
Fine-grained Incremental Learning and Multi-feature
Tossing Graphs to Improve Bug Triaging

Pamela Bhattacharya Iulian Neamtiu
Department of Computer Science and Engineering

University of California, Riverside
Riverside, California 92521

Email:{pamelab,neamtiu}@cs.ucr.edu

Abstract—Software bugs are inevitable and bug fixing is a
difficult, expensive, and lengthy process. One of the primary
reasons why bug fixing takes so long is the difficulty of accurately
assigning a bug to the most competent developer for that bug kind
or bug class. Assigning a bug to a potential developer, also known
as bug triaging, is a labor-intensive, time-consuming and fault-
prone process if done manually. Moreover, bugs frequently get re-
assigned to multiple developers before they are resolved, a process
known as bug tossing. Researchers have proposed automated
techniques to facilitate bug triaging and reduce bug tossing using
machine learning-based prediction and tossing graphs. While
these techniques achieve good prediction accuracy for triaging
and reduce tossing paths, they are vulnerable to several issues:
outdated training sets, inactive developers, and imprecise, single-
attribute tossing graphs. In this paper we improve triaging
accuracy and reduce tossing path lengths by employing several
techniques such as refined classification using additional at-
tributes and intra-fold updates during training, a precise ranking
function for recommending potential tossees in tossing graphs,
and multi-feature tossing graphs. We validate our approach
on two large software projects, Mozilla and Eclipse, covering
856,259 bug reports and 21 cumulative years of development.
We demonstrate that our techniques can achieve up to 83.62%
prediction accuracy in bug triaging. Moreover, we reduce tossing
path lengths to 1.5–2 tosses for most bugs, which represents a
reduction of up to 86.31% compared to original tossing paths.
Our improvements have the potential to significantly reduce the
bug fixing effort, especially in the context of sizable projects with
large numbers of testers and developers.

I. INTRODUCTION

Building and maintaining software is expensive. A survey
by the National Institute of Standards and Technology esti-
mated that the annual cost of software bugs is about $59.5
billion [1]. Other studies indicate that maintenance costs are
at least 50%, and sometimes more than 90%, of the total costs
associated with a software product [2], [3]. These surveys
suggest that making the bug fixing process more efficient
would lower software production costs.

Most software projects use bug trackers to organize the
bug fixing process and facilitate application maintenance. For
instance, Bugzilla is a popular bug tracker used by many large
projects, such as Mozilla, Eclipse, KDE, and Apache [4].
These applications receive hundreds of bug reports a day;
ideally, each bug gets assigned to a developer who can fix
it in the least amount of time. This process of assigning bugs,
known as bug triaging, is complicated by several factors: if
done manually, triaging is labor-intensive, time-consuming and

fault-prone; moreover, for open source projects, it is difficult to
keep track of active developers and their expertise. Identifying
the right developer for fixing a new bug is further aggravated
by growth, e.g., as projects add more components, modules,
developers and testers [5]. An empirical study by Jeong et
al. [6] reports that, on average, the Eclipse project takes about
40 days to assign a bug to the first developer, and then it
takes an additional 100 days or more to reassign the bug to the
second developer. Similarly, in the Mozilla project, on average,
it takes 180 days for the first assignment and then an additional
250 days if the first assigned developer is unable to fix it.
These numbers indicate that the lack of triaging and tossing
techniques results in considerably high effort associated with
bug resolution.

Effective bug triaging can be divided into two subgoals: (1)
assigning a bug for the first time to a matching potential de-
veloper, and (2) reassigning it to another promising developer
if the first assignee is unable to resolve it, then repeat this
reassignment process (bug tossing) until the bug is fixed. Our
findings indicate that at least 93% of all “fixed” bugs in both
Mozilla and Eclipse have been tossed at least once (tossing
path length ≥ 1). Ideally, for any bug triage event, the tossing
length should be zero, i.e., the first person the bug is assigned
to should be able to fix it; if that is not possible, the bug should
be resolved in a minimum number of tosses. Prior automatic
bug triaging approaches [7]–[10] use the history of bug reports
and developers who fixed them to train a classifier.1 Later,
when keywords from new bug reports are given as an input to
the classifier, it recommends a set of developers who have fixed
similar classes of bugs in the past and are hence considered
potential bug-fixers for the new bug. Jeong et al. [6] used a
novel approach to automate bug triaging by building tossing
graphs from tossing histories. While classifiers and tossing
graphs are effective in improving the prediction accuracy for
triaging and reducing tossing path lengths, their accuracy is
threatened by several issues: outdated training sets, inactive
developers, and imprecise, single-attribute tossing graphs.

In this paper, we demonstrate how bug triaging can be fur-
ther improved. In particular, we propose three novel extensions
to existing techniques.

1A classifier is a machine learning algorithm that can be trained using input
attributes and desired output classes; after training, when presented with a set
of input attributes, the classifier predicts the most likely output class.

First, we achieve higher prediction accuracy using richer
feature vectors. In addition to the bug title and summaries
used in prior work, we add attributes corresponding to the
product–component information for a bug.

The second novel aspect of our work is employing a fine-
grained incremental learning approach. Prior work has used
folding2 to train the classifier and predict developers [9]. How-
ever, this technique becomes inadequate for large fold sizes,
e.g., thousands of bugs: since the classifier is only updated
at the end of each fold validation, it soon becomes outdated
during the next validation, which results in low accuracy. In
contrast, we employ fine-grained, intra-fold updates which
keep the classifier up-to-date at all times.

The third novel aspect of our work is constructing multi-
feature tossing graphs. Prior work [6] has trained a classifier
with fixed bug histories; for each new bug report, the classi-
fier recommends a set of potential developers, and for each
potential developer, a tossing graph—whose edges contain
tossing probabilities among developers—is used to predict
possible re-assignees. However, the tossing probability alone is
insufficient for recommending the most competent, still active,
developer (see Section III for an example). In particular, in
open source projects it is difficult to keep track of active
developers and their expertise. To address this, in addition
to tossing probabilities, we label tossing graph edges with
developer expertise and tossing graph nodes with developer
activity, which help reduce tossing path lengths significantly.

