Experience Report: How Do Bug Characteristics Differ Across

Severity Classes: A Multi-platform Study

Bo Zhou

Tulian Neamtiu

Rajiv Gupta

Department of Computer Science and Engineering
University of California, Riverside
Email: {bzhou003,neamtiu,gupta}@cs.ucr.edu

Abstract—Bugs of different severities have so far been put into
the same category, but their characteristics differ significantly.
Moreover, the nature of issues with the same severity, e.g., high,
differs markedly between desktops and smartphones. To under-
stand these differences, we perform an empirical study on 72
Android and desktop projects. We first define three bug severity
classes: high, medium, and low. Next, we study how severity
changes and quantify differences between classes in terms of bug-
fixing attributes. Then, we focus on topic differences: using LDA,
we extract topics associated with each severity class, and study
how these topics differ across classes, platforms, and over time.
Our findings include: severity and priority affect bug fixing time;
medium-severity contributors are more experienced than high-
severity contributors; and there have been more concurrency and
cloud-related high-severity bugs on desktop since 2009, while on
Android concurrency bugs are prevalent.

Keywords—Bug severity, cross-platform analysis, bug report,
topic model.

I. INTRODUCTION

Bug tracking systems such as Bugzilla, Trac, or Google
Code are widely popular in large-scale collaborative software
development. Such systems are instrumental as they provide a
structured platform for interaction between bug reporters and
bug fixers, and permit reporting, tracking the progress, col-
laborating on, and ultimately fixing or addressing the reported
bugs (issues).

A key attribute of each bug report on these systems is
bug severity—an indicator of the bug’s potential impact on
users. While different bug tracking systems use different
severity scales, we found that bugs can be assigned into one
of three severity classes: high severity bugs represent issues
that are genuine show-stoppers, e.g., crashes, data corruption,
privacy leaks; medium severity bugs refer to issues such as
application logic issues or occasional crashes; and low severity
bugs usually refer to nuisances or requests for improvement
(Section II-C defines classes and provides details).

Severity is important for effort planning and resource al-
location during the bug-fixing process; we illustrate this with
several examples. First, while our intuition says that bugs with
different severity levels need to be treated differently, for plan-
ning purposes we need know how bug severity influences bug
characteristics, e.g., fix time or developer workload. Second,
assigning the wrong severity to a bug will lead to resource
mis-allocation and wasting time and effort; a project where
bugs are routinely assigned the wrong severity level might
have a flawed bug triaging process. Third, if high-severity bugs

tend to have a common cause, e.g., concurrency, that suggests
more time and effort needs to be allocated to preventing those
specific issues (in this case concurrency). Hence understanding
bug severity can make development and maintenance more
efficient.

To this end, in this paper we perform a thorough study of
severity in a large corpus of bugs on two platforms, desktop
and Android. Most of the prior work on bug severity has fo-
cused on severity prediction [1]-[4]; there has been no research
on how severity is assigned and how it changes, on how bugs
of different severities differ in terms of characteristics (e.g., in
fix time, developer activity, and developer profiles), and on the
topics associated with different classes of severity. Therefore,
to the best of our knowledge, we are the first to investigate
differences in bug characteristics based on different severity
classes.

Our study is based upon 72 open source projects (34 on
desktop and 38 on Android) comprising of 441,162 fixed bug
reports. The bug reports cover a 15-year period for desktop
and a 6-year period for Android. In particular, we studied
the bug-fix process features, bug nature and the reporter/fixer
relationship to understand how bugs, as well as bug-fixing
processes, differ between bug severity classes. Section II de-
scribes our methodology, including how we selected projects,
the steps and metrics we used for extracting bug reports,
process features, and topics.

The study has two thrusts, centered around nine research
questions, RQ1-RQY. First, a quantitative thrust (Section III)
where we study how severity assigned to a bug might change;
next, we compare the three severity classes in terms of at-
tributes associated with bug reports and the bug-fixing process,
how developer profiles differ between high, medium and low
severity bugs, etc. Second, a topic thrust (Section IV) where
we apply LDA (Latent Dirichlet Allocation [5]) to extract
topics from bug reports and gain insights into the nature of
bugs, how bug categories differ among bug severity classes,
and how these categories change over time.

We now present some highlights of our findings:

o Severity changes are more frequent on Android, where
some projects have change rates in excess of 20%, than
on desktop.

o Bug-fix time is affected by not only severity but also
priority. Interestingly, there are marked quantitative dif-
ference between the three severity classes on desktop, but

TABLE I: Projects examined, number of fixed bugs, severity classes percentage, severity level change percentage and time span.

the differences are more muted on Android.

« Fixing medium-severity bugs imposes a greater workload
than fixing high-severity bugs.

o Medium-severity bug reporters/owners are more experi-
enced than high-severity bug reporters/owners.

o There have been more concurrency and cloud-related
high-severity bugs on desktop since 2009, while on
Android concurrency bugs have been and continue to be
prevalent.

Since our study reveals that bug-fixing process attributes and
developer traits differ across severity levels, our work confirms
the importance of prior work that has focused on accurately
predicting bug severity [2]-[4].

II. METHODOLOGY

We now present an overview of the projects we examined,
as well as the methodology we used to extract the bug features
and topics.

A. Examined Projects

We chose 72 open source projects for our study, spread
across two platforms: 34 projects on desktop and 38 projects
on Android. We used several criteria to choose these projects
and reduce confounding factors. First, the projects we selected
have large user bases, e.g., on desktop we chose! Firefox,
Eclipse, Apache, KDE, Linux kernel, WordPress, etc.; on Android,
we chose Firefox for Android, Chrome for Android, Android platform,
K-9 Mail, WordPress for Android, etc. Second, we chose projects

IMany of the desktop projects we chose have previously been used in
empirical studies [6]-[11].

