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Abstract

Software evolution is a fact of life. Over the past thirty
years, researchers have proposed hypotheses on how soft-
ware changes, and provided evidence that both supports
and refutes these hypotheses. To paint a clearer image of
the software evolution process, we performed an empirical
study on long spans in the lifetime of seven open source
projects. Our analysis covers 653 official releases, and a
combined 69 years of evolution. We first tried to verify
Lehman’s laws of software evolution. Our findings indicate
that several of these laws are confirmed, while the rest can
be either confirmed or infirmed depending on the laws’ op-
erational definitions. Second, we analyze the growth rate
for projects’ development and maintenance branches, and
the distribution of software changes. We find similarities
in the evolution patterns of the programs we studied, which
brings us closer to constructing rigorous models for soft-
ware evolution.

1. Introduction

Software continues to evolve long after the first version
has shipped. Numerous estimates indicate that the costs
associated with software maintenance and evolution are at
least 50%, and sometimes more than 90% of total costs as-
sociated with a software system [6]. To reduce these costs,
both managers and developers must understand the factors
that drive software evolution and take proactive steps that
facilitate changes and ensure software does not decay.

We now have access to the repositories of large open
source applications with lifetimes that exceed 20 years. Our
work leverages software evolution data contained in his-
toric program versions, and tries to paint a clearer image
of the software evolution process. To this end, we analyzed
the complete release histories of Samba, Bind 9, OpenSSH,
SQLite, and Vsftpd, as well as the past 15 years of Send-

mail and the past 5 years of Quagga. In total, our study
covers 653 official releases and over 69 years of cumulative
program evolution.

In the first part of our paper, we try to verify whether ex-
isting software evolution models apply to our test programs.
In particular, we are interested in Lehman’s eight laws of
software evolution. First formulated in the early 1970s, in
Belady and Lehman’s study on the evolution of OS/360 [1],
these laws essentially characterize the software evolution
process as a self-regulating and self-stabilizing system, sub-
ject to continuing growth and change [11, 8, 10]. The laws
are named after traits of the software evolution process: “I
- Continuing Change”, “II - Increasing Complexity”, “III -
Self Regulation”, “IV - Conservation of Organizational Sta-
bility”, “V - Conservation of Familiarity”, “VI - Continuing
Growth”, “VII - Declining Quality”, and “VIII - Feedback
System”. We use source code metrics, as well as project
and defect information to analyze software growth, charac-
terize software changes, and assess software quality. The
results of our study indicate that laws I, II, III, and VI are
confirmed, while for the remaining laws—IV, V, VII, and
VIII—we found evidence to the contrary, or a more precise
operational definition is needed. We present details on our
findings in Section 4. To our knowledge, ours is the first
study to explicitly consider each of the eight laws, and test
each law using a variety of measures, on long spans of pro-
gram evolution. Moreover, we try to address a challenge
mentioned by Lehman et al. [9], i.e., separating the charac-
terizations of system growth and system change.

In the second part of the paper (Section 5), we present
our own observations on how software evolves, based on
similarities in the evolution patterns of the programs we
studied. In particular, when analyzing both the development
and maintenance branches for each application we found
that the growth rate is super-linear on the main develop-
ment branches and at most linear on maintenance branches.
When analyzing program changes at a fine-grained level,
we found that distribution of changes largely follows power
laws, i.e., the majority of changes are concentrated to a
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small fraction of the source code. Finally, we found that
changes to interfaces are on average an order of magnitude
less frequent than changes to implementation.

The remainder of the paper presents an overview of the
applications (Section 2) and the methodology we followed
in our study (Section 3); the examination of Lehman’s laws
(Section 4), our observations (Section 5), and threats to va-
lidity (Section 6).

2. Applications

We ran our empirical study on seven open source appli-
cations written in C. In selecting our test applications, we
used several criteria. First, since we are interested in long-
term software evolution, the applications had to have a long
release history. Second, applications had to be sizable, so
we can understand the issues that appear in the evolution of
realistic, multi-developer software. Third, the applications
had to be actively maintained.

Table 1 presents high-level data on application evolution.
The second and third columns present the time span we con-
sidered for each application and the number of official re-
leases, respectively. The rest of the columns present infor-
mation (version, date and size) for the first and last releases.