Similar to prior work, we test our approach on the fixed
bug data sets for Mozilla and Eclipse. We report up to 84%
prediction accuracy for Mozilla and 82.59% for Eclipse. We
also find that using our approach reduces the length of tossing
paths by up to 86% for correct predictions.

In Section II we define terms and techniques used in bug
triaging. We discuss deficiencies with existing approaches, and
present a high-level description of how we address these issues
in Section III. In Section IV we elaborate on our techniques
and implementation details. We present our experimental setup
and results in Section V, followed by threats to validity in
Section VI and related work in Section VII.

In summary, the main contributions of this paper are:

1) We demonstrate that employing a larger set of attributes
associated with bug reports and performing fine-grained
incremental learning via intra-fold updates increase bug
triaging accuracy.

2) We show that multi-featured tossing graphs and a precise
ranking function further improve triaging accuracy and
reduces tossing.

II. PRELIMINARIES

We first define several fundamental machine learning and
bug triaging concepts that form the basis of our approach.

2Split sample validation (folding) divides the sample sets into equal-sized
folds; the folds are then incrementally used for training and validation.

Training

Testing

Fold 2 Fold 3Split

Training

Training

Run 10

Run 2

Fixed bug reports

Testing

Fold 1

Run 1

Fold 10

Testing

sorted chronologically

Fold 11

Fig. 1. Folding techniques for classification as used by Bettenburg et al.

Machine Learning for Bug Categorization: Classification
is a machine learning technique for deriving a general trend
from a training data set. The training data set (TDS) consists
of pairs of input objects (called feature vectors), and their
respective target outputs. The task of the supervised learner (or
classifier) is to predict the output given a set of input objects,
after being trained with the TDS. Feature vectors for which
the desired outputs are already known form the validation
data set (VDS) that can be used to test the accuracy of the
classifier. Machine learning techniques were used by previous
bug triaging works [7]–[9]: archived bug reports form feature
vectors, and the developers who fixed the bugs are the outputs
of the classifier. Therefore, when a new bug report is provided
to the classifier, it predicts potential developers who can fix
the bug based on their bug fixing history.

Feature Vectors: The accuracy of a classifier is highly
dependent on the feature vectors in the TDS. Bug title and
summaries have been used earlier to extract the keywords that
form feature vectors. These keywords are extracted such that
they represent a specific class of bugs. For example, if a bug
report contains words like “icon,” “image,” or “display,” it can
be inferred that the bug is related to application layout, and
is assigned to the “layout” class of bugs. We used multiple
text classification techniques (tf-idf, stemming, stop-word
and non-alphabetic word removal [11]) to extract relevant
keywords from the actual bug report.

Folding: Early bug triaging approaches [6]–[8] divided
the data set into two subsets: 80% for TDS and 20% for
VDS. Bettenburg et al. [9] have used folding (similar to split-
sample validation techniques from machine learning [12]) to
achieve higher prediction accuracy. In a folding-based training
and validation approach (illustrated in Figure 1), the algorithm
first collects all bug reports to be used for TDS, sorts them
in chronological order and then divides them into n folds. In
the first run, fold 1 is used to train the classifier and then to
predict the VDS. In run 2, fold 2 bug reports are added to
TDS. In general, after validating the VDS from fold n, that
VDS is added to the TDS for validating fold n+1. To reduce
experimental bias [12], similar to Bettenburg et al., we chose
n = 11 and carried out 10 iterations of the validation process.

Goal-Oriented Tossing Graphs: When a bug is assigned
to a developer for the first time, and she/he is unable to fix it,
the bug is assigned (tossed) to another developer. Thus a bug
is tossed from one developer to another until a developer is

Tossing Paths
A → B → C → D
A → E → D → C
A → B → E → D
C → E → A → D
B → E → D → F

Developer Total Developers who fixed the bug
who tossed Tosses C D F

the bug # Pr # Pr # Pr
A 4 1 0.25 3 0.75 0 0
B 3 0 0 2 0.67 1 0.33
C 2 - - 2 1.00 0 0
D 2 1 0.50 - - 1 0.50
E 4 1 0.25 2 0.50 1 0.25

TABLE I
TOSSING PATHS AND PROBABILITIES AS USED BY JEONG ET AL.

eventually able to fix it. Based on these tossing paths, goal-
oriented tossing graphs were proposed by Jeong et al [6]; for
the rest of the paper, by “tossing graph,” we refer to a goal-
oriented tossing graph. Tossing graphs are weighted directed
graphs such that each node represents a developer, and each
directed edge from D1 to D2 represents the fact that a bug
assigned to developer D1 was tossed and eventually fixed by
developer D2. The weight of an edge between two developers
is the probability of a toss between them, based on bug tossing
history. The tossing probability, also known as the transaction
probability, from developer D to Dj (denoted as D ↪→ Dj)
is defined by the following equation:

Pr(D ↪→ Dj) =
∑m

1 D ↪→ Dj : Dj fixed the bug∑n
i=1 D ↪→ Di

(1)

In this equation, the numerator is the number m of tosses
from developer D to Dj such that Dj fixed the bug, while
the denominator is the total number of tosses from D to any
other developer Di such that Di fixed the bug; n represents
the total number of developers D tossed a bug to. To illustrate
this, in Table I we provide sample tossing paths and show
how toss probabilities are computed. For example, developer
A has tossed four bugs in all, three to D and one to C, hence
Pr(A ↪→ D) = 0.75, Pr(A ↪→ C) = 0.25, and Pr(A ↪→
F) = 0. Note that developers who did not toss any bug (e.g.,
F) do not appear in the first column, and developers who did
not fix any bugs (e.g., A) do not have a probability column.
In Figure 2, we show the final tossing graph built using the
computed tossing probabilities.