Desktop Android
Project Fixed Severity(%) Time span Project Fixed Severity(%) Time span
bugs Hi | Med | Low | Change bugs Hi Med | Low | Change
Mozilla Core 101,647 | 20 73 7 8 2/98-12/13 Android Platform 3,497 1 97 2 1 11/07-12/13
OpenOffice 48,067 14 73 13 1 10/00-12/13 Firefox for Android 4,489 12 86 2 4 9/08-12/13
Gnome Core 42,867 13 71 17 8 10/01-12/13 K-9 Mail 1,200 4 94 2 4 6/10-12/13
Eclipse platform 42,401 15 71 14 10 2/99-12/13 Chrome for Android 1,601 2 79 19 14 10/08-12/13
Eclipse JDT 22,775 11 71 18 10 10/01-12/13 OsmAnd Maps 1,018 2 97 1 8 1/12-12/13
Firefox 19,312 9 79 12 6 4/98-12/13 AnkiDroid Flashcards 746 41 48 10 50 7/09-12/13
SeaMonkey 18,831 21 64 14 13 4/01-12/13 CSipSimple 604 5 92 3 7 4/10-12/13
Konqueror 15,990 18 72 10 3 4/00-12/13 My Tracks 525 11 87 2 5 5/10-12/13
Eclipse CDT 10,168 12 74 14 10 1/02-12/13 Cyanogen-Mod 432 1 99 0 1 9/10-1/13
WordPress 9,995 14 67 19 8 6/04-12/13 Andro-minion 346 2 92 5 3 9/11-11/13
KMail 8,324 15 57 27 4 11/02-12/13 || WordPress for Android 317 78 0 22 0 9/09-9/13
Linux Kernel 7,535 18 76 5 3 3/99-12/13 Sipdroid 300 0 100 0 0 4/09-4/13
Thunder-bird 5,684 14 69 17 7 4/00-12/13 AnySoft-Keyboard 229 41 59 0 32 5/09-5/12
Amarok 5,400 20 58 22 6 11/03-12/13 libphone-number 219 4 95 1 4 10/10-12/13
Plasma Desktop 5,294 24 62 14 6 7/02-12/13 ZXing 218 6 62 32 13 11/07-12/13
Mylyn 5,050 8 50 41 11 10/05-12/13 SL4A 204 0 100 0 0 5/09-5/12
Spring 4,937 63 0 37 NA 8/00-12/13 WebSMS-Droid 197 44 52 4 46 10/09-12/13
Tomcat 4,826 21 55 24 9 11/03-12/13 Openintents 188 28 61 10 5 12/07-6/12
MantisBT 4,141 26 0 74 2 2/01-12/13 IMSDroid 183 1 99 0 1 6/10-3/13
Hadoop 4,077 82 0 18 NA 10/05-12/13 Wikimedia Mobile 166 15 37 48 8 1/09-9/12
VLC 3,892 19 72 9 8 5/05-12/13 OSMdroid 166 1 96 3 4 2/09-12/13
Kdevelop 3,572 24 57 19 5 8/99-12/13 WebKit 157 1 98 1 0 11/09-3/13
Kate 3,326 15 61 24 5 1/00-12/13 XBMC Remote 129 37 58 5 33 9/09-11/11
Lucene 3,035 65 0 35 NA 4/02-12/13 Mapsforge 127 23 73 4 NA 2/09-12/13
Kopete 2,957 18 60 22 8 10/01-9/13 libgdx 126 0 100 0 0 5/10-12/13
Hibernate 2,737 80 0 20 NA 10/00-12/13 WiFi Tether 125 2 96 2 3 11/09-7/13
Ant 2,612 14 47 39 9 4/03-12/13 Call Meter NG&3G 116 47 52 1 46 2/10-11/13
Apache Cassandra 2,463 54 0 46 NA 8/04-12/13 GAOSP 114 6 89 5 11 2/09-5/11
digikam 2,400 20 56 25 5 3/02-12/13 Open GPS Tracker 114 30 68 2 12 7/11-9/12
Apache httpd 2,334 21 52 27 9 2/03-10/13 CM7 Atrix 103 0 95 5 5 3/11-5/12
Dolphin 2,161 32 51 17 5 6/02-12/13 Transdroid 103 23 73 4 22 4/09-10/13
K3b 1,380 18 70 13 8 4/04-11/13 MiniCM 101 0 100 0 4 4/10-5/12
Apache Maven 1,332 85 0 15 NA 10/01-12/13 Connectbot 87 3 94 2 6 4/08-6/12
Portable OpenSSH 1,061 11 57 31 5 3/09-12/13 Synodroid 86 29 63 8 20 4/10-1/13
Total 422,583 | 20 69 11 7 Shuffle 77 9 87 4 9 10/08-7/12
Eyes-Free 69 7 91 1 9 6/09-12/13
Omnidroid 61 22 68 10 20 10/09-8/10
VLC for Android 39 17 81 3 8 5/12-12/13
Total 18,579 | 10 85 5 8

that are popular, as indicated by the number of downloads
and ratings on app marketplaces. For the Android projects,
the mean number of downloads as indicated on Google Play,
was | million, while the mean number of user ratings was
7,807. Third, we chose projects that have had a relatively
long evolution history (“relatively long” because the Android
platform emerged in 2007). Fourth, to reduce selection bias,
we chose projects from a wide range of categories—browsers,
media players, utilities, infrastructure.

Table I shows a summary of the projects we examined.
For each platform, we show the project name, the number
of fixed bugs, the percentage of bugs in each severity class
(High, Medium, and Low), the percentage of bugs that had
severity changes, and finally, the time span, i.e., the dates of
the first and last bugs we considered.

B. Collecting Bug Reports

We now describe the process used to collect data. All 72
projects offer public access to their bug tracking systems.
The projects used various bug trackers: desktop projects tend
to use Bugzilla, Trac, or JIRA, while Android projects use
mostly Google Code, though some use Bugzilla or Trac. We
used Scrapy,” an open source web scraping tool, to crawl and
extract bug report features from bug reports located in each
bug tracking system.

For bug repositories based on Bugzilla, Trac, and JIRA, we
only considered bugs with resolution RESOLVED or FIXED,
and status CLOSED, as these are confirmed bugs. We did not

Zhttp://scrapy.org

consider bugs with other statuses, e.g., UNCONFIRMED and
other resolutions, e.g., WONTFIX, or INVALID. For Google
Code-based bug repositories, we selected bug reports with bug
type defect and bug status fixed, done, released, or
verified.

C. Severity Classes

Since severity levels differ among bug tracking systems, we
mapped severity from different trackers to a uniform 10-point
scale, as follows: 1=Enhancement, 2=Trivial/Tweak, 5=Mi-
nor/Low/Small, 6=Normal/Medium, 8=Major/High, 9=Ceriti-
cal/Crash, 10=Blocker. Then we classified all bug reports into
three classes, High, with severity level > 8, Medium, with
severity level=6, and Low, with severity level < 5. This
classification is based on previous research [1], [2]; we now
describe each category.

High severity bugs represent issues that are genuine show-
stoppers, e.g., crashes, data corruption, privacy leaks.
Medium severity bugs refer to issues such as application logic
issues or occasional crashes.

Low severity bugs usually refer to either nuisances or requests
for improvement.

D. Quantitative Analysis

To find quantitative differences in bug-fixing processes we
performed an analysis on various features (attributes) of the
bug-fixing process, e.g., fix time, comment length. We now
provide definitions for these features.

FixTime: the time required to fix the bug, in days, com-
puted from the day the bug was reported to the day the
bug was closed. BugTitle: the text content of the bug re-
port title. BugDescription: the text content of the bug sum-
mary/description. DescriptionLength: the number of words in
the bug summary/description. TotalComments: the number of
comments in the bug report. CommentLength: the number of
words in all the comments attached to the bug report. Priority
describes the importance and order in which a bug should
be fixed compared to other bugs; it is set by the maintainers
or developers who plan to work on the bug; there are 5
levels of priority, with P1 the highest and P5 the lowest.?
BugReporter: the ID of the contributor who reported the bug.
BugOwner: the ID of the contributor who eventually fixed the
bug. DevExperience: the experience of developer X on project
Y in year Z, defined as the difference, in days, between the
date of the X’s last contribution on project Y in year Z and
X’s first contribution on project Y ever.

E. Topic Analysis

For the second thrust of our paper, we used a topic
analysis to understand the nature of the bugs by extract-
ing topics from bug reports. We used the bug title, bug
description and comments for topic extraction. We applied
several standard text retrieval and processing techniques for
making text corpora amenable to text analyses [12] before
applying LDA: stemming, stop-word removal, non-alphabetic
word removal, programming language keyword removal. We

3We use the priority definition from Bugzilla: http://wiki.eclipse.org/WTP/
Conventions_of_bug_priority_and_severity.

then used MALLET [13] for topic training. The parameter
settings are presented in Section I'V-A.

