
Remote Repair of Operating System State Using Backdoors�

Aniruddha Bohra�, Iulian Neamtiu�, Pascal Gallard�, Florin Sultan�, and Liviu Iftode�
� Department of Computer Science

Rutgers University,
Piscataway, NJ 08854-8019

�bohra, sultan, iftode��cs.rutgers.edu

� Department of Computer Science
University of Maryland,
College Park, MD 20742

neamtiu�cs.umd.edu

� IRISA / INRIA Rennes
Campus Universitaire de Beaulieu,

35042 RENNES Cedex - France

Pascal.Gallard�irisa.fr

Abstract

Backdoors is a novel system architecture that enables re-
mote monitoring and recovery/repair of the software state
of a computer system without using its processors or re-
lying on its OS resources. We have implemented a Back-
doors prototype in the FreeBSD kernel using Myrinet NICs
for remote access to the target machine. In a previous pa-
per, we have shown how Backdoors can be used for recov-
ery of “good” OS and application state from a failed sys-
tem on other healthy systems.

In this paper, we describe how Backdoors can be used to
detect and repair damage to the OS state of a computer sys-
tem. We present two case studies of remote repair of an OS
subject to resource depletion (fork bomb and memory hog)
to the point where it cannot perform useful work and lo-
cal repair is impossible. We show that our prototype de-
tects OS resource exhaustion efficiently and it successfully
repairs the affected system.

1. Introduction

Self-healing and recoverability from events that impair
the functionality of a system have become more and more
the focus of systems research [7, 1, 11, 8]. This trend re-
flects a shift from raw performance towards intelligent, self-
manageable computer systems, driven by recent industry
initiatives [3].

Remote healing [11] is a novel approach to system-level
survivability in which monitoring a system for detection of
exceptional events (failure, damaged state, attacks, policy
violations, etc.) and recovery/repair actions are performed
remotely from another system. The physical separation of
the ”healing system” from the ”healed system” achieves ro-
bust detection and reaction to anomalies. To enable remote

� This work is supported in part by the National Science Foundation un-
der NSF CCR-0133366.

healing, we have proposed Backdoors (BD), a system ar-
chitecture that combines hardware, firmware and OS ex-
tensions to support automated observation and intervention
(through monitoring, diagnosis, state recovery and repair)
on a computer system, i) even if its capabilities have been
severely compromised, and ii) without overhead during its
normal operation. BD uses specialized, intelligent network
interfaces for nonintrusive remote access to the resources of
a computer (memory, I/O devices, etc.), i.e., without involv-
ing its processor(s) or relying on its OS resources.

Existing “healing-from-within” approaches cannot solve
problems like depletion of system resources, system-hang
failures, or corruption of the software state of an OS sub-
system. Such situations render a system unavailable, to the
point where it cannot execute any useful work and it be-
comes impossible to perform monitoring, correctly diag-
nose the problem and/or execute automated repair actions
from within the impaired system. In these cases, where
healing-from-within fails, remote healing can still ensure
accurate monitoring, correct diagnosis of the problem, and
can take corrective actions to bring the system back to nor-
mal operation (or as close as possible). A BD-based remote
healing system can either extract good state from a failed
system and recover it on another healthy machine, or can
perform in-place state repair towards restoring the system.
In a previous work [12], we showed how Backdoors can be
used to recover the state of Internet service sessions from
failed server nodes and reinstate them on other healthy sys-
tems.

In this paper, we address the problem of automated re-
mote monitoring and in-place repair of the OS state of a
computer system. Damage to OS state may include effects
of corruption in OS data structures (e.g., a corrupted file
system) but is not limited to these. We regard the state of an
OS as damaged when a certain OS subsystem is impaired
and cannot perform its normal functions. The damage can
have various causes: attack, system misconfiguration, OS
bugs triggered under load or other exceptional conditions,
resource exhaustion due to a runaway user program or to
heavy load on a computer used as a server, etc. We describe

Proceedings of the International Conference on Autonomic Computing (ICAC’04)

0-7695-2114-2/04 $20.00 © 2004 IEEE

a BD-based system that enables automated monitoring, di-
agnosis and repair actions on a system even when that sys-
tem is crippled by bad OS state. Using our system, a mon-
itor machine can observe the state of a target machine and
take repair actions when it detects exceptional conditions.