Prediction Accuracy: If the first developer in our pre-
diction list matches the actual developer who fixed the bug,
we have a hit for the Top 1 developer count. Similarly, if
the second developer in our prediction list matches the actual
developer who fixed the bug, we have a hit for the Top 2
developer count. For example, if there are 100 bugs in the
VDS and for 20 of those bugs the actual developer is the first
developer in our prediction list, the prediction accuracy for
Top 1 is 20%; similarly, if the actual developer is in our Top
2 for 60 bugs, the Top 2 prediction accuracy is 60%.

F
0.33

0.5

0.5

1

0.75

D

C

B

A

E

0.25

0.5

0.25

0.25

0.67

Fig. 2. Tossing graph built using tossing paths in Table I.

III. APPROACH

In Figure 3 we compare our approach to previous tech-
niques. Initial works in this area (Figure 3(a)) used classifiers
only [7]–[10]; more recent work by Jeong et al. [6] (Fig-
ure 3(b)) coupled classifiers with tossing graphs. Our approach
(Figure 3(c)) adds fine-grained incremental learning and multi-
feature tossing graphs. Our algorithm consists of four stages,
as labeled in the figure: (1) initial classifier training and
building the tossing graphs, (2) predicting potential developers,
using the classifier and tossing graphs, (3) measuring predic-
tion accuracy, (4) updating the training sets using the bugs
which have been already validated, re-running the classifier
and updating the tossing graphs. We iterate these four steps
until all bugs have been validated. We present a high-level
description of these steps next; the details for each step can
be found in Section IV.

Data Sets: We first sort all bugs marked as “fixed”
chronologically, then extract attributes associated with each
of these bugs. The attributes in our TDS are: keywords from
bug reports including bug title and description, the product and
component the bug belongs to, and the ID of the developer
who fixed the bug.

Building Tossing Graphs: Tossing graphs are built using
tossing probabilities derived by analyzing bug tossing histo-
ries, as explained in Section II. Jeong et al. [6] determine
potential tossees as follows: if developer A has tossed more
bugs to developer B than A has tossed to D, in the future,
when A cannot resolve a bug, the bug will be tossed to B,
hence tossing probabilities determine tossees. However, this
approach might be inaccurate in certain situations: suppose a
new bug belonging to class K1 is reported, and developer A
was assigned to fix it, but he is unable to fix it; developer
B has never fixed any bug of type K1, while developer D
has fixed 10 bugs of type K1. The prior approach would
recommend B as the tossee, although D is more likely to
resolve the bug, rather than B. Thus, although tossing graphs
reveal tossing probabilities among developers, they should also
contain information about which classes of bugs were passed
from one developer to another; we use multi-feature tossing
graphs to capture this information.

Another problem with the classifier- and tossing graph-

Fixed Bug

Supervised ML
Classifier

History

Predict

Developers

(a) Classifier-based bug triag-
ing

Fixed Bug

Supervised ML
Classifier

History

Developers

Predict

Tossing Graphs

(with tossing probabilities only)

(b) Classifiers coupled with tossing graphs

Fixed Bug

Supervised ML
Classifier

History

Developers

Predict

(with tossing probabilities,
Tossing Graphs

product−component label,
developer activity)

2

1

1

4

3

after each bug validation

Update classifier and tossing graphs

Re−iterate

(c) Incremental learning and multi-feature tossing
graphs (our approach)

Fig. 3. Comparison of bug triaging techniques.

based approaches is that it is difficult to identify retired or
inactive developers. This issue is aggravated in open source
projects: when developers work voluntarily, it is difficult to
keep track of the current set of active developers associated
with the project. Anvik et al. [7] and Jeong et al. [6] have
pointed out this problem and proposed solutions. Anvik et al.
use a heuristic to filter out developers who have contributed
to less than 9 bug resolutions in the last three months of
the project. Jeong et al. assume that all developers who have
numerous outgoing edges in tossing graphs are potentially
retired, hence the bug will be passed on to some other
developer; when a developer is not responding, the manager,
group moderator or other members of the bug assignment
team will re-assign the bug. Therefore, their approach permits
assigning bugs to inactive developers, which increases the
length of the tossing paths. In contrast, we restrict potential
assignees to active developers only, and do so with a minimum
number of tosses.

Hence, the tossing graphs we build have additional labels
compared to Jeong et al.: for each bug that contributes to an
edge between two developers, we attach the bug class (product
and component) to that edge; moreover, for each developer in
the tossing graph, we maintain an activity count (the difference
between the date of the bug being validated and the date of
the last activity of that developer).

Predicting Developers: For each bug, we predict poten-
tial developers using two methods: (1) using the classifier
alone, to demonstrate the advantages of incremental learning,
and (2) using both the classifier and tossing graphs, to show
the significance of multi-feature tossing graphs. When using
the classifier alone, the input consists of bug keywords, and
the classifier returns a list of developers ranked by relevance;
we select the top five from this list. When using the classifier
in conjunction with tossing graphs, we select the top three

developers from this list, then for developers ranked 1 and
2 we use the tossing graph to recommend a potential tossee,
similar to Jeong et al. For predicting potential tossees based
on the tossing graph, our tossee ranking function takes into
account multiple factors, in addition to the tossing probability
as proposed by Jeong et al. In particular, our ranking function
is also dependent on (1) the product and component of the
bug, and (2) the last activity of a developer, to filter retired
developers. The details of the prediction process are described
in Section IV-D. Thus our final list of predicted developers
contains five developer id’s in both methods, classifier alone
and classifier + tossing graph.

Updating Classifier and Tossing Graphs: Prior work [6],
[9] has used inter-fold updates, i.e., the classifier and tossing
graphs are updated after each fold validation, as shown in
Figure 4(a). With inter-fold updates, after validating the VDS
from fold n, the VDS is added to the TDS for validating
fold n + 1. However, consider the example when the TDS
contains bugs 1–100 and the VDS contains bugs 101–200.
When validating bug 101, the classifier and tossing graph are
trained based on bugs 1–100, but from bug 102 onwards,
the classifier and tossing graph are not up-to-date any more
because they do not incorporate the information from bug 101.
As a result, when the validation sets contain thousands of bugs,
this incompleteness affects prediction accuracy. Therefore, to
achieve high accuracy, it is essential that the classifier and
tossing graphs be updated with the latest bug fix; we use a
fine-grained, intra-fold updating technique for this purpose.