III. QUANTITATIVE ANALYSIS

The first thrust of our study takes a quantitative approach
to investigating the similarities and differences between bug-
fixing processes on severity classes. Specifically, we are in-
terested in how bug-fixing process attributes differ across
severity classes on each platform; how the contributor sets
(bug reporters and bug owners) differ across classes; and how
the contributor profiles vary over time.

The quantitative thrust is centered around several specific
research questions:

RQ1 Does the severity level change and if so, how does
it change?

RQ2 Are bugs in one severity class fixed faster than in
other classes?

RQ3 Do bug reports in one severity class have longer
descriptions than in other classes?

RQ4 Are bugs in one severity class more commented upon
than in other classes?

RQ5 Do bugs in one severity class have larger comment
sizes than other classes?

RQ6 How do severity classes differ in terms of bug own-
ers, bug reporters, and owner or reporter workload?

RQ7 Are developers involved in handling one severity

class more experienced than developers handling
other classes?
A. Severity Change

As mentioned in Section I, bug severity is not always fixed
for the lifetime of a bug—after the initial assignment by
the bug reporter, the severity can be changed, e.g., by the
developers: it can be changed upwards, to a higher value, when
it is discovered that the issue was more serious than initially
thought, or it can be changed downwards, when the issue is
deemed less important that thought initially. In either case,
the result is that not enough resources (or too many resources,
respectively) are allocated to a bug, which not only makes the
process inefficient, but it affects users negatively, especially
in the former case, as it prolongs bug-fixing. Hence severity
changes should be avoided, or at least minimized. We now
quantify the frequency and nature of severity changes.

We show the percentage of bugs that have at least one
change in severity in the 3rd (desktop) and 7th (Android)
columns of Table I, respectively. The overall change rates are
less than 10% for both desktop and Android.* The low change
rates in both platforms> indicate that bug reporters are accurate
in assessing severity when a bug is reported. Still, for Android,
the change rate is higher in some projects, e.g., AnkiDroid and
WebSMS. In the next step, we will shed light on the nature of
severity changes.

We found that, for those bug reports that did change severity,
89.40% of desktop bugs and 98.63% of Android bugs have

“For desktop, severity change is not available for projects hosted on JIRA;
we marked these as ‘NA’ in the table.

SWe investigated the reasons for high change rates in AnkiDroid (50%)
and found that it was apparently due to a project-specific configuration—large
numbers of bugs being filed with severity initially set to ‘undecided’.

& FixTime for Desktop s FixTime for Desktop after 2007 g FixTime for Android
s | —e— high e~ high
g -4 medium | | ¢ -4~ medium
N -~ low . - low
s 2 8
. R
166 199 00 201 202 W03 204 AWS 206 207 08 209 W0 N W12 W 2007 200 2009 w0 2m
() (b)
DescriptionLength for Desktop DescriptionLength for Android
g — e N e R .
N\
e \\ A \ 2 -
2 — \
/ 3 \ 8 —r——m———
Ta e
—e— high —&— medium -+ low) N .
168 1999 00 201 202 03 204 A0S 200 207 208 209 WD 2N W12 21 200 200 210 o w2 2 16 1999 200 001 202 03 204 05 206 207 W08 200 W0 AN W12 83
(@ (e) ®
] TotalComments for Android & ’ | CommentLength for Desktop s CommentLength for Android
o |- high < / \ e~ high g |- nigh
4 medium b / S medium A medium
v tow — R - low o[+ low
g — ~ e
. .l \/ ~ N\ / 2 L -
- < e - ke -
e e N o
: 4 et S . s
. . - . . 8
208 0 20 2om 2 20 lo% 199 200 01 202 203 204 205 06 207 20D 200 10 1 W12 208 200 2000 20 20 w2 am
(® () ®

TABLE II: Top 5 severity

Fig. 1: Feature distribution per year; units are defined in Section II-D.

change patterns.

Rank Desktop Android
1 Normal—Major (18.2%) Medium—high (33.5%)
2 Normal—Critical (16.3%) Medium—Low (13.2%)
3 Normal—Enhancement (13.1%) Medium—Ceritical (12.7%)
4 Normal—Minor (8.3%) Undecided—High (8.9%)
5 Normal— Blocker (3.9%) Undecided—Normal (5.5%)

changed severity once; 8.6% of desktop bugs and 1.11% of
Android bugs changed severity twice; finally, only 2% of
desktop bugs and 0.26% of Android bugs have more than 3
severity changes. Repeated severity changes naturally lead to
higher bug-fixing effort and longer fix times. For example,
Firefox bug #250818 changed severity level 13 times, the
highest number of severity changes of all the bugs. It took
developers 329 days to finally fix this bug. Next, we are going
to show how severity changes.

We show the top-5 most common severity change pat-
terns in Table IL® We found that ‘Normal—Major’ and
‘Medium—High’ are the most common severity changes for
desktop and Android, respectively. We also found the com-
mon pattern ‘Undecided—High’ on Android platform. These
patterns indicate that bug reporters tend to underestimate bug
severity more than they overestimate it. For instance, Mozilla
Core bug #777005 was assigned Normal severity initially,
but the severity level increased from Normal to Critical,
and eventually further increased to Blocker, which indicates
the bug had to be fixed as soon as possible. The pattern
‘Undecided —High’ only exists on Android since issue track-
ing systems on desktop have Normal as default severity level.

RQI1: Less than 10% of bugs change severity on both
desktop and Android; in those cases where severity does
change, it tends to only change once. Normal—Medium and

%We only used the 10-point scale in Table II since the 3-category scale
would be too coarse-grained. The rest studies only use the 3-category scale.

Major—High are the most common change patterns on desk-
top and Android, respectively.

B. Bug-fix Process Attributes

We now proceed with the quantitative analysis of bug
characteristics and bug-fixing process features. Rather than
presenting aggregate values across the entire time span, we
analyze the evolution of values on each platform, at yearly
granularity, for two main reasons: (1) as feature values change
over time, changes would not be visible when looked at in ag-
gregate, and (2) we want to study the trends of severity classes.
The evolution graphs, presented in Figures 1 through 5, will
be discussed at length.

Data preprocessing. For each feature, e.g., FixTime, we
compute the geometric mean’ for feature values in each year.
Moreover, to avoid undue influence by outliers, we have
excluded the top 5% and bottom 5% when computing and
plotting the statistical values.

Pairwise tests between classes. To test whether the differ-
ences in bug characteristics between classes are significant,
we performed a non-parametric Mann-Whitney U test (aka
Wilcoxon rank sum test) for each year, for each platform
comparing the distributions of each attribute, e.g., FixTime for
high vs medium severity, high vs. low severity, and medium
vs. low severity. For brevity, when we discuss the results of
the pairwise tests, we only provide summaries, e.g., the year,
platform, and class pair for which differences are significant.

FixTime: Figures la—1c show how the bug fixing time
has changed over the years for each severity class on desktop
and Android. Since the values after 2007 on desktop are
much smaller than those pre-2007, we provide a zoom-in of

7Since the distributions are skewed, arithmetic mean is not an appropriate
measure [14], and we therefore used the geometric mean in our study.

TABLE III: Results of the generalized regression model.

Features Desktop Android
coefficient | p-value coefficient [p-value
Severity -95.850 < 2e-16 -20.892 6.44e-13
Priority 4.162 0.108 -14.891 0.00109

FixTime for years 2007 to 2013 in Figure 1b. We make several
observations regarding FixTime.