To support remote repair through BD, a target OS pro-
vides: (i) a Sensor Box (SB), a novel OS mechanism de-
fined as a structured collection of meter variables (sensors)
that track the state of OS subsystems in terms of health,
liveness, performance, etc., (ii) externalized state consist-
ing of fine-grained regions of OS memory accessible for re-
mote read, and (iii) repair hooks, regions of OS memory
that control the execution of the OS and which can be writ-
ten remotely. A remote monitor process samples the SB of a
target machine, detects exceptional events signaled by sen-
sors and dispatches calls to specialized user-defined remote
healing modules. The remote healing modules perform fine-
grained diagnosis using the externalized state of the target
OS and, if a problem is identified, perform repair using the
repair hooks.

We have implemented a prototype of the system in the
FreeBSD kernel, using Myrinet NICs to implement the BD.
We describe two case studies of OS state repair: remote
memory reclamation from memory hogging processes, and
remote process table repair after a fork bomb. We show that
our system detects damage fast and with low overhead, and
that it effectively recovers the affected machine.

The remainder of the paper is structured as follows. Sec-
tion 2 describes the BD idea. Section 3 presents the design
of our BD-based remote repair system. Section 4 describes
its implementation. Section 5 presents two case studies in
using the system. Section 6 discusses security issues in us-
ing BD for OS state repair. Section 7 presents an experi-
mental evaluation. Section 8 reviews related work. Section
9 concludes the paper.

2. The Backdoor Architecture

Backdoors (BD) [11] is a system architecture for nonin-
trusive remote healing of computer systems. BD combines
hardware and software mechanisms to enable accurate mon-
itoring and effective healing actions on a remote machine,
without using its processors. The core of the architecture is
the backdoor - a programmable NIC placed on the system
I/O bus that connects to backdoor NICs of other computers
through a network fabric/backplane. The backdoor NIC can
access local system resources (memory, I/O devices, etc.)
without involving the system processors and can initiate re-
mote access operations through other backdoor NICs. A BD
architecture requires operating system support for remote
monitoring and healing actions. To ensure mutual exclusion
between remote and local accesses to OS state, the BD pro-
vides remote locking operations.

Figure 1. Software architecture for remote re-
pair using Backdoors.

In [11] we showed that remote memory communica-
tion (RMC) can be used to implement basic BD operations.
RMC defines remote DMA (RDMA) primitives that allow
external access to the memory of a system to bypass its pro-
cessor(s). With RDMA write, a sender can write into a re-
mote memory buffer without remote processor intervention.
With RDMA read, a receiver can initiate a transfer from a
remote memory buffer without involving the remote OS or
processors. Both RDMA primitives are included in indus-
trial standards [2, 4] and are implemented in modern RMC
controllers [5].

To support remote repair through BD, an OS must pro-
vide access to the state of the system, both for detection of
bad state and for performing repair actions on the OS or the
applications running on it. The remote access interface may
define OS abstractions specifically designed for external ob-
servation of the OS state of a target system, or may enable
remote read/write memory access to native OS data struc-
tures to be used in diagnosis and repair.

The system described in this paper uses a BD along with
three OS extensions: a specialized OS abstraction for re-
mote monitoring, externalized OS state for accurate diag-
nosis, and OS repair hooks for state repair.

3. Remote Repair with Backdoors

Figure 1 shows a BD-based remote healing pair consist-
ing of a monitor machine ��� and a target machine �� �.
A specialized monitor process running on � observes the
state of � and identifies exceptional conditions (monitor-
ing). It then determines the problem that affects the target
system (diagnosis) and performs remote repair operations
on it (repair). All these operations (shown as labeled hori-
zontal arrows in Figure 1) are performed through a BD.