We now proceed to describing intra-fold updating. After the
first bug in the validation fold has been used for prediction,
and accuracy has been measured, we add it to the TDS and re-
train the classifier as shown in Figure 4(b). We also update the
tossing graphs by adding the tossing path of the just-validated
bug. This guarantees that for each bug in the validation fold,

Training Data Set

{X1, X2,......, Xm} {X1, X2, , Xm, Y1, Y2,, Ym}
Training Data Set

{Ym+1, Ym+2,, Y2m}

Validation Set

{Y1, Y2,, Ym}

Classifier

Validation Set

Classifier

Iteration i Iteration i+1

(a) Updates after each validation set (Bettenburg et al.)

Training Data Set

{X1, X2,......, Xm}

Validation Set

{ Y1, Y2,, Ym}

Validation Set

{Y1, Y2,, Ym }

Classifier

{X1, , Xm, Y1, Y2, ..., Ym−1}

Classifier

Validation Set

{Y1, Y2,, Ym}

Run 2

Classifier

Training Data Set

Run 1 Run m

{X1, X2, , Xm, Y1}

Training Data Set

Iteration i

(b) Updates after each bug (our approach)

Fig. 4. Comparison of training and validation techniques.

Developer ID Product-Component Fix
Count

D1 {P1, C2} 3
{P1, C7} 18
{P9, C6} 7

TABLE II
SAMPLE DEVELOPER PROFILE.

the classifier and the tossing graphs incorporate information
about all preceding bugs. This approach has first been used in
the context of machine learning by Segal et al. [13].

Folding: Similar to the Bettenburg et al.’s folding tech-
nique [9], we iterate the training and validation for all the
folds. However, since our classifier and tossing graph updates
are already performed during validation, we do not have to
update our training data sets after each fold validation. To
maintain consistency in comparing our prediction accuracies
with previous approaches, we measure the average prediction
accuracy over each fold.

Computational Effort: The intra-fold updates used in our
approach are more computationally-intensive than inter-fold
updates. However, for practical purposes this is not a concern,
e.g., when deploying our approach in the actual bug tracking
system, we could update the classifier and tossing graph over
night. We believe that high accuracy and saving a substantial
manual effort are worth the extra computational load.

IV. IMPLEMENTATION

In this section we present a detailed description of each
phase of our algorithm.

A. Developer Profiles

We maintain a list of all developers and their history of bug
fixes. Each developer D has a list of product-component pairs
{P,C} and their absolute count attached to his or her profile.
A sample developer profile is shown in Table II, e.g., developer
D1 has fixed 3 bugs associated with product P1 and component
C2. This information is useful beyond bug assignments; for
example, while choosing moderators for a specific product or
component it is a common practice to refer to the developer
performance and familiarity with that product or component.

B. Classification
Given a new bug report, the classifier produces a set of

potential developers who could fix the bug. We describe the
classification process in the remainder of this subsection.

Choosing Fixed Bug Reports: We use the same heuristics
as Anvik et al. [7] for obtaining fixed bug reports from all
bug reports in Bugzilla. First, we extract all bugs marked as
“verified” or “resolved”; next, we remove all bugs marked
as “duplicate” or “works-for-me,” which leaves us with the
correct set containing fixed bugs only.

Accumulating Training Data: Prior work [7]–[9] has
used keywords from the bug report and developer name/id as
attributes for the training data sets; we also include the product
and component the bug belongs to. For extracting relevant
words from bug reports, we employ tf-idf, stemming, stop-
word and non-alphabetic word removal [11]. We use the Weka
toolkit [14] to remove stop words and form the word vectors
for the dictionary (via the StringtoWordVector class
with tf-idf enabled).

Filtering Developers for Classifier Training: Anvik et al.
refine the set of training reports by using several heuristics.
For example, they do not consider developers who fixed a
small number of bugs, which helps remove noise from the
TDS. Although this is an effective way to filter non-experts
from the training data and improve accuracy, in our approach
filtering is unnecessary: the ranking function is designed such
that, if there are two developers A and B who have fixed bugs
of the same class K, but the number of K-type bugs A has
fixed is greater than the number of K-type bugs B has fixed,
a K-type bug will be assigned to A.

Classifier Type: We use Weka’s built-in Naı̈ve Bayes and
Bayesian Networks classifiers in our approach. Prior work has
used similar classifiers, as well as Support Vector Machines
and C4.5 [6]–[9], and the results have shown that classifier
choice can have a slight impact on prediction accuracy. We
believe that more sophisticated classifiers could further im-
prove our accuracy, but for the scope of this paper we used
Naı̈ve Bayes and Bayesian Networks only.

C. Multi-feature Tossing Graphs
With the training data and classifier at hand, we proceed to

constructing tossing graphs.

50 Days

0.33
{P1 C3}

450 Days

D

A

C

{P1−C1,
P1−C4}

0.67

Fig. 5. Example of a multi-feature tossing graph.

Adding Attributes to Edges in Tossing Graphs: As dis-
cussed in Section III, tossing probabilities are a good start
toward indicating potential bug fixers, but they might not
be appropriate at all times. Therefore, the tossing graphs we
generate have three labels in addition to the tossing probability:
bug product and bug component on each edge, and number
of days since a developer’s last activity on each node. For
example, consider three bugs that have been tossed from D1

to D2 and belong to three different product-component sets:
{P1, C1}, {P1, C3}, and {P2, C4}. Therefore, in our tossing
graph, the product-component set for the edge between D1

and D2 is {{P1, C1}, {P1, C3}, {P2, C4}}. Maintaining these
additional attributes is also helpful when bugs are re-opened.
Both developer profiles and tossing histories change over time,
hence it is important to identify the last fixer for a bug and a
potential tossee after the bug has been re-opened.