We aimed to analyze complete lifespans for each appli-
cation, from the first publicly available release to the lat-
est release as of March 2009. For two applications, how-
ever, Sendmail and Quagga, their initial versions are so old
that we could not process them with our tools, e.g., pre-
process or compile them, since they use antiquated headers,
libraries, or even rely on old versions of Gcc.

We now provide an overview of each application.
Samba is a tool suite that facilitates Windows-UNIX in-

teroperability. According to its change log and history files,
initial development for the program that would eventually
become Samba was on and off between Dec. 1991 and Dec.
1993. However, the first officially announced release, then
called “Netbios for Unix” was version 1.5.00, on Dec. 1,
1993. The first official release we could find was 1.5.14,
dated Dec. 8, 1993. As shown in Table 1, over the past
15 years, the server grew from 5,514 LOC to more than
1,000,000 LOC.

Sendmail is the leading email transfer agent today.
While its initial development goes back to the early 1980s,
we had to stop at version 8.6.4 (Oct. 1993) due to con-
figuration and preprocessing problems that make analyzing
earlier versions very difficult.

BIND is the leading DNS server on the Internet. Ac-
cording to its official history (https://www.isc.org/
software/bind/history), BIND development goes
back to the early 1980s, but the current line, BIND 9, is a
major rewrite. We analyzed all the BIND 9 versions, from
9.0.0b1 (Feb. 2000) to 9.6.1b1 (March 2009).

OpenSSH is the standard open source suite of the
widely-used secure shell protocols. The first official release
we could find was 1.0pre2, dating back to October 1999.
Since then, OpenSSH has grown more than four-fold, from
12,819 LOC to 52,284 LOC over 78 official releases.

SQLite is a popular library implementation of a self-
contained SQL database engine. Starting from its initial
version, 1.0 (Aug. 2000), comprising 17,723 LOC, SQLite
has grown to 65,108 LOC in version 3.6.11 (Feb. 2009).

Vsftpd stands for “Very Secure FTP Daemon” and is the
FTP server in major Linux distributions. The first beta ver-
sion, 0.0.9, was released on January 28, 2001. We analyzed
its entire history, 60 versions over 8 years.

Quagga is a tool suite for building software routers.
Similar to Sendmail, we had to stop our analysis at version
0.96 (Aug. 2003) due to configuration and preprocessing
problems with earlier versions.

As we can see in Table 1, excepting Quagga, all pro-
grams have grown considerably relative to their initial ver-
sions.

3. Methodology

For each application, we followed the same procedure.
We first downloaded all publicly available official releases,
starting with the most recent one and going back as far as
we could. We then configured and preprocessed the main
server in each release, excluding test programs or various
clients that ship with the server. Finally, we “merged” all
the source code that goes into building the server into a sin-
gle .c file, using the CIL merger tool [15], however retain-
ing module information. This strategy ensured we focused
on the evolution of one self-contained, standalone program.
Note that the LOC numbers in Table 1 show the source code
size for the server program we analyzed. The LOC numbers
for the entire application (e.g., including clients or testing
infrastructure) are certainly larger, but they do not consti-
tute our focus and we do not present them here. We tried
to keep the configuration (compiler flags, module options)
consistent from version to version. For each version, we
made sure we could compile, link, and run the server.

Finally, we ran two source code analysis tools, ASTd-
iff and RSM, to collect data on the server program’s evo-
lution. ASTdiff is a tool we developed that compares C
programs by matching their abstract syntax trees. ASTdiff
collects a variety of change metrics, e.g., changes to types,
global variables, function signatures and bodies. While the
core algorithm and some case studies are presented in our
previous work [14], for this work we enhanced ASTdiff to
support collecting information about code complexity (i.e.,
common coupling, function calls per function) and mod-
ules. RSM (Resource Standard Metrics [17]) is a commer-
cial tool that we used for computing cyclomatic complexity.
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Program Time frame Releases First release Last release
Version Date Size Version Date Size

(years) (LOC) (LOC)
Samba 15 89 1.5.14 12/08/1993 5,514 3.3.1 02/24/2009 1,045,928
Sendmail 15 57 8.6.4 10/31/1993 25,912 8.14.4a 01/13/2009 87,842
Bind 9 168 9.0.0b1 02/04/2000 169,306 9.6.1b1 03/12/2009 321,689
OpenSSH 9 78 1.0pre2 10/27/1999 12,819 5.2p1 02/22/2009 52,284
SQLite 8 172 1.0 08/17/2000 17,273 3.6.11 02/18/2009 65,108
Vsftpd 8 60 0.0.9 01/28/2001 6,774 2.1.0 01/21/2009 15,711
Quagga 5 29 0.96 08/12/2003 41,623 0.99.11 09/05/2008 47,511

Table 1: Application information.