Proceedings of the International Conference on Autonomic Computing (ICAC’04)

0-7695-2114-2/04 $20.00 © 2004 IEEE

To enable low overhead monitoring, the target OS allo-
cates a structured region of memory called Sensor Box (SB)
where monitored entities (OS or application processes) de-
fine progress meters or health indicators called sensors. The
target OS provides externalized state for validation of ex-
ceptional events and problem diagnosis by enabling remote
read access to fine-grained OS data structures. It also en-
ables remote writes to repair hooks (RH) in the OS to allow
state repair. Repair hooks can be regions of OS memory
that control the execution behavior of the monitored sys-
tem (e.g., configuration variables), raw OS data structures
(e.g., file, process, inode), etc.

The monitor process consists of an event dispatcher (ED)
and one or more healing modules (HMs). The ED retrieves
the SB (periodically or on demand) from the target and per-
forms an efficient detection of exceptional events. On detec-
tion, it invokes the appropriate healing module to handle the
event. The healing module validates the event and identi-
fies the problem, possibly using extra information from the
externalized state of the target. If it determines that heal-
ing is necessary, it then carries out the repair action through
the RHs. The repair action may involve remote modification
of target OS data structures, manipulation of control vari-
ables, shutting down the target system, or even overwriting
a clean system image on the target system. It is important to
note that the BD architecture only defines the basic infras-
tructure, on top of which system specific monitoring, detec-
tion and healing modules can be implemented.

3.1. Monitoring with Sensor Box

A Sensor Box (SB) is a structured collection of records
called sensors, allocated in the OS memory of the target sys-
tem. The monitor retrieves the SB to create a local view that
reflects the state of the monitored system.

A sensor is a tuple � ����� �� � �, where �� is a
globally unique identifier, � is a class of sensors it belongs
to, � is a threshold that depends on the class of sensors, and
� is a scalar (the actual sensor). A monitored entity (e.g.,
OS subsystem) updates the sensor value � and defines the
initial value of � .

We define three classes of sensors based on their func-
tionality and detection properties:
(i) Progress sensors: These are monotonically increasing
counters that indicate the “liveness” of the system. The
monitored entity defines a deadline for updates. Failure to
update the counter value within the deadline indicates an
exceptional event. Examples of progress sensors are: num-
ber of interrupts raised by a hardware clock with the clock
time period as the deadline, number of context switches in
the system with the time quantum as the deadline, etc.
(ii) Level sensors: These are counters that account for re-
source utilization in the system. If the sensor value exceeds

the threshold, an exceptional event is detected by the mon-
itor process. Examples of level sensors are: number of pro-
cesses in a system with a limit on the maximum number of
processes, number of wired pages in system memory with a
limit on the maximum number of such pages, etc.
(iii) Pressure Sensors: These are counters that are incre-
mented at the monitored system upon occurrence of cer-
tain events. The threshold sets a limit on the number of
event occurrences. The monitor process detects an excep-
tional condition if the number of times the event occurs ex-
ceeds the threshold. Examples of pressure sensors are: the
system could not allocate memory, the file descriptor table
in the system is full, etc.

Upon creating a sensor, a monitored entity specifies the
global identifier ��, the type of the sensor �, and a thresh-
old � . The monitored entity must cooperate with a moni-
tor by modifying � for its associated sensor(s). This estab-
lishes a contract between monitor and monitored. The mon-
itored commits itself to updating � , according to the type of
the sensor, by increasing its value at intervals smaller than
� (progress sensors), by tracking the value of the measured
quantity (level sensors), or by incrementing its value if an
exceptional condition is detected locally by the monitored
entity (pressure sensors). The monitor commits itself to re-
trieving the sensor and comparing � and � . It detects a vi-
olation of the contract if � has not been updated within �
time units for progress sensors, and if � exceeds � for level
and pressure sensors.