We found that in addition to severity, priority also affects
FixTime. However, not all bug reports have an associated
priority, as not all bug trackers support it: for our datasets,
67.68% of desktop bugs have an associated priority while
only 6.44 of Android bugs do (Google Code does not support
priority). We first provide several examples of how priority and
severity can influence FixTime; later we will show the results
of a statistical analysis indicating that severity influences
FixTime more than priority does:

o High Severity & High Priority: major functionality failure
or crash in the basic workflow of software. These bugs
usually took less time to fix since they have huge and
deleterious effects on software usage. For instance, Mozilla
Core bug #474866, which caused plugins to fail upon the
second visit to a website, is a P1 blocker bug; it took
developers just two days to fix it.

e High Severity & Low Priority: the application crashes
or generates an error message, but the cause is a very
specific situation, or a hard-to-reproduce circumstance.
Usually developers need more time to fix these kind of
bugs. For example, Mozilla Core bug 92322 had severity
Blocker (highest) but priority P5 (lowest). The bug took
2 months to fix because it required adding functionality
for an obscure platform (at the time).

e Low Severity & High Priority: this characterizes bugs
such as a typo in the Ul, that do not impact functionality,
but can upset or confuse users, so developers try to fix
these bugs quickly. For instance, Eclipse JDT bug #13141,
whose severity is trivial, had priority P1 since it was a
typo in the UI; it was fixed in one day.

o Low Severity & Low Priority: bugs in this class comprise
nuisances such as misspellings or cosmetic problems in
documents or configuration files. Developers would fix
these bugs when the workload is low. For example, Apache
httod bug #43269, a typo in the server error message with
trivial severity and PS5 priority, took more than 3 years to
be fixed.

To check the influence of severity and priority on FixTime,
we built a linear regression model in which FixTime was
the dependent variable, while severity and priority were in-
dependent variables. Table III shows the results. We found
that severity is a better FixTime predictor than priority, with
p-values much smaller than those of priority, but nevertheless
the priority’s p-values, 0.1 for desktop and 0.001 for Android
suggest a relationship between priority and FixTime.

We now present the results of a per-year statistical analysis
that shows FixTimes tend to differ significantly among severity
classes and among priority classes. The “Severity” columns
of Table IV provide the p-values of pairwise two-means tests
of FixTimes between different severity classes. The results

TABLE 1IV: Significance values of whether FixTime differs between classes
on Desktop and Android.

Year | Severity | Priority

| Hi.vs.Med. | Hi.vs.Low [Med.vs.Low | Hi.vs.Med. [Hi.vs.Low [Med. vs. Low
Desktop
1998 0.0189 0.2183 0.5654 < 0.01 < 0.01 0.7325
1999 < 0.01 < 0.01 < 0.01 < 0.01 0.0102 < 0.01
2000 < 0.01 < 0.01 < 0.01 0.3180 < 0.01 0.0346
2001 < 0.01 < 0.01 < 0.01 < 0.01 0.6562 < 0.01
2002 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
2003 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
2004 0.4082 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
2005 < 0.01 < 0.01 < 0.01 0.9191 < 0.01 < 0.01
2006 0.2646 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
2007 < 0.01 0.9771 0.0102 < 0.01 < 0.01 < 0.01
2008 0.9800 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
2009 < 0.01 < 0.01 < 0.01 < 0.01 0.7295 < 0.01
2010 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
2011 0.2227 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
2012 < 0.01 < 0.01 < 0.01 < 0.01 0.0267 < 0.01
2013 < 0.01 < 0.01 < 0.01 < 0.01 0.2575 0.2535
Android
2008 < 0.01 0.0831 < 0.01 NA NA NA
2009 < 0.01 0.2286 < 0.01 < 0.01 NA NA
2010 < 0.01 < 0.01 0.9944 < 0.01 NA NA
2011 < 0.01 < 0.01 0.0105 0.0429 0.2958 0.0304
2012 < 0.01 0.0604 0.3382 0.0347 0.0711 0.9072
2013 < 0.01 0.1118 0.4905 0.4140 0.5035 0.8857

indicate that on desktop, with few exceptions (1998, 2007),
FixTimes do differ significantly between classes. On Android,
though, FixTimes differ less among severity classes.

The “Priority” columns of Table IV show the results of a
similar analysis—how does FixTime differ between priority
classes. To make comparisons with severity easier, we used a
3-point scale for priority.?

The table values indicate that differences in FixTime across
priority classes again tend to be significant on desktop, but not
on Android; the “NA” entries indicate that most of the Android
bugs in that class were hosted on Google Code, which does
not support priority.

For Android, FixTime differs significantly between high and
medium severity bugs in all years, but does not differ signifi-
cantly between high and low severity or between medium and
low severity: this is explained by the fact that the Wilcoxon
test is not transitive [15]. For high severity vs. low severity,
only 2010 and 2011 have significant differences; for medium
severity vs. low severity, the differences are only significant
in 2008 and 2009.

Figures la—I1c indicate how the population means vary for
each class, year, and platform. We can now answer RQ2:

RQ2: Fix time for desktop bugs is affected by severity and
to a lesser extent by priority. FixTime does vary significantly
across severity classes for desktop, but for Android the only
significant difference is between high and medium severity.

DescriptionLength: The number of words in the bug
description reflects the level of detail in which bugs are
described. A higher DescriptionLength value indicates a higher
bug report quality [9], i.e., bug fixers can understand and find
the correct fix strategy easier. As shown in Figure 1d, high-
severity bugs on desktop have significantly higher description
length values while medium and low-severity bugs have lower
values (the DescriptionLength differences between medium
and low-severity bugs is significant in only 10 out of 16 years).
We found that the reason for high DescriptionLength for high-
severity bugs is that reporters usually provide stack traces or
error logs for the bugs.

8High means priority level < 2; Medium means priority level=3; and Low
means priority level > 4.

However, as shown in Figure le, we found different trends
on Android: medium severity bugs have the highest values
of DescriptionLength, followed by high-severity bugs, while
low-severity bugs usually have the smallest DescriptionLength.
The difference between classes is small. The pairwise tests
show that only during half of the studied time frame (2009-
2011), the differences between severity classes are significant,
for other years they are not. The reason for high-severity bugs
not having the highest DescriptionLength is that unlike on
desktop, for projects hosted on Google Code, reporters do not
adhere to providing a stack trace or error log as strictly as
they do on desktop.

RQ3: On desktop, DescriptionLength is significantly higher
for high-severity bugs compared to medium and low-severity
bugs. DescriptionLength differences are not always significant
between medium and low-severity on desktop, or between
classes on Android.

TotalComments: Bugs that are controversial or difficult
to fix have a higher number of comments. The number of com-
ments can also reflect the amount of communication between
application users and developers—the higher the number of
people interested in a bug report, the more likely it is to be
fixed [16]. According to Figure 1f, there are more comments in
high-severity bug reports on desktop, while low-severity bug
reports have the least number of comments. This indicates
that high-severity bugs are more complicated, and harder to
fix, while low-severity bugs are in the opposite situation.

The pairwise tests show that all classes are different from
each other except for a few years (medium vs. low in 1999
and 2001).