We now present three examples that demonstrate our ap-
proach and show the importance of multi-feature tossing
graphs. The examples are based on the tossing graph in
Figure 5; the graph indicates that developer A has been
associated with developers C and D in the tossing history.

Example I. Suppose we encounter a new bug B1 belonging
to product P1 and component C4, and the classifier returns A
as the best developer for fixing the bug. If A is unable to fix it,
by considering the tossing probability and product–component
match, we conclude that it should be tossed on to D.

Example II. Consider a bug B2 belonging to product P1

and component C3. Although D has a higher transaction
probability than C, if A is unable to fix it, because C has
fixed bugs earlier from product P1 and component C3, he is
more likely to fix it than D. Hence in this case the bug gets
tossed from A to C.

Example III. Based on the last active count for D in
Figure 5, i.e., 450 days, it is likely that D is a retired developer.
In our approach, if a developer has been inactive for more than
100 days3, we choose the next potential neighbor (tossee) from
the reference node A. In this particular case, we choose C as
the next tossee. We also use activity counts to prune inactive
developers from classifier recommendations. For example, if
the classifier returns n recommendations and we find that the
ith developer is probably retired, we do not select him, and
move on to the (i + 1)st developer.

3Choosing 100 days as the threshold was based on Anvik et al. [7]’s
observation that developers that have been inactive for three months or more
are potentially retired.

bugzilla

{Firefox,General}

0.437 0.196

ddahl bryner38 days12 days

{Firefox,Bookmarks} {Firefox,Bookmarks}

Fig. 6. Example to demonstrate significance of multi-feature tossing graphs.

Filtering Developers for Building Tossing Graphs: We do
not prune the tossing graphs based on a pre-defined minimum
support (frequency of contribution) for a developer, or the
minimum number of tosses between two developers. Jeong
et al. [6] discuss the significance of removing developers
whose support is less than 10 and pruning edges between
developers that have less than 15% transaction probability.
Since their approach uses the probability of tossing alone to
rank neighboring developers, they need the minimum support
values to prune the graph. In contrast, the multiple features
in our tossing graphs coupled with the ranking function (as
explained in the Section IV-D) obviate the need for pruning.

D. Prediction

Example (Mozilla bug 254967). For this particular bug, the
first five developers predicted by the Naı̈ve Bayes classifier are
{bugzilla, fredbezies, myk, tanstaafl, ben.bucksch}. However,
since bryner is the developer who actually fixed the bug, our
classifier-only prediction is inaccurate in this case. Therefore,
we use the tossing graphs to select the most likely tossee for
bugzilla, the first developer in the classifier ranked list. In
Figure 6, we present the node for bugzilla and its neighbors.4

If we rank the outgoing edges of bugzilla based on tossing
probability alone, the bug should be tossed to developer
ddahl. Though bryner has lower probability, he has committed
patches to the product “Firefox” and component “General” that
bug 254967 belong to. Hence our algorithm will choose bryner
as the potential developer over ddahl, and our prediction
matches the actual bug fixer. Our ranking function also takes
into account developer activity; in this example, however, both
developers ddahl and bryner are active, hence comparing their
activities is not required. To conclude, our ranking function
increases prediction accuracy while reducing tossing lengths;
the actual tossing length for this particular Mozilla bug was
6, and our technique reduces it to 2.

Ranking Function: We know describe our algorithm for
ranking developers. Similar to Jeong et al., we first use
the classifier to predict a set of developers CP (Classifier

4For clarity, we only present the nodes relevant to this example, and the
labels at the point of validating this bug; due to incremental learning, label
values will change over time.

Developer ID Product-Component Fix
Count

Ti {P1, C1} 3
{P1, C7} 18
{P9, C6} 7

Tj {P1, C1} 13
{P4, C6} 11

TABLE III
EXAMPLE TO DEMONSTRATE TIE IN RANKS.

Predicted). Using the last activity information, we remove all
developers who have not been active for the past 100 days
from CP. We then sort the developers in CP using the fix counts
from the developer profile (as described in Section IV-A).

Suppose the CP is {D1, D2, D3, . . . , Dj}. For each Di in
the sorted CP, we rank its tossees Tk (outgoing edges in the
tossing graph) using the following ranking function:

Rank(Tk) = Pr(Di ↪→ Tk)+
MatchedProduct(Tk) +
MatchedComponent(Tk) +
LastActivity(Tk)

The tossing probability, Pr(Di ↪→ Tk), is computed using
equation 1 (Section II). The function MatchedProduct(Tk)
returns 1 if the product the bug belongs to exists in de-
veloper Tk’s profile, and 0 otherwise. Similarly, the func-
tion MatchedComponent(Tk) returns 1 if the component
the bug belongs to exists in developer Tk’s profile. The
LastActivity function returns 1 if Tk’s last activity was
in the last 100 days from the date the bug was reported.
As a result, 0 < Rank(Tk) ≤ 4. We then sort the tossees
Tk by rank, choose the developer Ti with highest rank and
add it to the new set of potential developers (ND). Thus
after selecting Ti, where i = 1, 2, . . . , j, the set ND be-
comes {D1, T1, D2, T2, D3, T3, . . . , Dj , Tj}. When measuring
our prediction accuracy, we use the first 5 developers in ND.

If two potential tossees Ti and Tj have the same rank, and
both are active developers, due to same tossing probabilities
for bug B (belonging to product P and component C), we use
their profiles to further rank them. There can be two cases in
this tie: (1) both Ti and Tj’s profiles contain {P,C}, or (2)
there is no match with either P or C. For the first case, consider
the example in Table III: suppose a new bug B belongs to
{P1, C1}. Assume Ti and Tj are the two potential tossees from
developer D (where D has been predicted by the classifier) and
suppose both Ti and Tj have the same tossing probabilities
from D. From developer profiles, we find that Tj has fixed
more bugs for {P1, C1} than Ti and hence we choose Tj (case
1). If the developers have the same fix count, or neither has P
and/or C in their profile (case 2), we randomly choose one.