4. Lehman’s Laws of Software Evolution

The first part of our empirical study tries to verify each
of Lehman’s eight software evolution laws on our test appli-
cations. For each law, we describe the metrics we used and
our observations on whether the law is confirmed, infirmed,
or a more precise definition is needed.

4.1. Continuing Change

The first law postulates that a program must continu-
ally adapt to its environment, otherwise it becomes pro-
gressively less useful [8]. All our projects are widely used
and actively maintained, so if the law holds, we should ob-
serve that programs are continually undergoing change. To
characterize change, prior approaches have used the num-
ber of modules handled in each release [1, 7, 2], system
and module size [9, 4, 3], function modifications and com-
plexity [16]. We employ a variety of metrics. In Fig-
ure 1 we present the cumulative number of changes as
well as the ratio of changes over more than 15 years for
Samba. The top graph plots the cumulative number of
changes to program elements, i.e., functions, types and
global variables. The “modification” graph shows the cu-
mulative number of changes to function bodies and signa-
tures, type definitions, as well as changes to global vari-
able types and definitions. The “addition” graph shows the
cumulative number of function, types, and global variables
added to the program. Finally, the “deletion” graph shows
the cumulative number of function, types, and global vari-
ables deleted from the program. The bottom graph shows
how changes are split among functions, types, and global
variables, for each release. We found that the majority
of changes are made to functions, a reason why other re-
searchers only consider functions when presenting system
change and growth [16, 2]. Due to space constraints, we
only present these graphs for Samba, however, the trends
are similar for the other programs.

We make several observations on how the seven pro-

grams have changed over time. First, the figure clearly
shows that applications continue to change over time; in fact
the total number of changes (not pictured) is the sum of the
three graphs for each application. While the rate of change
subsides for later versions, this only shows that change hap-
pens at a slower pace. Second, we observe that additions are
more common than deletions, a factor that will help us test
the “continuing growth” law later on, in Section 4.6. Third,
changes to interfaces are much less frequent than changes to
implementation, an aspect we will return to in Section 5.3.

Therefore, we conclude that Lehman’s first law is con-
firmed for our test programs.

4.2. Increasing Complexity

The second law postulates that as a program evolves, its
complexity increases, unless proactive measures are taken
to reduce or stabilize the complexity [8].

In an early work by Lehman [1], complexity was defined
as the percentage of modules handled relative to the total
number of modules; Lawrence [7] uses this definition, as
well as programmer productivity. Later work by Kemerer
and Slaughter [5] suggests normalized cyclomatic complex-
ity by LOC as a metric, Paulson et al. [16] use average func-
tion complexity, while Wu and Holt [20] employ metrics
such as function calls per function and common coupling.

We believe large values for cyclomatic complexity, com-
mon coupling and function calls per function hinder evo-
lution by making the program difficult to understand and
difficult to change. Therefore, we measure complexity us-
ing the average number of function calls per function, Mc-
Cabe’s cyclomatic complexity, and common coupling. For
the latter two metrics, we present both absolute and normal-
ized values.

In Table 2 we present the results of running a linear re-
gression where the independent variable is D/365 (D is the
number of days since the initial release), and the depen-
dent variable is the value of the complexity metric. Regard-
ing function calls per function, for those programs where

53



1993 2001 2009
0

30,000

60,000
C

um
ul

at
iv

e
C

hs Modifications
Additions
Deletions

1993 2001 2009

20%

60%

100%

R
at

io
of

C
hs

Functions Structures Global Variables

Figure 1: Cumulative changes and ratio of changes to Samba.