TotalComments evolution is similar on Android (Figure 1g),
i.e., high-severity bugs have the highest value while low-
severity bugs have the lowest value. The pairwise tests indicate
that differences are significant between all class pairs, except
for 2008 and 2009.

RQ4: On desktop and Android, high-severity bugs are more
commented upon than the other classes, whereas low-severity
bugs are less commented upon.

CommentLength: This measure, shown in Figures lh
and 1i, bears some similarity with TotalComments, in that it
reflects the complexity of the bug and activity of contributor
community. We found similar results as for TotalComments
on desktop. Pairwise tests indicate that high-severity bugs do
differ from medium and low in all the cases while medium
and low-severity bugs have significant differences only after
2004.

For Android, the trends are not so clear: the pairwise tests
show that the difference between high and medium are not
significant in 2009 to 2011. But differences between high and
low, and medium and low, are significant in all years.

RQS5: High severity bugs on desktop have higher Com-
mentLength than other classes. On Android, the differences
between high and medium severity classes are not significant,
but they both are significantly higher than for the low-severity
class.

TABLE V: Numbers of bug reporters and bug owners and the percentage of
them who contribute to each severity class.

Year Reporters Owners
] (%) #] (%)

| High | Med. | Low | High | Med. | Low
Deskto
1998 164 335 | 762 | 17.1 64 438 | 78.1 29.7
1999 949 456 | 753 17.8 214 58.9 86.4 | 383
2000 | 3,270 | 35.0 | 76.1 15.7 449 425 80.0 | 35.0
2001 | 5471 | 294 | 71.7 17.7 664 444 | 69.0 | 392
2002 | 7,324 | 355 | 55.6 | 185 995 412 | 60.5 | 339
2003 | 7,654 | 29.5 52.2 18.0 | 1,084 | 343 552 | 319
2004 | 8,678 | 28.5 525 | 21.0 | 1,273 | 364 | 562 | 32.8
2005 | 8,990 | 282 | 47.8 | 21.0 | 1,327 | 37.8 | 56.7 | 335
2006 | 7,988 | 30.7 | 51.2 | 21.8 | 1,408 | 399 | 589 | 33.7
2007 | 7,292 | 30.0 | 525 19.7 | 1,393 | 39.1 64.0 | 32.7
2008 | 8,474 | 309 | 555 | 204 | 1,546 | 39.7 | 653 | 325
2009 | 8451 | 32.6 | 56.2 | 20.1 | 1,537 | 419 | 647 | 342
2010 | 7,799 | 34.0 | 56.6 | 18.0 | 1,475 | 455 65.5 | 324
2011 | 6,136 | 332 | 642 | 179 | 1,381 | 43.7 | 75.7 | 31.1
2012 | 5,132 | 32.1 679 | 17.1 | 1,352 | 474 | 76.0 | 29.6
2013 | 4884 | 31.2 | 66.6 | 18.1 | 1,432 | 473 72.8 | 277
Android
2008 429 44 97.7 2.6 41 36.6 | 95.1 17.1
2009 987 8.1 95.1 2.9 104 29.8 | 923 125
2010 | 1,875 | 12.6 | 87.0 7.3 163 33.1 883 | 21.5
2011 | 2,045 | 10.6 | 915 4.1 218 33.0 | 93.6 | 16.1
2012 | 1,998 | 11.6 | 89.6 6.4 340 26.8 879 | 203
2013 | 1,492 7.8 842 | 11.3 419 16.2 89.5 | 294

C. Management of Bug-fixing

Resource allocation and management of the bug-fixing pro-
cess have a significant impact on software development [11];
for example, software quality was found to be impacted by the
relation between bug reporters and bug owners [6]. We defined
the BugOwner and BugReporter roles in Section II-D and now
set out to analyze the relationship between bug reporters and
bug owners across the different severity classes.

1) Developer Changes: We examined the distributions and
evolutions of bug reporters, as well as bug owners, for the three
severity classes on the two platforms. Table V summarizes the
results. Column 2 shows the total number of bug reporters
in each year; columns 3-5 show the percentages of bug
reporters who have reported high, medium, and low-severity
bugs. Columns 6 through 9 show the numbers and percentages
of bug owners.

We make several observations. First, the sums of percent-
ages for high, medium, and low severity are larger than 100%,
which indicates that there are reporters or owners who con-
tribute to more than one severity class. Second, high-severity
bug owners have larger contribution (percentage) values than
those of corresponding bug reporters, because fixing high-
severity bugs requires more resources.

Figure 2 shows the trend of bug reporters and owners
of each severity class. For desktop, according to Figures 2a
and 2b, we found similar evolutions for the numbers of high,
medium and low severity classes for both bug reporters and
owners. For Android, Figures 2c and 2d indicate that there
are many more medium severity reporters and owners than
other severity classes. The differences in these trends between
desktop and Android are due to the percentage of medium
severity bugs on Android (Table I) being larger than the
percentage of medium-severity bugs on desktop.

The number of fixed bugs differs across platforms, so to be
able to compare reporter and owner activity between platforms,
we use the number of bug reporters and bug owners in
each year divided by the number of fixed bugs in that year.

[Number of desktop bug reporters Number of desktop bug owner:
A

—— high g | -
4 A mgdium T | —e— high Vs
+ low A i o | 4 medium e
SN 8 + low

T
b
i

1000 2000 3000 4000 5000 6000

0
L

400

& 1 Number of Android bug reporters

—s— high Lt
A medium a7
%* +- low g

1 Number of Android bug owners .

a

—e— high
—4-- medium
+- low

300
L

e

1000
L
200
L

500
L
100
L

1o 2000 202 204 2008 2008 2010 2012 1% 2000 202 2004 2006 2008 200 2012 a8 200 a0 2o a2 2m 2 208 200 2on o1z 201
(a) (b) () (d
Fig. 2: Number of bug reporters and owners for each platform.
BN #Reporters/#Fixed Bugs EN #Owners/#Fixed Bugs #Reporters/#Owners

—e— high ©
—-4-- medium
= low

o] —— high —4- medium-+- low o - —e— high --A- medium-+- low
° T T T T T T T T T T T T T ° T
9 200 02 2004 206 208 200 2012 9 00 2002 2004 206 208 200 2012 199 000 202 204 206 208 2000 2012
(@) (b) (©
Fig. 3: Developer trends on desktop.

BN #Reporters/#Fixed Bugs BN #Owners/#Fixed Bugs #Reporters/#Owners
= . | —=— nigh - . —=— high
54 S| ~4- medium T --4— medium
+ low 29 T - low
3 -
BN . . P
° e - -~
3 - N =
[— . e N o E—
o |~ high -A- medium-—+- low - ==
° T T T T T ° T T T T T T T T T T T
2008 200 2010 201 2012 2013 2008 2009 2010 20m 2012 2013 2008 2009 2010 20m 2012 2013
(@) (b) (©

Fig. 4: Developer trends on Android.

%1 Experience of Desktop Reporters Experience of Desktop Owners

300

—e— high & 1
- -4 medium
+ low

200
L

100
L

~7 Experience of Android Reporters | 27 Experience of Android Owners

© < —e— high s | —e high
A medium -4 medium
0o e low + low

e L e L e e L e s s s
1998 2000 2002 2004 2006 2008 2010 2012 1998 2000 2002 2004 2006 2008 2010 2012

(@ (b)

2008 2009 2010 2011

(©)

2012 2013 2008 2009 2010 2011

(d)

2012 2013

Fig. 5: DevExperience for each severity class and each platform, in days.