E. Incremental Learning

After validation and measuring prediction accuracy (as de-
scribed in Section II) we update the TDS for the classifier and
the tossing graphs using the tossing path of the most recently

validated bug. We incrementally update both the classifier and
the tossing graphs as described in Section III.

V. RESULTS

A. Experimental Setup

We used Mozilla and Eclipse bugs to measure the accuracy
of our proposed algorithm. We analyzed the entire life span of
both applications. For Mozilla, our data set ranges from bug
number 37 to 549,999 (May 1998 to March 2010). For Eclipse,
we considered bugs numbers from 1 to 306,296 (October 2001
to March 2010). Mozilla and Eclipse bug reports have been
found to be of high quality [6], which helps reduce noise when
training the classifiers. We divided our bug data sets into 11
folds and executed 10 iterations to cover all the folds.

B. Prediction Accuracy

In Table IV we show the results for predicting potential
developers for Mozilla and Eclipse using Naı̈ve Bayes and
Bayesian Networks.

Classifier: To demonstrate the advantage of our incre-
mental approach, we measure the prediction accuracy of the
classifier alone; column “ML only” contains the classifier-only
average prediction accuracy rate. We found that our approach
increases accuracy by 8.91% on average compared to the best
previously-reported, no-incremental learning approach, due to
Anvik et al. [7]. This confirms that incremental learning is
indeed useful. Anvik et al. report that their initial investi-
gation of incremental learning did not yield highly accurate
predictions, though no details are provided. We have two
explanations for why our findings differ from theirs. First,
their experiments are based on 8,655 reports for Eclipse and
9,752 for Firefox, while we use many more (306,297 reports
for Eclipse and 549,962 reports for Mozilla). Second, since
anecdotal evidence [15] suggests that choosing a meaningful
feature set is more important than the choice of classifiers, our
additional attributes help improve prediction accuracy.

Classifier + Tossing Graph: Columns “ML+Tossing
Graphs” of Table IV contain the average accurate predictions
for each fold (top 2 to top 5 developers) when using both
the classifier and the tossing graph; the Top 1 developer is
predicted using the classifier only, hence rows 1, 6, 11, and 16
are empty for columns 5–15. Consider row 2, which contains
prediction accuracy results for Top 2 in Mozilla using the
Naı̈ve Bayes classifier: column 5 (value 39.14) represents the
percentage of correct predictions for fold 1; column 6 (value
44.59) represents the percentage of correct predictions for folds
1 and 2; column 15 (value 54.49) represents the average value
for all iterations across all folds. Our best average accuracy is
reached using Naı̈ve Bayes (77.87% for Mozilla and 77.43%
for Eclipse). The maximum observed accuracy is 83.62% for
Mozilla (fold 9) and 82.59% for Eclipse (fold 10). We found
that the average accuracy for the applications was higher using
Naı̈ve Bayes for Mozilla, although the prediction numbers
were comparable for Eclipse using either classifier.

These findings confirm the effectiveness of fine-grained
incremental learning with multi-feature tossing graphs, as prior

Program ML Selection ML Only ML + Tossing Graphs
algorithm (average prediction accuracy for VDS fold) Average
(classifier) Average 2 3 4 5 6 7 8 9 10 11 across

all folds
Top 1 27.48 - - - - - - - - - - -

Naı̈ve Top 2 42.19 39.14 44.59 47.72 49.39 52.57 57.36 59.46 62.37 64.99 67.23 54.49
Bayes Top 3 54.25 51.34 62.77 66.15 57.50 63.14 61.33 64.65 77.54 71.76 74.66 65.09

Top 4 59.13 64.20 75.86 79.57 70.66 69.11 69.84 67.68 82.87 68.77 69.71 71.82
Top 5 65.66 74.63 77.69 81.12 79.91 76.15 72.33 75.76 83.62 78.05 79.47 77.87

Mozilla Top 1 26.98 - - - - - - - - - - -
Bayesian Top 2 44.43 36.98 38.9 37.46 40.89 43.53 48.18 51.7 54.29 57.57 60.43 46.99
Network Top 3 49.51 47.19 49.45 46.42 51.42 53.82 49.59 53.63 59.26 61.91 63.9 53.65

Top 4 58.72 54.31 57.01 54.77 59.88 61.7 63.47 62.11 67.64 68.81 66.08 61.59
Top 5 62.91 59.22 59.44 61.02 68.29 64.87 68.3 71.9 76.38 77.06 78.91 68.54
Top 1 32.99 - - - - - - - - - - -

Naı̈ve Top 2 48.19 39.53 38.66 36.03 39.16 39.29 41.82 43.2 47.94 51.65 54.18 43.15
Bayes Top 3 54.15 47.95 50.84 48.46 49.52 59.45 62.77 61.73 68.19 74.95 69.07 59.30

Top 4 59.13 56.29 61.16 59.88 60.81 69.64 69.37 75.64 75.3 78.22 77.31 68.37
Top 5 65.66 66.73 69.92 74.13 77.03 77.9 81.8 82.05 80.63 82.59 81.44 77.43

Eclipse Top 1 38.16 - - - - - - - - - - -
Bayesian Top 2 41.43 36.11 41.49 41.13 44.81 46.34 47.4 48.61 53.84 59.18 63.69 48.26
Network Top 3 59.50 51.16 52.8 54.62 57.38 56.39 63.26 66.68 70.34 76.72 77.34 62.67

Top 4 62.72 62.92 59.03 63.09 68.27 68.33 71.79 73.37 74.15 76.94 77.04 69.50
Top 5 68.91 74.04 72.41 70.92 71.52 73.5 75.61 79.28 79.68 80.61 81.38 75.86

TABLE IV
BUG ASSIGNMENT PREDICTION ACCURACY (PERCENTS).

work attained a maximum prediction accuracy of 72.92% for
Mozilla and 77.14% for Eclipse [6].

