,000

 3,000

 4,000

 5,000

 6,000

 7,000

 8,000

R
eq

ue
st

s
pe

r
m

in
ut

e

 0

 1,000

 2000,

 3,000

 4,000

 5,000

 6,000

 7,000

0 200 400 600 800 1,000 1,200

La
te

nc
y

(m
se

c)

Clients
0 200 400 600 800 1,000 1,200

Clients

Unmodified
Recoverable FE

Recoverable FE + MT

Unmodified
Recoverable FE

Recoverable FE + MT

byte to the client after fail-over. Detection laten-
cy is limited by our choices of detection deadlines
and sampling period. The worst-case recovery
latency is less than 25 milliseconds when both
nodes fail, indicating that our fail-over mecha-
nism should have no practical effect on client-

perceived performance.
The low fail-over latency compares well to

the effects of packet loss on normal client-server
TCP traffic over the Internet. Recovery introduces
a “gap” in the outgoing server bytestream com-
parable to round-trip times between two systems

32 MARCH • APRIL 2005 www.computer.org/internet/ IEEE INTERNET COMPUTING

Recovery-Oriented Computing

Figure 5. Fail-over event timeline. The (a) front-end and (b) the mid-tier nodes require less than 15 msec from crash
detection to resumption of service to the last-recovered session. (c) A crash on both the front-end and mid-tier nodes exhibits
the worst recovery latency, which is still less than 25 msec.

Detection
Request reissue

First byte to client

0 2 4 6 8 10 12 14 16
Time (msec)

Detection
Import state

First byte to client

0 2 4 6 8 10 12 14 16
Time (msec)

0 5 10 15 20 25
Time (msec)

Detection
Import state

Request reissue
First byte to client

(a) (b) (c)

Related Work

Operating system support for fast
recovery helps improve the availabil-

ity of systems and services. Previous
research has employed three techniques to
achieve fast recovery: protection from
crashes through fault isolation, reuse of in-
memory state across crashes, and fast
reboot of failed software components.

In Recovery Box,Baker and Sullivan use
a stable OS memory area that can survive a
crash to restore OS subsystems’ live state
after reboot.1 Their approach relies on
transactional semantics to ensure applica-
tion recovery with remote client sessions.
Yet, recovery is not transparent to clients,
which must reconnect and resubmit
requests. The system does not support
complex applications consisting of multiple
communicating processes.

Nooks uses code interposition and vir-
tual memory techniques to sandbox faulty
kernel-loadable modules.2 It can detect faults
that occur in extensions and involve memo-
ry accesses, bad call arguments, or live lock
(when the machine spends an inordinate
amount of time executing the extension

code, at the expense of other processes). In
contrast, our Backdoors system cannot
detect memory-access failures unless they
crash the system.However, it can detect fail-
ures regardless of where they occur in sys-
tem code and handle failures triggered by fac-
tors other than system software.

In the Microreboot approach to fast
failure recovery, a software system, such as
a Java application server (JBoss), is aug-
mented to selectively discard and refresh
the state of discrete failed software com-
ponents in the middleware.3The approach
relies on efficient external state stores to
save components’ volatile state across
microreboots.

Liao and colleagues use a Myrinet net-
work interface card (NIC) to monitor the
performance of a shared virtual memory
system.4 Zhou, Chen, and Li use RDMA to
mirror the address space of processes on
other nodes in a cluster,5 which makes
user-level checkpointing and fail-over faster
than using disks as stable storage. Yet,
because the system concentrates only on
checkpointing user-level state,without con-

sidering the state of active communication
channels, it cannot be used for fail-over of
Internet services.

Rio uses software fault isolation to pro-
tect the file-system cache against corruption
during crashes.The system uses the cached
data to warm-reboot the file system.6 Back-
doors takes a similar approach in using the
system memory as storage for recovery
data, additionally providing the support to
seamlessly reuse this data on other healthy
systems. Unlike Rio, however, the current
Backdoors implementation does not pro-
vide fault isolation, which makes it vulnera-
ble to memory corruption in a crash.

When an OS failure affects an Internet
server with open TCP connections, the
connections must survive the crash trans-
parently to the clients. Several research sys-
tems focus on TCP servers’ reliability. Fault-
Tolerant TCP uses TCP wrapping to mask
server failure and restart,7 but its use of
heavyweight single-process checkpointing
for recovery makes it impractical for Inter-
net services. Snoeren,Andersen, and Bal-
akrishnan employ fine-grained fail-over

on the Internet (tens to hundreds of milliseconds
over WANs), from which TCP derives retransmis-
sion timeouts for unacknowledged packets.
Recovery’s impact, as perceived by remote
clients, should be no worse than when server
packets are lost in the Internet.