Program Function calls Cyclomatic complexity Common coupling
per function(avg.) Total Normalized Total Normalized

β R2 β R2 β R2 β R2 β R2

Samba 0.169 0.561 5732.869 0.864 0.910 0.316 162.519 0.912 -0.001 0.221
Sendmail -0.666 0.332 2764.958 0.942 1.871 0.667 173.249 0.793 -0.035 0.569
Bind 0.169 0.561 5732.869 0.864 0.910 0.316 162.519 0.912 -0.001 0.221
OpenSSH -1.100 0.4341 1988.498 0.897 1.640 0.697 169.172 0.883 -0.013 0.749
SQLite -1.643 0.891 2558.990 0.939 2.375 0.190 118.386 0.976 -0.016 0.417
Vsftpd 0.641 0.826 432.903 0.863 4.051 0.794 24.880 0.814 -0.029 0.814
Quagga -0.285 0.328 518.110 0.373 -3.086 0.342 43.980 0.923 0.004 0.595

Table 2: Slope and correlation coefficients showing how program complexity changes over time.

the coefficient of correlation is high, e.g., Bind, SQLite
and Vsftpd, we observe both negative and positive correla-
tion, which suggests both decreasing and increasing trends.
Unsurprisingly, we find the absolute values for cyclomatic
complexity and common coupling to increase, since pro-
gram size increases. However, when normalizing com-
mon coupling by the number of possible couplings be-
tween modules, N(N − 1)/2, we can notice mostly nega-
tive trends, e.g., the β values in column 10. We performed a
preliminary analysis of changes between releases and found
that complexity-reducing measures are rarely taken, hence
the decrease in normalized complexity is due to increasing
size, rather than decreasing complexity. Finally, we com-
puted the average size of a module and found it to be slightly
increasing, which makes software harder to maintain; we
omit graphs due to lack of space.

Testing this law is difficult, as initially pointed out by
Lawrence [7]. Even with commit or release notes at hand, it
is hard to pinpoint those efforts specifically meant to reduce
complexity. However, the increasing complexity trends we
observed lead us to conclude that this law holds for the ap-

plications we examined.

4.3. Self Regulation

Lehman et al. [9] suggest that the evolution of large
software systems is a self-regulating process, i.e., the sys-
tem will adjust its size throughout its lifetime. This trans-
lates to observing “ripples”—small negative and positive
adjustments— in the growth trend of a system. To ver-
ify this law, we analyzed the incremental module growth
for each system. Due to lack of space, we only present
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Figure 2: Incremental module growth for OpenSSH.
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the graph for OpenSSH. Figure 2 shows the module incre-
ment on the Y axis, while the X axis is release number. We
observe that these ripples exist indeed, and positive adjust-
ments are more frequent than negative adjustments, a trend
shared by the rest of the applications. The same behavior is
observed when considering the number of functions as met-
ric for system size. Therefore, we conclude that the law of
self-regulation is confirmed for our test programs.

4.4. Conservation of Organizational Stabil-
ity

This law, also known as “invariant work rate”, stipu-
lates that the rate of productive output tends to stay constant
throughout a program’s life time. Finding accurate met-
rics for work rate is difficult, since effort does not equate
progress, especially for large projects where communica-
tion costs are high [9, 8]. Lehman et al. [9] suggest using
the number of changes per release as possible work rate in-
dicator, but leave this to future work. Taking a cue from
their paper, we analyze the programs using two definitions
for work rate: (1) the average number of changes per day,
i.e., for each release i, we divide the total number of changes
introduced in i by the number of days between release i− 1
and i (which has the advantage of being invariant to release
intervals), and (2) change and growth rates, i.e., the num-
ber of function additions and function changes divided by
the total number of functions. We found that the work rate
computed using metric 1 is not invariant. Using metric 2,
we found that the change and growth rates do not subside
(see Figure 3), which suggests larger efforts as programs
grow.

Intuitively, these trends make sense since the programs
are open source, and the number of developers tends to in-
crease over a program’s lifetime [12]. Since the invariant
work rate law, in its original version, was formulated in the
context of commercial software development with limited
resources, here we do not have enough data to determine if
this law is applicable to our examined open source programs
or not.

4.5. Conservation of Familiarity

This law suggests that incremental system growth tends
to remain constant (statistically invariant) or to decline, be-
cause developers need to understand the program’s source
code and behavior. A corollary is often presented, stating
that releases that introduce many changes will be followed
by smaller releases that correct problems introduced in the
prior release, or restructure the software to make it easier to
maintain [9].