Figures 3a, 3b, 4a and 4b show the results; we will explain
them one by one.

For desktop, the ratio of reporter or owner to fixed bugs
have similar trends (Figures 3a, 3b): low-severity bugs have
large values as they are easier to find and fix. They are
followed by high-severity bugs since, although hard to fix,
the importance of high-severity bugs plays a significant role
and instills urgency. For Android, the ratios of bug owners to
fixed bugs (Figure 4b) have similar trends as on desktop, since
the bug-fixing process is similar on both platforms. On the
contrary, the ratio of bug reporters to fixed bugs (Figure 4a) on
Android and desktop are different. On Android, high severity
has the lowest value for this ratio while the medium severity
class has the lowest value on desktop. The reason is that the
percentage of high-severity bugs on Android is less than that
of desktop. Also the severity classification on Android is not

as strict as on desktop (most projects hosted on Google Code
only have 3 severity levels); and finally, the difference between
high and medium is smaller on Android.

Furthermore, the ratio of owners to fixed bugs can reflect the
inverse of workload and effort associated with bug-fixing (high
ratio value = low workload). We find that for both desktop
and Android (Figures 3b and 4b), low-severity bugs have the
lowest workload (the highest curve) since they are easiest to
fix. Medium-severity bugs require most resources due to their
large quantity.

The ratio of reporters to owners (Figures 3¢ and 4c) reveals
that medium-severity bugs have the highest ratio— this is
unsurprising since most reports are at this severity level. Low
severity has the smallest ratio as these bugs are the easiest to
report and fix.

RQ6: Medium-severity bugs have the most reporters, most

owners, and highest workload. Low-severity bugs are at the
opposite end of the spectrum; high-severity bugs are in-
between.

2) Developer Experience: To analyze differences in con-
tributors’ level of experience, we use the DevExperience met-
ric defined in Section II-D.° Figure 5 shows the evolution of
DevExperience, in days, for bug reporters and bug owners of
each severity class on desktop and Android. For bug reporters
and owners, the experience on all severity classes increases
with time.'?

For desktop, as Figures 5a and 5b show, bug reporters and
bug owners of medium-severity bugs are more experienced
than the other two severity classes due to there being more
medium-severity bugs, hence contributors can gain more expe-
rience. Low-severity bug reporters and owners have the lowest
levels of experience since the number of low-severity bugs is
small and these bugs are easiest to find and fix.

For Android, bug owners have similar trends as on desktop,
medium-severity bug owners have more experience than high
and low-severity owners. On the other hand, high-severity
bug reporters on Android are more experienced than medium
severity than low severity, but the difference in experience
levels between severity classes is smaller than on desktop.
Upon further investigation, we found that the portion of new
bug reporters on Android is much larger than that of desktop,
which we attribute to the lower “barrier to entry”: it is easier
to report a bug in an Android project than in a desktop
project since most apps include a streamlined bug reporting
functionality (send the crash report and/or Android logcat
to developers by just pressing a button).

Also as Figure 4a shows, the high-severity class has the
lowest ratio of reporters-to-fixed bugs, which indicates there
are fewer new bug reporters for high severity. As a result,
high-severity bug reporters are more experienced than others
on Android.

RQ7: Medium-severity class developers are more experi-
enced (have been active for longer) than high-severity class
developers than low-severity class developers.

IV. ToPIC ANALYSIS

So far we have focused on a quantitative analysis of
bugs and bug fixing. We now turn to a fopic analysis that
investigates the nature of the bugs in each severity class. More
concretely, we are interested in what kinds of bugs comprise
each severity class on different platforms and how the nature
of bugs changes as projects evolve.

We use topic analysis for this purpose: we extract topics
(sets of related keywords) via LDA from the terms (keywords)
used in bug title, descriptions and comments, as described in
Section II-E. We extract the topics used each year in each
severity class of each platform, and then compare the topics

9There are few developers made a lot contribution over a short period while
some made only few contributions over a long period. Since the situation are
extremely rare, they will not affect the overall result.

10The dip in DevExperience for bug reporters on desktop in 2009 is caused
by a large turnover that year; the fast rise afterwards is due to a surge in
popularity of several projects (mainly Gnome Core, Amarok and Plasma).

to figure out how topics change over time in each class and
how topics differ across severity classes.

For the topic analysis, to investigate the difference between
severity classes on bug nature, we designed the following
research questions:

RQ8 Do bug topics differ between severity classes?
RQY9 How do topics evolve over time?

A. Topic Extraction

The number of bug reports varies across projects, as seen
in Table I. Moreover, some projects are related in that they
depend on a common set of libraries, for instance SeaMonkey,
Firefox and Thunderbird use functionality from libraries in Mozilla
Core for handling Web content. It is possible that a bug in
Mozilla Core cascades and actually manifests as a crash or
issue in SeaMonkey, Firefox, or Thunderbird, which leads to
three separate bugs being filed in the latter three projects. For
example, Mozilla Core bug #269568 cascaded into another two
bugs in Firefox and Thunderbird. A similar issue may appear in
projects from the KDE suite, e.g., Konqueror, Kdevelop, or Kate
might crash (and have a bug filed) due to a bug in shared KDE
libraries.

Hence we extract topics using a proportional strategy where
we sample bug reports to reduce possible over-representation
due to large projects and shared dependences.

More concretely, for high/medium/low severity classes on
desktop, we extracted topics from 500/1,000/400 ““indepen-
dent” bug reports for each severity class, respectively. The
independent bug report sets were constructed as follows: since
we have 10 projects from KDE, we sampled 100 medium
severity bugs from each KDE-related project. We followed
a similar process for Mozilla, Eclipse and Apache. Android
projects had smaller number of bug reports, so for Android we
sampled 50/100/50 bug reports from high/medium/low severity
classes, respectively.

With the proportional sets at hand, we followed the LDA
preprocessing steps described in Section II-E; since there
are only two bug reports in 1998 for desktop and one for
Android in 2007, we have omitted those years. For desktop, the
preprocessing of high, medium, and low severity sets resulted
in 755,642 words (31,463 distinct), 758,303 words (36,445
distinct) and 352,802 words (19,684 distinct), respectively. For
Android, the preprocessing of high, medium, and low severity
sets resulted in 116,010 words (7,230 distinct), 289,422 words
(13,905 distinct) and 31,123 words (3,825 distinct), respec-
tively. Next, we used MALLET [13] for LDA computation.
We ran for 10,000 sampling iterations, the first 1,000 of which
were used for parameter optimization. We modeled bug reports
with K = 100 topics for high and medium severity classes on
desktop, 60 for low severity class on desktop, 50 for high
and medium classes on Android and 40 for low severity bugs
on Android; we choose K based on the number of distinct
words for each platform; in Section V we discuss caveats on
choosing K.

B. Bug Nature and Evolution
We now set out to answer RQ8 and RQ9.

TABLE VI: Top words and topic weights for desktop.