C. Reduction in Tossing Lengths

We compute the original tossing path lengths for “fixed”
bugs in Mozilla and Eclipse, and present it in Figure 7; we
observe that most bugs have tossing length less than 13 for
both applications. Note that tossing length is zero if the first
assigned developer is able to resolve the bug. Ideally, a bug
triage model should be able to recommend bug fixers such that
tossing lengths are zero. However, this is unlikely to happen in
practice due to the unique nature of bugs. Though Jeong et al.
measured tossing lengths for both “assigned” and “verified”
bugs, we ignore “assigned” bugs because they are still open,
hence we do not know the final tossing length yet.

In Figure 8, we present the average reduced tossing lengths
of the bugs for which we could correctly predict the developer.
We find that the predicted tossing lengths are reduced signifi-
cantly, especially for bugs which have original tossing lengths
less than 13. Our approach reports reductions in tossing
lengths up to 86.67% in Mozilla and 83.28% in Eclipse. For
correctly predicted bugs with original tossing length less than
13, prior work [6] has reduced tossing path lengths to 2–4
tosses, while our approach reduces them to 1.5–2 tosses, hence
multi-feature tossing graphs prove to be very effective.

D. Filtering Noise in Bug Reports

We found that when training sets comprise bugs with reso-
lution “verified” or “resolved” and arbitrary status, the noise
is much higher than when considering bugs with resolution
“verified” or “resolved” and status “fixed”. In fact, we found
that, when considering arbitrary-status bugs, the accuracy
is on average 23% lower than the accuracy attained when

considering fixed-status bugs only. Jeong et al. considered
all bugs with resolution “verified” and arbitrary-status for
their training and validation purposes. They found that tossing
graphs are noisy, hence they chose to prune developers with
support less than 10 and edges with transaction probability
less than 15%.

Our analysis suggests that bugs whose status changes from
“new” or “open” to “fixed” are actual bugs which have
been resolved, even though various other kinds of bugs,
such as “invalid,” “worksforme,” “wontfix,” “incomplete” or
“duplicate” may be categorized as “verified” or “resolved”.
We conjecture that developers who submit patches are more
competent than developers who only verify the validity of
a bug and mark them as “invalid” or developers who find
a temporary solution and change the bug status to “works-
for-me”. Anvik et al. made a similar distinction between
message repliers and contributors/maintainers. They found that
only a subset of those replying to bug messages are actually
submitting patches and contributing to the source code, hence
they only retain the contributing repliers for their TDS.

VI. THREATS TO VALIDITY

We now present possible threats to the validity of our study.
Generalization to Other Systems: The high quality of

bug reports found in Mozilla and Eclipse [6] facilitates the
use of classification methods. However, we cannot claim that
our findings generalize to bug databases for other projects.
Additionally, we have validated our approach on open source
projects only, but commercial software might have different
assignment policies and our approach might not be a good
predictor in those cases.

Small Projects: We used two large and widely-used open
source projects for our experiments, Mozilla and Eclipse. Both

0 10 20 30
0

1

2

3

4

Original Tossing Length

Pr
ed

ic
te

d
T

os
si

ng
 L

en
gt

h

(a) Mozilla

0 5 10 15 20
0

1

2

3

4

Original Tossing Length

Pr
ed

ic
te

d
T

os
si

ng
 L

en
gt

h

(b) Eclipse

Fig. 8. Average reduction in tossing lengths for correctly predicted bugs when using ML + Tossing Graphs (using both classifiers).

1%

68%

26%

5%

0

1−5

6−12

13 or higher

(a) Mozilla

7%

69%

18%

6%

0

1−5

6−12

13 or higher

(b) Eclipse

Fig. 7. Original tossing length distribution for “fixed” bugs.

these projects have multiple products and components, hence
we could use this information as attributes for our classifier
and labels in our tossing graphs. For comparatively smaller
projects which do not have products or components, the lack
of product-component labels on edges would reduce accuracy.
Nevertheless, fine-grained incremental learning and pruning

inactive developers would still be beneficial.

VII. RELATED WORK

A. Machine Learning and Information Retrieval Techniques

Cubranic et al. [8] were the first to propose the idea of
using text classification methods (similar to methods used
in machine learning) to semi-automate the process of bug
triaging. The authors used keywords extracted from the title
and description of the bug report, as well as developer ID’s
as attributes, and trained a Naı̈ve Bayes classifier. Thus with
new bug reports, the classifier suggests one or more potential
developers for fixing the bug. Their method used bug reports
for Eclipse from January 1, 2002 to September 1, 2002 for
training, and reported a prediction accuracy of up to 30%.
While we use classification as a part of our bug triage
approach, in addition, we employ incremental learning and
tossing graphs to reach higher accuracy. Moreover, our data
sets are much larger, covering the entire lifespan of both
Mozilla and Eclipse until March 2010.

Anvik et al. [7] improved the machine learning approach
proposed by Cubranic et al. by using filters when collecting
training data: (1) filtering out bug reports labeled invalid,”
“wontfix,” or “worksforme,” (2) removing developers who no
longer work on the project or do not contribute significantly,
and (3) filtering developers who fixed less than 9 bugs. Our
ranking function obviates the need to filter bugs. They used
three classifiers, SVM, Naı̈ve Bayes and C4.5, and reported
prediction accuracy of up to 64%. They observed that SVM
performs better than the other two classifiers. Since our idea
is to include additional information in the training models and
tossing graphs, better classifiers could increase our prediction
accuracy, an exploration we leave to future work. Similar
to them, we found that filtering bugs which are not “fixed”
but “verified” or “resolved” leads to higher accuracy. The
authors also report that their initial investigation in incremental
learning did not have a favorable outcome; in Section V we
explained the discrepancy between their findings and ours.

Canfora et al. used probabilistic text similarity [10] and
indexing developers/modules changed due to bug fixes [16]
to automate bug triaging. When using information retrieval

based bug triaging, they report up to 50% top 1 recall accuracy
and when indexing source file changes with developers they
achieve 30%-50% top 1 recall for KDE and 10%–20% top 1
recall for Mozilla.