Prior work by Lawrence [7] used the net module growth
as a metric, and found the growth to be statistically ran-

dom. As mentioned in Section 4.3, the net module growth
for our programs (e.g., the one observed in Figure 2) is nei-
ther invariant, nor decreasing. A second metric we used
was the growth rate (percentage of new functions added to
a release). We can see in Figure 3 that the growth rate does
not subside. Finally, the third metric we used was the to-
tal number of changes to program elements (i.e., changes to
functions, global variables and types), to be able to capture
finer-grained changes that do not result in an increasing or
decreasing number of modules. In Figure 4 we plot the to-
tal number of changes against release number for Sendmail.
Due to lack of space, we omit showing this kind of graph
for other applications, but the trends are similar across all
programs. Indeed, we find that releases containing many
changes tend to be followed by smaller releases. However,
we could not detect any decrease in incremental growth,
which is most likely an artifact of the super-linear growth
hypothesis for open source software; we discuss this issue
in detail in Sections 4.8 and 5.

Therefore, we conclude that the conservation of famil-
iarity law is not confirmed for our test programs.

4.6. Continuing Growth

This law stipulates that programs usually grow over time
to accommodate pressure for change and satisfy an increas-
ing set of requirements. In previous work, different re-
search teams have used different metrics for measuring sys-
tem size and growth. Lehman et al. [9, 11], Lawrence [7],
and Gall [2] use number of modules to quantify program
size and measure growth. Paulson et al. [16], Godfrey and
Tu [3], and Izurieta and Bieman [4] use LOC. We used both
these metrics, plus the number of definitions.

Lines of code (LOC) is a widely used metric for pro-
gram size; it has the advantage that it accounts for varying
modules size, and captures intra-module growth. Figure 5
shows the evolution (in kLOC) of six applications, while
Bind is presented in Figure 7; each point in the graph corre-
sponds to an official release. When computing LOC, we ex-
cluded comments, empty lines, #pragmas containing line
number information, etc. and only kept actual code.

We can see that the law of continuing growth is con-
firmed. While we have found several instances of a new
release being slightly smaller (in LOC) than the previ-
ous release, they were the result of minor cleanups. The
only major drop was in the transition from Bind 9.1.0 to
9.2.0a1; the program shrank considerably, from 254 kLOC
to 206 kLOC, because the developers performed a signifi-
cant cleanup: they completely rewrote two components, the
OMAPI protocol handler and the configuration parser.

Number of modules shows an ever-increasing trend,
with small exceptions, an aspect analyzed in Section 4.3.

Number of definitions. This metric characterizes pro-
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Figure 4: Evolution of total number of changes for Sendmail.

gram evolution in terms of how the total number of defini-
tions (types, global variables, and functions) changes over
time. In Figure 1 we can observe system growth since the
cumulative number of additions grows faster than the cu-
mulative number of deletions.

In summary, we found that the law of continuing growth
is confirmed for our test programs.

4.7. Declining Quality

This law stipulates that over time, software quality ap-
pears to be declining, unless proactive measures are taken
to adapt the software to its operational environment. To un-
derstand how software quality changes as software evolves,
we use both internal and external quality metrics.

External quality refers to users’ perception and accep-
tance of the software. Since perception and acceptance are
difficult to quantify, we rely on defects and vulnerability re-
ports as proxies for external quality. Three of our programs
(OpenSSH, Samba, and Quagga) use Bugzilla as their de-
fect tracking system. For each version, we retrieved the
Bugzilla data and classified bugs into defects, as described
next. To avoid counting spurious defects we only consid-
ered those bugs whose status is “verified,” “assigned,” or
“closed,” since these have been confirmed by developers.
For the bugs whose status is “closed,” we only consider
those marked as “to be fixed,” “fix later,” or “won’t fix”
(i.e., the bug manifestation is due to bugs in other system
components).

For Bind, we use MITRE’s Common Vulnerabilities and
Exposures data for all major releases. Unfortunately, for
Sendmail, SQLite, and Vsftpd we were not able to find a

structured defect database that contains version-specific de-
fect information.

Various metrics have been proposed for measuring the
external quality of a release. The first metric is the number
of known defects associated with a certain release. For all
the programs where defect information was available, we
noticed the same trend: major releases tend to have a rela-
tively high number of defects, and the minor releases that
succeed them eliminate a certain number of these defects.
Over long periods of time, however, we observed that the
number of known issues associated with a project tends to
decline.

Another quality metric is defect density. We computed
defect density for each release i using the standard defini-
tion, Defectsi/LOCi, and found that the decreasing trend
observed in the number of known defects is accelerated
when computing defect density because of increasing pro-
gram size. When using a defect density definition suggested
by Mockus et al. [12], Defectsi/Changesi, we found the
same decreasing trend.