Label [Most repr ive words | Weights

High

build build gener log option link config select resolv duplic | 12%
depend level

compile server sourc compil output local project info path | 11%
search util tag expect tool

crash crash load relat size caus broken good current instanc | 9%
paramet trace stop properli valid trigger affect unabl
assum condition

GUI swt widget ui editor dialog jface gnome content enabl | 6%
handler mod send kei

concurrency thread Iwp pthread event wait process mutex cond | 5%
thread oper geventdispatch geventloop

Medium

application window call page displai log connect start add data | 17%

logic output check support current appli enabl apach

install instal select item control option move linux directori | 15%
core debug icon start correct server thing info save
statu place edit account

crash warn good crash layout limit buffer affect lock confirm | 8%
miss screenshot trigger quick

widget widget descript action select plugin workbench dialog | 6%
swt progress jdt wizard max

communi- ssh debug local ket ssl protocol sshd authent messag | 3%

cation password cgi login client channel launch exec

Low

config configur support sourc instal size exist url inform util | 22%
cach document info load custom src path move

feature add option suggest gener find updat good local applic | 20%

request miss content address point data correct bit save duplic

1/0 output space mous index block invalid separ net oper | 9%
workaround stop foo wait timeout delet keyboard

install instal makefil icon dialog home build edit helper select | 8%
normal page leav progress site bugzilla verifi

database db queri method menu php filter map sql jdbc execut | 8%
databas count gecko init

TABLE VII: Top words and topic weights for Android.

Label [Most repr ive words | Weights

High

concurrency handler init handl dispatch looper event htc samsung | 22%
galaxi loop sm mobil enabl post option launch miss

runtime error runtim error fail code press screen happen doesn exit | 16%
queri finish notic process edit didn wait lock delet trace

runtime crash | crash thread patch doesn repli state code updat stack | 13%
good resourc beta hit verifi unknown window

Medium

runtime crash | runtim doesn result fail item remov wrong happen | 27%
input action file app system data

runtime error output error messag correct forc due requir complet | 19%
specif debug occur count

phone call call devic task sip galaxi samsung servic hardwar | 12%
motorola

Low

feature suggest client find guess support messag phone output | 23%

request account system log option applic check format displai
send screen result user market latest

application android app file error correct wrong bit page librari | 21%

logic nofollow map correctli didn fail full data launch logcat
screenshot

GUI report menu screen button gener ad user link browser | 12%
load press item url mode action context keyboard
previou widget

How Do Bug Topics Differ Across Severity Classes:

Tables VI and VII show the highest-weight topics extracted
from the proportional data set. We found that for both desktop
and Android, bug topics with highest weight differ across
severity classes.

On desktop, build- and compilation-related bugs are the
most common bug type in the high-severity class; for medium
severity, application logic bugs (failure to meet requirements)
are the most popular, followed by installation errors; for
low severity, configuration bugs and feature requests are
most prevalent. It was interesting to see that bug severity is
somewhat more developer-centric than user-centric: note how
build/compile errors which mostly affect developers or highly-
advanced users appear in the high-severity class, whereas in-
stall errors, which mostly affect end-users, are in the medium-

TABLE VIII: Top-3 bug topics per year for high-severity class on desktop

and Android.

Year \ Top 3 topics (topic weight)

Desktop

1999 make (58%) install (12%) layout (10%)
2000 widget (27%) layout (24%) install (16%)
2001 layout (38%) install (10%) compile (7%)
2002 GUI (17%) compile (14%) build (10%)
2003 compile (20%) GUI (13%) build (10%)
2004 crash (19%) build (12%) compile (9%)
2005 plugin (17%) build (10%) compile (10%)
2006 GUI (14%) build (10%) compile (8%)
2007 build (14%) GUI (11%) compile (9%)
2008 debug (16%) compile (11%) widget (9%)
2009 | concurrency (33%) GUI (11%) compile (11%)
2010 | concurrency (15%) compile (11%) debug (7%)
2011 concurrency (16%) compile (12%) plugin (11%)
2012 cloud (14%) compile (12%) build (11%)
2013 | concurrency (22%) build (11%) cloud (11%)
Android

2008 email (39%) runtime error (24%) concurrency (11%)
2009 connection (23%) runtime error (22%) concurrency (14%)
2010 | concurrency (18%) database (17%) call (13%)
2011 map (27%) concurrency (26%) database (12%)
2012 | concurrency (21%) | runtime crash (17%) | runtime error (17%)
2013 browser (18%) runtime crash (16%) concurrency (15%)

severity class.

For Android, in the high-severity class, bugs associated
with the Android concurrency model (event/handler) are the
most prevalent, followed by runtime errors (the app displays
an error) and then runtime crashes (the app silently crashes
without an error or restarts); in the medium-severity class,
runtime crashes and runtime errors are also popular, followed
by problems due to phone calls. In the low-severity class,
feature requests are the most popular, followed by problems
due to application logic and GUIL.

While some commonalities exist between desktop and An-
droid (runtime errors, crashes, and feature requests are well-
represented in the high-weight topics on both platforms), there
are also some notable differences: build/compile/install errors
do not pose a problem on Android, which might suggest
that the Android build process is less error-prone. Second,
owing to the smartphone platform, phone call issues appear
more frequently among high-weight topics on Android. Third,
concurrency is still posing problems: it appears as a high-
weight topic on both desktop on Android.

RQS8: Topics differ across severity classes and across
platforms, e.g., for high-severity bugs, build/install/compile-
related issues are the most prevalent on desktop, while con-
currency and runtime error/crash-related bugs are the most
prevalent on Android.

How Do Bug Topics Evolve: To study macro-trends in
how the nature of bugs changes over time, we analyzed topic
evolution in each severity class on each platform. We found
that high-severity bugs on desktop are the only class where
topics change substantially over time; in the other classes,
high-frequency topics tend to be stable across years. We limit
our discussion to high-severity topics; Table VIII shows the
top-3 topics and their corresponding weight for each year.

We make several observations. On desktop, concurrency
started to be a big issue in 2009, and has remained so. This
is unsurprising, since multi-core computers have started to
become the norm around that time, and multi-threading pro-
gramming has been seeing increased adoption. Furthermore,

we found that cloud computing-related bugs have started to
appear in 2012, again understandably as cloud computing has
been getting more traction.

For Android, concurrency bugs rank high every year, sug-
gesting that developers are still grappling to use the Android’s
event-based concurrency model correctly.

RQ9: Bug topics tend to be stable in low- and medium-
severity classes. In the high-severity class, on desktop, there
have been more concurrency and cloud-related bugs since
2009 and 2012, respectively; on Android, concurrency bugs
have been and continue to be prevalent.

V. THREATS TO VALIDITY

We now discuss possible threats to the validity of our study.

Selection bias. We only chose open source applications
for our study, so the findings might not generalize to closed-
source projects. Our chosen projects use one of five trackers
(Bugzilla, Trac, JIRA, MantisBT and Google Code); we did
not choose projects hosted on GitHub since severity levels
are not available on GitHub, hence our findings might not
generalize to GitHub-hosted projects.

Furthermore, we did not control for source code size—
differences in source code size might influence features such
as FixTime.

Severity distribution on Android. According to Table I,
many Android projects have skewed severity distributions (for
17 out of 38 Android projects, more than 90% of the bugs
have medium severity) We believe this to be due to medium
being the default value for the severity field on Google Code
and most Android reporters or developers on Android not
considering the severity level as important as on desktop.

Priority on Google Code and JIRA. We could not quantify
the effect of priority on those projects hosted on Google Code
and JIRA, as Google Code and JIRA do not have a priority
field.