The SB is accessed from the target (locally), and by the
monitor (remotely) using a simple interface:

sensor = new sensor(��, �, �)
set sensor value(sensor, value)
sb view = fetch sb(nodeID)

where �� is the globally unique identifier for the sen-
sor, � is the class of the sensor (progress, level, or pres-
sure sensor), and � is the threshold value. On the
target system, new sensor() creates a new sen-
sor and set sensor value() is used to update its
counter value. On the monitor, fetch sb() creates a lo-
cal copy sb view of the SB of a monitored node identified
by nodeID.

3.2. Diagnosis and Repair

The SB provides an efficient and lightweight, but coarse-
grained mechanism for detection of exceptional conditions.
To decide whether healing is required and to accurately di-
agnose the problem may require more fine-grained knowl-
edge of the target system state. To achieve this, a monitored
system enables remote read access to a part of its OS state.
The monitor performs a fine-grained inspection of the ex-
ternalized state to detect anomalies.

Proceedings of the International Conference on Autonomic Computing (ICAC’04)

0-7695-2114-2/04 $20.00 © 2004 IEEE

The specialized monitor process consists of an event dis-
patcher (ED) and one or more user-defined healing modules
(HMs). The monitor associates an HM with one or more
sensors using the following interface:

hm = new hm(hm handler)
register sensor(hm, ������)

The ED performs detection of exceptional conditions us-
ing the SB. It retrieves the SB of the monitored node (peri-
odically, or on demand) to create a local SB view, which it
uses to identify exceptional conditions, and dispatches calls
to HMs associated with the sensors involved.

An HM is a user defined plug-in that performs fine-
grained detection, diagnosis and repair actions on the target
system state. HMs are opaque to the ED, which only main-
tains the association between sensors and HMs. There may
be multiple sensors associated with one HM, and one sen-
sor may be associated with multiple HMs.

Upon detecting an exceptional event signaled by a sen-
sor, the ED invokes an HM to perform fine-grained detec-
tion and diagnosis. For this purpose, the HM may retrieve
externalized state from the monitored system to validate the
event and to diagnose the problem before invoking the re-
pair action.

After diagnosis, an HM identifies the corrective mea-
sures needed to bring the damaged OS back to normal oper-
ation and performs remote repair actions on it using one or
more repair hooks (RHs). RHs are defined by the target sys-
tem OS as regions of OS memory to which remote write
access is enabled. The actual specification of a hook de-
pends on the domain of its intended action. For example, a
file system repair hook may enable access to in-memory su-
perblock and inode blocks, a process table repair hook may
enable access to fields in the process structure that control
behavior of a process (priority, signal handling), a system
corruption repair hook may enable overwriting the system
image to bring the system back to a trusted clean state, etc.

4. Implementation

We have implemented a BD prototype in the FreeBSD
4.8 kernel, using Myrinet programmable NICs [6]. For re-
mote monitoring and repair, we modified the Myrinet GM
2.0 library to provide in-kernel remote read/write operations
between monitor and target machines. Remote access is en-
abled by registering the kernel memory with the NIC and
dynamically updating virtual-to-physical mappings when
needed.

To ensure consistent remote access to in-kernel data
structures, we implemented a remote OS locking mecha-
nism that blocks execution of system calls and interrupt
handlers on the target machine. If the target machine is
stuck in a critical section while holding the OS lock, the

monitor waits for a timeout and then acquires it by brute
force.

We have implemented the SB mechanism in the OS ker-
nel. The event dispatcher is implemented as a user-space
daemon. The healing modules are user defined plug-ins for
the event dispatcher, implemented as dynamically loadable
libraries. The SB interface is implemented as a pseudo-
device accessed both from the kernel (at the target, for
progress reporting) and from user space (at the monitor, for
sampling the remote SB).

5. Case Studies

We illustrate the remote repair mechanism with two OS
resource exhaustion scenarios in which traditional tech-
niques (i) fail to prevent a system from becoming unavail-
able due to resource exhaustion, and (ii) cannot repair the
system. We describe each scenario, show why the tradi-
tional mechanisms fail, and describe a remote healing so-
lution.