We take a cue from Paulson et al. [16] and also compute,
for each release, the percentage of functions whose bodies
have changed. The rationale for this metric is that over time,
as defects are found and fixed, less and less functions need
to change. For Samba, the evolution of this ratio is illus-
trated in Figure 3, but we could not spot a clear trend; the
same can be said of SQLite. Graphs for rest of the programs
show a slightly declining ratio. Note that Paulson et al. [16]
have found that this ratio declines for the open source pro-
grams they analyzed (Linux, Apache and Gcc).

Internal quality. While many metrics have been pro-
posed for assessing internal quality, we limit our study to
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Figure 5: Evolution of application size.

a characterization of software complexity. Since complex
software is hard to evolve, we are trying to find out if the
software’s internal quality is declining by measuring how
its complexity changes over time. In Section 4.2 we showed
that absolute values for complexity tend to increase, nor-
malized values’ decline is due to size increases, and average
module size increases as well, which makes the software
harder to maintain.

To conclude, when considering both external and inter-
nal quality metrics for our test programs, the law of declin-
ing quality is not confirmed.

4.8. Feedback System

Starting from the law of self-regulation (Section 4.3),
Turski [18] came up with a model of system growth simi-
lar to feedback in system dynamics. Lehman et al. [11] then
formulated the law that software projects are self-regulating
systems with feedback. More precisely, this law states that
Si, the size of system in modules, can be described in terms
of Si−1, the size of the previous release, and Ei, the effort
for that release: Si = Si−1 + Ei

S2
i−1

.
Later, Turski [19] showed that, assuming the rate of

growth is inversely proportional to system complexity, we
can obtain a closed-form solution of this equation that ex-
presses the number of modules S as a function of release se-
quence number (RSN): S = a 3

√
RSN + b. Prosaically, this

feedback dynamic can be expressed as “the system growth
slows down over time”.

To verify this law, we first perform a linear regression
where the independent variable is 3

√
RSN and the depen-

dent variable is system size in modules. The results are pre-
sented in Table 3.

Second, we compute the growth rate as the derivative of

Program System size (modules)
β R2

Samba 176.806 0.824
Sendmail 36.747 0.671
Bind 21.377 0.747
OpenSSH 26.721 0.781
SQLite 9.939 0.735
Vsftpd 4.212 0.766
Quagga 4.193 0.712

Table 3: Slope and correlation coefficients showing how
system size correlates with 3

√
RSN .
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Figure 6: Module growth rate for Samba.

size with time (note that we use time here instead of RSN to
account for variance in the intervals between releases). We
use S to denote size, so the growth rate is ∆S

∆t . If the law was
true, then the growth rate ∆S

∆t should be proportional to the
first derivative of a 3

√
t + b, i.e., ∆S

∆t ≈ t−2/3. We used three
metrics for S: number of modules, LOC and number of
functions. In Figure 6 we plot ∆S

∆t for Samba, with S being
number of modules. The graph indicates a largely-varying,
positive first derivative and has three spikes that we clip for
legibility (values are 1.0, 3.53, 0.54). This suggests a steady
growth rate, and certainly violates our expectation that the
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graph should have a sub-linear, steady decline, which is the
expected behavior of t−2/3. While here we use number of
modules for system size, the graphs that use LOC and the
number of functions look similar.

To conclude, while the system size ripples mentioned in
Section 4.3 are consistent with the behavior of dynamic sys-
tems with feedback, the growth rate is not, so we could not
confirm this law for the applications we examined.

5. Observations

We now present our own observations on software evo-
lution, based on analyzing the seven applications outside of
the framework of Lehman’s laws.

5.1 Parallel Evolution

All our applications have points in their history where the
development “forks” into a development branch and a sta-
ble (maintenance) branch. The development branch forms
the “bleeding edge” where new idea and features are intro-
duced and tested. The stable branch will mostly incorporate
bug fixes. Periodically, the development branch becomes
subject to forking itself. While parallel evolution requires
more effort than having a single line of development, main-
tenance branches are popular with users that prefer stability.