Podgurski et al. [17] also used machine learning techniques
to classify bug reports but their study was not targeted at
bug triaging; rather, their study focused on classifying and
prioritizing various kinds of software faults.

Lin et al. [18] conducted machine learning-based bug
triaging on a proprietary project, SoftPM. Their experiments
were based on 2576 bug reports. They report 77.64% average
prediction accuracy when considering module ID (the module
a bug belongs to) as an attribute in the TDS; the accuracy drops
to 63% when module ID is not used. Their finding is similar
to our observation that using product-component information
in the TDS improves prediction accuracy.

Lucca et al. [19] used information retrieval approaches to
classify maintenance requests via classifiers. However, the end
goal of their approach is bug classification, not bug triaging.
They achieved up to 84% classification accuracy by using both
split-sample and cross-sample validation techniques.

Matter et al. [20] model a developer’s expertise using
the vocabulary found in the developer’s source code. They
recommend potential developers by extracting information
from new bug reports and looking it up in the vocabulary.
Their approach was tested on 130,769 Eclipse bug reports and
reported prediction accuracies of 33.6% for top 1 developers
and 71% for top 10 developers.

B. Incremental Learning

Bettenburg et al. [9] demonstrate that duplicate bug reports
are useful in increasing the prediction accuracy of classifiers
by including them in the TDS along with the master reports of
those duplicate bugs. They use folding to constantly increase
the TDS, and show how this incremental approach achieves
prediction accuracies of up to 56%; they do not need tossing
graphs, because reducing tossing path lengths is not one of
their goals. We use the same general approach for the classi-
fication part, though we improve it by using more attributes
in the TDS.

C. Tossing Graphs

Jeong et al. [6] introduced the idea of using bug tossing
graphs to predict a set of suitable developers for fixing a
bug. The authors use classifiers and tossing graphs (Markov
model based) to recommend potential developers. We use
fine-grained, intra-fold updates and extra attributes for clas-
sification; our tossing graphs are similar to theirs, but we
use additional attributes on edges and nodes. Our additions
help improve accuracy and further reduce tossing lengths, as
described in Sections V-B and V-C.

VIII. CONCLUSION

Machine learning techniques and tossing graphs has proved
to be promising for automating bug triaging. We employed
three novel extensions to prior triaging approaches and showed

that we could achieve higher prediction accuracy in recom-
mending potential developers and higher reductions in tossing
path lengths. In particular, we show how intra-fold updates
are beneficial for achieving higher prediction accuracy in bug
triaging when using classifiers in isolation. We also show
that developer recommendation is improved when classifying
developers based on the product-component a bug belongs to,
in addition to the bug types they have fixed in the past.

We validated our approach on two large, long-lived open-
source projects; in the future, we plan to test how our current
model generalizes to projects of different scale and lifespan.
We also intend to test our approach on proprietary software.
Since classifiers are often domain-based, we plan to investigate
how different classifiers, and different feature sets would affect
prediction accuracy.

ACKNOWLEDGMENTS

We thank Eamonn Keogh, Dennis Jeffrey, Changhui Lin, Sudipto
Das and the anonymous referees for their helpful comments on this
work; David Miller from Mozilla and Denis Roy from Eclipse for the
help with data collection via Bugzilla. This research was supported
in part by a UC Regents’ Faculty Fellowship.

REFERENCES

[1] NIST, “The economic impacts of inadequate infrastructure for software
testing,” Planning Report, May 2002.

[2] J. Koskinen, http://users.jyu.fi/∼koskinen/smcosts.htm.
[3] R. C. Seacord, D. Plakosh, and G. A. Lewis, Modernizing Legacy

Systems: Software Technologies, Engineering Process and Business
Practices. Addison-Wesley, 2003.

[4] Bugzilla User Database, http://www.bugzilla.org/installation-list/.
[5] Increase in Open Source Growth, http://software.intel.com/en-us/blogs/

2009/08/04/idc-reports-an-increase-in-open-source-growth/.
[6] G. Jeong, S. Kim, and T. Zimmermann, “Improving bug triage with bug

tossing graphs,” in FSE, August 2009.
[7] J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this bug?” in

ICSE, 2006, pp. 361–370.
[8] D. Cubranic and G. C. Murphy, “Automatic bug triage using text

categorization,” in SEKE, 2004.
[9] N. Bettenburg, R. Premraj, T. Zimmermann, and S. Kim, “Duplicate bug

reports considered harmful... really?” in ICSM, 2008.
[10] G. Canfora and L. Cerulo, “Supporting change request assignment in

open source development,” in SAC, 2006, pp. 1767–1772.
[11] C. D. Manning, P. Raghavan, and H. Schtze, Introduction to Information

Retrieval. Cambridge University Press, 2008.
[12] I. Witten and E. Frank, Data Mining: Practical Machine Learning Tools

and Techniques, 2nd ed. Morgan Kaufmann, 2005.
[13] R. B. Segal and J. O. Kephart, “Incremental learning in swiftfile,” in

ICML, 2000, pp. 863–870.
[14] Weka Toolkit, http://www.cs.waikato.ac.nz/ml/weka/.
[15] E. Keogh, Personal communication, March 2010.
[16] G. Canfora and L. Cerulo, “How software repositories can help in

resolving a new change request,” in Workshop on Empirical Studies
in Reverse Engineering, 2005.

[17] A. Podgurski, D. Leon, P. Francis, W. Masri, M. Minch, J. Sun, and
B. Wang, “Automated support for classifying software failure reports,”
in ICSE, 2003, pp. 465–475.

[18] Z. Lin, F. Shu, Y. Yang, C. Hu, and Q. Wang, “An empirical study on
bug assignment automation using chinese bug data,” in ESEM, 2009.

[19] G. A. D. Lucca, M. D. Penta, and S. Gradara, “An approach to classify
software maintenance requests,” in ICSM, 2002, pp. 93–102.

[20] D. Matter, A. Kuhn, and O. Nierstrasz, “Assigning bug reports using a
vocabulary-based expertise model of developers,” MSR, 2009.