Backdoors is an architectural approach to
improving the survivability of computer sys-

tems. We believe this approach is applicable not
only for recovery of Internet service sessions,
but also for continuously monitoring and under-
standing system behavior in large installations.
We are currently exploring software emulation
of BD for virtual infrastructures, such as
VMWare (www.vmware.com) and PlanetLab
(www.planet-lab.org), to let us monitor multiple
OS instances on a given system without addi-
tional hardware. Our ultimate goal is to involve
multiple systems equipped with BDs to perform
automated monitoring and recovery without
semantic knowledge of the applications or OS,

and without involving human operators.

Acknowledgments
This work is supported in part by the US National Science

Foundation under NSF CCR-0133366 and ANI-0121416. Pascal

Gallard and Iulian Neamtiu worked on the project as visiting

graduate students at Rutgers University. The authors thank

Christine Morin (IRISA/INRIA) and Arati Baliga for their feed-

back to help improve the article.

References

1. F. Sultan et al., “Nonintrusive Remote Healing Using Back-

doors,” Proc. 1st Workshop on Algorithms and Architec-

tures for Self-Managing Systems, ACM Press, 2003, pp.

69–74.

2. A. Bohra et al., “Remote Repair of OS State Using Back-

doors,” Proc. Int’l. Conf. Autonomic Computing, IEEE CS

Press, 2004, pp. 256–263.

3. F. Sultan, A. Bohra, and L. Iftode, “Service Continuations:

An Operating System Mechanism for Dynamic Migration

of Internet Service Sessions,” Proc. Symp. Reliable Distrib-

uted Systems (SRDS), IEEE CS Press, 2003, pp. 177–186.

4. M. Sullivan and R. Chillarege, “Software Defects and their

IEEE INTERNET COMPUTING www.computer.org/internet/ MARCH • APRIL 2005 33

Web Service Conversation Modeling

Related Work, cont. from p. 32

using connection migration in cluster-based
Web servers.8 However, their scheme is
limited to static HTTP transfers and relies
on broadcasts of recovery state inside the
cluster. Bressoud and Schneider use virtu-
al machine monitors to intercept and back
up the entire state of a system, which
requires dedicated machines and imposes
high performance penalties.9

Primary-backup schemes use active
remote logging10 or passive traffic tapping
at the link-layer11,12 to mirror TCP
servers’ communication and computation
state on other machines.These schemes
require fully dedicated nodes as backups
and use interposition techniques that add
overhead and increase communication
latency, thus affecting the failure-free exe-
cution performance.They do not tolerate
loss of the backup unless it uses some
form of logging support that is available
after failure.10

References
1. M.Baker and M.Sullivan,“The Recovery Box:Using

Fast Recovery to Provide High Availability in the

Unix Environment,” Proc. Summer Usenix Conf.,

Usenix Assoc., 1992, pp. 31–44.

2. M.M. Swift, B.N. Bershad, and H.M. Levy,“Improv-

ing the Reliability of Commodity Operating Sys-

tems,” Proc. 19th Symp.Operating Systems Principles

(SOSP),ACM Press, 2003, pp. 207–223.

3. G. Candea et al., “Microreboot:A Technique for

Cheap Recovery,” Proc. 6th Symp.Operating Systems

Design and Implementation (OSDI 04), Usenix

Assoc., 2004, pp. 31–44.

4. C. Liao et al., “Monitoring Shared Virtual

Memory Performance on a Myrinet-Based

PC Cluster,” Proc. ACM Int’l Conf. Super-

computing, ACM Press, 1998, pp. 251–258.

5. Y. Zhou, P.M. Chen, and K. Li, “Fast Clus-

ter Failover Using Virtual Memory-

mapped Communication,” Proc. 13th Int’l

Conf. Supercomputing, ACM Press, 1999,

pp. 373–382.

6. P.M. Chen et al., “The Rio File Cache: Sur-

viving Operating System Crashes,” Proc.

Architectural Support for Programming

Languages and Operating Systems (ASP-

LOS), ACM Press, 1996, pp. 74–83.

7. L. Alvisi et al., “Wrapping Server-Side TCP

to Mask Connection Failures,” Proc. IEEE

Infocomm, IEEE CS Press, 2001, pp.

329–337.

8. A.C. Snoeren, D.G. Andersen, and H. Bal-

akrishnan, “Fine-Grained Failover Using

Connection Migration,” Proc. 3rd Usenix

Symp. Internet Technologies and Systems

(USITS), Usenix Assoc., 2001, pp. 221–232.

9. T.C. Bressoud and F.B. Schneider, “Hyper-

visor-Based Fault Tolerance,” Proc. 15th

ACM Symp. Operating Systems Principles

(SOSP), ACM Press, 1995, pp. 1–11.