Nakakoji et al. [13] actually show that open source soft-
ware projects exhibit a variety of development and co-
evolution models, from using a single branch (e.g., the GNU
family) to parallel branches that co-evolve (e.g., the Linux
kernel). Godfrey and Tu [3] found that the size of the
Linux kernel, in LOC, grows quadratically with time, if we
only consider the development releases. On the other hand,
Izurieta and Bieman [4], looking at the evolution of stable
branches in FreeBSD and Linux, found the growth (within
a branch) to be linear.

Our findings are consistent with these separate growth
hypotheses. We illustrate parallel evolution on Bind’s de-
velopment and maintenance branches in Figure 7. The fork
points are marked with the release number where the de-
velopment branch splits. At a fork point, by following the
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Figure 8: Distribution of changes to functions.

dotted line we find the development branch, whereas to the
right of the fork point we have the maintenance branch, i.e.,
9.X.0 are development versions, while 9.X.1, 9.X.2, etc. are
maintenance versions. We can see that the growth of the de-
velopment versions (the dotted line) is super-linear, while
the growth of maintenance versions (solid lines) is at most
linear. We found the same trends in Samba (see Figure 5),
but omit the parallel evolution graphs due to lack of space.
The other five programs employ parallel development, but
to a lesser extent.

Note that development for a project that exhibits super-
linear growth will require an ever-increasing amount of
resources and cannot continue ad infinitum. Mockus et
al. [12] point out that the usual solution to this is to split the
project, or move certain parts into smaller, satellite projects.

5.2 Distribution of Changes

One important factor in program evolution is understand-
ing which parts of the code change, and how frequently. An-
alyzing the reasons that lead to “hot spots,” i.e., parts that
change frequently, can facilitate evolution. For example, if
one such hot spot is due to poor design, we might decide
to perform a redesign that facilitates future changes. More-
over, concentrated changes harm parallel development, be-
cause developers have to work on the same functions or
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modules. In Figure 8 we present the distribution of changes
to functions (signature and body) for SQLite and Quagga.
The other five programs’ distributions lie between these
curves: OpenSSH, Samba, and Sendmail display distribu-
tions similar to SQLite, while Bind and Vsftpd display dis-
tributions similar to Quagga, so we omit them for legibility.
SQLite makes very concentrated changes, with 20% of the
functions contributing to about two thirds of all changes.
On the other hand, in Quagga, two thirds of the changes
come from 40% of the functions. Therefore, we believe
that SQLite, OpenSSH, Samba, and Sendmail are likely to
contain more hot spots.

5.3 Interface vs. Implementation

We are also interested in how the ratio of inter-
face changes vs. implementation changes evolves over
time, since changes to the interface indicate an actively
evolving system. For each version, we computed the
ratio interface changes

interface changes+implementation changes using data on
changes to function signatures and function bodies, and
found this ratio to be small. When also computed the mean
ratio across all versions of each application, and found that
the mean ranges from 3.3% for Quagga up to 6.42 % for
Samba, which suggests that the interface is much more sta-
ble than the implementation. Moreover, we found that for
all programs except SQLite, this ratio is higher in the ini-
tial phases of a program’s evolution. This suggests that the
architecture of SQLite is still actively evolving, while the
other program’s architectures have stabilized.

6. Threats to Validity

We now discuss possible threats to the validity of our
study. Construct validity relies on the assumption that our
metrics actually capture the intended characteristic, e.g.,
that LOC, or the number of modules, accurately model sys-
tem size. We intentionally used multiple metrics for each
law to reduce this threat.

We tried to ensure content validity by only considering
official releases, and analyzing as long a time span in a
program’s lifetime as possible. We believe that consider-
ing individual commits, rather than official releases, would
threaten content validity because it exposes “jitter,” i.e., ex-
perimental features that never make it into official releases,
or debugging statements. We acknowledge that for Quagga
and Sendmail, our inability to process early versions of
the software affects content validity—perhaps in the early
stages of development, these programs’ evolution trends are
different than trends observed later. We also point out the
lack of reliable defect information for Sendmail, Vsftpd and
SQLite, which affect the validity of our conclusions regard-
ing external quality.

Internal validity relies on our ability to attribute any
change in system characteristics, e.g., size, to the time lapse
between releases, rather than accidentally including or ex-
cluding files, modules, etc. We tried to mitigate this threat
by (1) making sure we can compile and run each release
we are analyzing, and (2) manually inspecting the releases
showing large gains (or drops) in the value of a metric, to
make sure the change is legitimate.