Data processing. For the topic number parameter K, find-
ing an optimal value is an open research question. If K is
too small, different topics are clustered together, if K is too
large, related topics will appear as disjoint. In our case, we
manually read the topics, evaluated whether the topics are
distinct enough, and chose an appropriate K to yield disjoint
yet self-contained topics.

Google Code does not have support for marking bugs as
reopened (they show up as new bugs), whereas the other
trackers do have support for it. About 5% of bugs have been
reopened on desktop, and the FixTime for reopened bugs is
usually high [17]. This can result in FixTime values being
lower for Google Code-based projects than they would be if
bug reopening tracking was supported.

VI. RELATED WORK

Empirical software engineering studies have focused on
studying bug characteristics, but a study comparing bug
reports/bug-fixing processes/nature of bugs between the sever-
ity classes has been missing.

Cross-platform studies. In our previous study [?], we
compared bugs and bug-fixing features between desktop,

Android and iOS. This work uses a subset (desktop and
Android) of those datasets. However, the thrust of this work
is understanding differences (bug characteristics, bug topics)
between severity classes rather than between platforms.

Bug severity studies. All the existing bug severity studies
are focused on predicting severity levels from a newly-filed
bug report. Menzies et al. [3] proposed a classification algo-
rithm named RIPPER and applied it to bug reports in NASA
to output fine-grained severity levels.

Lamkanfi et al. [2] apply various classification algorithms
to compare their performance on severity predicting. They
grouped bug reports into two classes, severe and non-severe.

Tian et al. [4] have applied the Nearest Neighbor algorithm
to predict the severity of bug reports in a fine-grained way.

All these works are using information retrieval techniques
to predict severity level of bug reports, but they did not
consider the question whether there are differences in bug
characteristics across severity classes. Our findings validate the
importance and necessity of these previous works, and show
that severity is an important factor not only for bug reporters
but also for project managers.

Topic modeling. Topic models have been used widely in
software engineering research. Prior efforts have used topic
model for bug localization [18], source code evolution [12],
duplicate bug detection [19], [20] and bug triaging [21].

Our work applies a similar process with previous work [12],
but we use topic modeling technique for a different purpose:
finding differences in bug topics across severity classes, and
how bug topics evolve over time.

VII. CONCLUSIONS

We have presented the results of a study on desktop and
Android projects that shows bugs of different severity have to
be treated differently, as they differ in terms of characteristics
and topics. We have defined three severity classes, high,
medium and low. We have shown that across classes, bugs
differ quantitatively e.g., in terms of bug fixing time, bug
description length, bug reporters/owners. A topic analysis of
bug topics and bug topic evolution has revealed that the topics
of high-severity bugs on desktop have shifted over time from
GUI and compilation toward concurrency and cloud, whereas
on Android concurrency is a perennial topic. Our approach
can guide severity assignment, e.g., compile/make bugs should
have higher severity, and configuration errors should have
lower severity.

VIII. ACKNOWLEDGMENTS

This material is based upon work supported by the National
Science Foundation under Grant No. CCF-1149632. Research
was sponsored by the Army Research Laboratory and was ac-
complished under Cooperative Agreement Number W91 1NF-
13-2-0045 (ARL Cyber Security CRA). The views and conclu-
sions contained in this document are those of the authors and
should not be interpreted as representing the official policies,
either expressed or implied, of the Army Research Laboratory
or the U.S. Government. The U.S. Government is authorized
to reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation here on.

[1]
[2]

[7]
[8]
[9]
[10]
[11]
[12]

REFERENCES

A. Lamkanfi, S. Demeyer, E. Giger, and B. Goethals, “Predicting the
severity of a reported bug,” in MSR’10, 2010, pp. 1-10.

A. Lamkanfi, S. Demeyer, Q. Soetens, and T. Verdonck, “Comparing
mining algorithms for predicting the severity of a reported bug,” in
CSMR’11, 2011, pp. 249-258.

T. Menzies and A. Marcus, “Automated severity assessment of software
defect reports,” in ICSM’08, 2008, pp. 346-355.

Y. Tian, D. Lo, and C. Sun, “Information retrieval based nearest neighbor
classification for fine-grained bug severity prediction,” in WCRE’12,
2012, pp. 215-224.

D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,”
JMLR, vol. 3, pp. 993-1022, 2003.

A. Bachmann and A. Bernstein, “When process data quality affects
the number of bugs: Correlations in software engineering datasets,” in
MSR’10, 2010, pp. 62-71.

N. Bettenburg, S. Just, A. Schroter, C. Weiss, R. Premraj, and T. Zimmer-
mann, “What makes a good bug report?” in FSE’08, 2008, pp. 308-318.
E. Giger, M. Pinzger, and H. Gall, “Predicting the fix time of bugs,” in
RSSE’10, 2010, pp. 52-56.

P. Hooimeijer and W. Weimer, “Modeling bug report quality,” in ASE’07,
2007, pp. 34-43.

A. Lamkanfi and S. Demeyer, “Filtering bug reports for fix-time analy-
sis,” in CSMR’12, 2012, pp. 379-384.

J. Xuan, H. Jiang, Z. Ren, and W. Zou, “Developer prioritization in bug
repositories,” in ICSE’12, 2012, pp. 25-35.

S. W. Thomas, B. Adams, A. E. Hassan, and D. Blostein, “Modeling
the evolution of topics in source code histories,” in MSR’11, 2011, pp.
173-182.

[13]

[14]

[15]

[16]

(171

(18]

[19]

[20]

[21]

A. K. McCallum, “MALLET: A Machine Learning for Language
Toolkit,” 2002. [Online]. Available: http://mallet.cs.umass.edu

E. Limpert, W. A. Stahel, and M. Abbt, “Log-normal distributions across
the sciences: Keys and clues,” BioScience, vol. 51, no. 5, pp. 341-352,
2009.

D. L. Gillen and S. S. Emerson, “Nontransitivity in a class of weighted
logrank statistics under nonproportional hazards,” Statistics & Probabil-
ity Letters, vol. 77, no. 2, pp. 123 — 130, 2007.

P. J. Guo, T. Zimmermann, N. Nagappan, and B. Murphy, “Characteriz-
ing and predicting which bugs get fixed: An empirical study of microsoft
windows,” in ICSE’10, 2010, pp. 495-504.

E. Shihab, A. Ihara, Y. Kamei, W. Ibrahim, M. Ohira, B. Adams,
A. Hassan, and K.-i. Matsumoto, “Studying re-opened bugs in open
source software,” Emp. Soft. Eng., vol. 18, no. 5, pp. 1005-1042, 2013.
A. T. Nguyen, T. T. Nguyen, J. Al-Kofahi, H. V. Nguyen, and T. Nguyen,
“A topic-based approach for narrowing the search space of buggy files
from a bug report,” in ASE’11, 2011, pp. 263-272.

A. T. Nguyen, T. T. Nguyen, T. N. Nguyen, D. Lo, and C. Sun,
“Duplicate bug report detection with a combination of information
retrieval and topic modeling,” in ASE’12, 2012, pp. 70-79.

P. Runeson, M. Alexandersson, and O. Nyholm, “Detection of duplicate
defect reports using natural language processing,” in ICSE’07, 2007, pp.
499-510.

X. Xie, W. Zhang, Y. Yang, and Q. Wang, “Dretom: Developer recom-
mendation based on topic models for bug resolution,” in PROMISE’12,
2012, pp. 19-28.