10. D. Zagorodnov et al., “Engineering Fault-

Tolerant TCP/IP Servers Using FT-TCP,”

Proc. Int’l Conf. Dependable Systems and

Networks (DSN 03), IEEE CS Press, 2003,

pp. 393–402.

11. S. Mishra, M. Marwah, and C. Fetzer, “TCP

Server Fault Tolerance Using Connection

Migration to a Backup Server,” Proc. Int’l

Conf. Dependable Systems and Networks

(DSN 03), IEEE CS Press, 2003, pp.

373–382.

12. R.R. Koch et al., “Transparent TCP Con-

nection Failover,” Proc. Int’l Conf.

Dependable Systems and Networks (DSN

03), IEEE CS Press, 2003, pp. 383–392.

Impact on System Availability: A Study of Field Failures

in Operating Systems,” Proc. 21st Int’l Symp. Fault- Tol-

erant Computing (FTCS-21), IEEE CS Press, 1991, pp. 2–9.

5. P.M. Chen et al., “The Rio File Cache: Surviving Operating

System Crashes,” Proc. Architectural Support for Pro-

gramming Languages and Operating Systems (ASPLOS),

ACM Press, 1996, pp. 74–83.

6. E. Cecchet, J. Marguerite, and W. Zwaenepoel, “Perfor-

mance and Scalability of EJB Applications,” Proc. 17th

Conf. Object-Oriented Programming, Systems, Languages,

and Applications, ACM Press, 2002, pp. 246–261.

Florin Sultan is a research staff member at NEC Laboratories

America. His research interests include operating systems,

networking, distributed systems, and system support for

fault-tolerant and self-healing systems. Sultan received a

PhD in computer science from Rutgers University. He is a

member of Usenix and the ACM. Contact him at sul-

tan@nec-labs.com.

Aniruddha Bohra is a PhD student in computer science at Rut-

gers University. His research interests include storage net-

works, operating systems, distributed systems, fault toler-

ance, and availability in Internet services. Bohra received

an MS in computer science from Rutgers. He is a student

member of Usenix, the IEEE Computer Society, and the

ACM. Contact him at bohra@cs.rutgers.edu.

Stephen Smaldone is a PhD student in computer science at Rut-

gers University. His interests include operating systems, dis-

tributed systems, file systems, and storage networks. Smal-

done received a BS in computer science from Rutgers. He is

a student member of the ACM, the IEEE Computer Society,

and Usenix. Contact him at smaldone@cs.rutgers.edu.

Yufei Pan is a software engineer at AskJeeves. His research

interests include self-healing systems, operating systems,

and networking. Pan received an MS in computer science

from Rutgers University. Contact him at ypan@ask.com.

Pascal Gallard is a research engineer at IRISA/INRIA, Rennes,

France. His research interests include operating systems,

supercomputing clusters, and communication architectures.

Gallard received a PhD in informatics from University of

Rennes. Contact him at Pascal.Gallard@irisa.fr.

Iulian Neamtiu is a PhD student in computer science at the Uni-

versity of Maryland, College Park. His research interests

include programming languages, operating systems, dynam-

ic software upgrades, and software engineering. Neamtiu

received a BEng. in computer science from the Technical

University of Cluj-Napoca, Romania. He is a student member

of the ACM. Contact him at neamtiu@cs.umd.edu.

Liviu Iftode is an associate professor in the Department of Com-

puter Science and head of the Laboratory for Network Cen-

tric Computing (Discolab) at Rutgers University. His

research interests include operating systems, distributed

systems, pervasive computing, and mobile networks. Iftode

received a PhD in computer science from Princeton Uni-

versity. He is vice chair of the IEEE Technical Committee

on Operating Systems (TCOS), as well as a member of

Usenix, the ACM, and a senior member of the IEEE. Con-

tact him at iftode@cs.rutgers.edu.

34 MARCH • APRIL 2005 www.computer.org/internet/ IEEE INTERNET COMPUTING

Recovery-Oriented Computing

To receive regular
updates, email

dsonline@computer.org

VISIT IEEE’S
F IRST
ONLINE-ONLY
DIGITAL
PUBLICATION

IEEE Distributed Systems Online brings you peer-reviewed
features, tutorials, and expert-moderated pages covering a growing
spectrum of important topics:

Grid Computing
Mobile and Wireless
Middleware
Distributed Agents
Security

dsonline.computer.org

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 1.8)
 /CalRGBProfile (Apple RGB)
 /CalCMYKProfile (U.S. Sheetfed Uncoated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF0049004500450045002000580070006c006f0072006500200073007000650063007300200066006f0072002000440069007300740069006c006c0065007200200036002e0020004d0056>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