External validity (i.e., the results generalize to other sys-
tems) is also threatened in our study. We have only looked at
open-source software written in C. Therefore, it is difficult
to claim that the results generalize to proprietary software,
or software written in other languages.

7. Related Work

Gall et al. [2] studied the evolution of a 10 MLOC
telecommunication switch software over 20 releases and 21
months. They found that the system size, in number of
modules, grows linearly, but modules exhibit vastly differ-
ent growth rates; in particular one module grows at a much
higher rate than others, which is masked when looking at the
whole system. This underscores the importance of studying
the evolution of individual modules, an aspect we plan to
consider in future work.

Paulson et al. [16] compared the evolution of three open
source programs (Apache, Linux kernel, and Gcc) with
those of three closed-source programs. Although not ex-
plicitly mentioned, the evolution time frame for each pro-
gram seems to be at most five years. They found the growth
of each project to be linear when studying major releases
only. Our study reaches a different conclusion (super-linear
growth rate) albeit for different projects and by analyzing
all the releases; this suggests more studies are needed.

In a study similar to ours, Lawrence [7] analyzed the
evolution of seven projects over 3–9 years. Their goal was
to verify Belady and Lehman’s evolution laws [1], i.e., the
first five laws in our study. Using metrics such as num-
ber of modules, modules changed per release, and number
of modification requests, their study found little evidence
in support of the laws, except for the first law, continuing
growth. They indicate that more precise operational defini-
tions for the laws are needed. We used a variety of metrics
in an attempt to improve the precision of these definitions.

Wu and Holt [20] analyzed the evolution of PostgreSQL
(85 versions, 7 years) and the Linux kernel (368 versions,
7 years). They use metrics similar to ours (common cou-
plings, calls per function, functions additions/deletions, ref-
erences to global variables) and found that the two sys-
tems clearly observe the laws of continuing growth and
continuing change. PostgreSQL shows signs of increasing
complexity, while for Linux the results were inconclusive.
While one of their systems (the Linux kernel) was larger
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than any of the programs we analyzed, we used a larger va-
riety of programs, with longer release histories, which can
provide additional insights and a broader perspective. Also,
our study tries to verify all Lehman’s laws.

Godfrey and Tu [3] examined the evolution of the Linux
kernel (6 years, 96 releases). They use LOC as a metric, and
conclude, just like us, that Lehman’s fourth law (invariant
work rate) does not appear to hold for open source software,
and that the growth of development releases is super-linear.

Izurieta and Bieman [4] examined 8 years in the life-
time of FreeBSD and 11 years in the lifetime of Linux,
but they separate their analysis into stable and development
branches. Their conclusion is that growth on individual
branches is at most linear, but when considering multiple
branches, growth can appear super-linear due to abrupt tran-
sitions between the size of a development (or stable) branch
and the size of the branched it forked off from. We provide
further support for their conclusion.

8. Conclusions

In this paper we conduct an empirical study on the evo-
lution of seven long-lived, popular open source programs.
The first part of our study investigates Lehman’s evolution
laws, some of which were formulated by Lehman et al.
more than thirty years ago in the context of proprietary soft-
ware. The results indicate that Continuing Change, Increas-
ing Complexity, Self Regulation, and Continuing Growth
are still applicable to the evolution of today’s open source
software. We could not validate Conservation of Organi-
zational Stability, Conservation of Familiarity, Declining
Quality, and Feedback System for two reasons: (1) lack of
process data for the open source projects we examined, and
(2) imprecise operational definitions for hypotheses, relying
on proxy measurements and yielding inconclusive results.

The second part of our study investigates open source
evolution aspects outside the framework of Lehman’s laws.
We find that different branches of open source programs
evolve in parallel, which confirms the parallel evolution
hypothesis proposed by other researchers. In addition, all
examined programs exhibit “change hot spots,” i.e., a high
percentage of changes are concentrated to a small percent-
age of code. Finally, we found that interface changes are
much less frequent than implementation changes, and tend
to occur towards the initial phases of program evolution.

We believe that our study leads to a better understanding
of software evolution, and hence has the potential to ad-
vance the state of the practice in software development and
maintenance. In future work, we plan to focus on under-
standing the underlying reasons why some hypotheses hold
while others do not, and on proposing solutions for coping
with the continuous increases in program size and program
complexity that characterize software evolution.
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