5.1. ForkBomb: Process Table Repair

A forkbomb is a process that recursively spawns new
processes, without doing useful work, until the resources on
the system are exhausted. A forkbomb hogs the CPU of the
system and does not allow other processes to execute. It also
causes the process table in the OS to fill up, preventing new
processes from being created. In addition, a forkbomb indi-
rectly starves all processes, as the scheduler has to traverse
a large list of processes to identify and update their priori-
ties (no user or system activity is possible when the sched-
uler is running).

In our test system (FreeBSD), the OS protects against
the forkbomb or any such runaway process by limiting (i)
the maximum number of processes per user, and (ii) the
maximum rate of process creation. When any of these lim-
its is exceeded, the user is “locked out” of the system by
killing all her processes, and not allowing her to create new
processes. Other operating systems have similar protection
mechanisms.

Such simple mechanisms provide only limited and easy
to defeat protection. On a heavily loaded system, a fork-
bomb would exhaust the available CPU cycles before the
system limits are reached, so the built-in OS protection will
not work. The system is not dead, as all its hardware com-
ponents and the OS are functioning correctly, but cannot do
any useful processing. Obviously, the system is also inac-
cessible for repair through the console or the network since
new processes (at least the shell) are required to execute any
repair task. The forkbomb also prevents any existing watch-
dog processes, e.g., daemons, from repairing the system by
starving them of CPU cycles.

Proceedings of the International Conference on Autonomic Computing (ICAC’04)

0-7695-2114-2/04 $20.00 © 2004 IEEE

In contrast, in a BD-based system we can efficiently de-
tect and eradicate a forkbomb. To achieve this, we use two
level sensors: (i) NPROCS, the number of processes in the
system, and (ii) MAXPROCRATE PERUID, the maximum rate
at which a user spawns processes. The monitored system
enables remote access to its process table as externalized
state, and defines RHs with the signal masks of all exist-
ing processes.

Monitoring and detection. The monitor process reg-
isters a Proc Repair Healer healing module with the
event dispatcher and associates the three sensors with it. The
ED performs the coarse-grained detection using the sensors
and passes control to the Proc Repair Healer when a
forkbomb is suspected. The Proc Repair Healer HM
retrieves the remote process table and creates its local view.

Diagnosis. Proc Repair Healer uses three basic
policies (which can be combined to define more complex
policies) to identify a forkbomb on the monitored machine:
POLICY TOO MANY PROCS: The HM traverses the

process table to identify the user with the largest num-
ber of processes as the culprit.
POLICY RATE TOO HIGH: The HM traverses the pro-

cess table to identify the user who creates processes at a rate
higher than the threshold as the culprit. This policy prevents
a malicious user from avoiding the hard limits imposed on
the number of processes per user by creating short lived pro-
cesses at a high rate.
POLICY TREE TOO DEEP: The HM traverses the pro-

cess table to identify the user whose process tree depth ex-
ceeds a threshold. The child of a process at depth � is de-
fined to have depth �� �. A deep process tree is generated
when a process recursively spawns child processes. With
this policy, the user with maximum process tree depth is
identified as the culprit.

Repair. If a culprit is identified,Proc Repair Healer
traverses the remote process table and posts a non-maskable
signal (SIGKILL) to terminate all processes owned by the
user found to be the culprit. The signal is posted by set-
ting a flag (using remote write) in the process signal mask
repair hook.

5.2. MemoryHog: Memory System Repair

A process or a group of processes that allocate large
amounts of memory may cause the system to exhaust its
memory. The virtual memory abstraction allows each pro-
cesses to allocate the maximum addressable memory. Un-
der memory pressure, unused memory is moved to a back-
ing store for anonymous memory called swap space. We
define the usable memory on the system as the sum of the
physical memory size and the swap space size.

In our test system (FreeBSD), the OS limits the maxi-
mum amount of memory allocated per process. This limit

cannot be too low since useful processes with a large mem-
ory footprint would be hampered. As a result, the maxi-
mum usable memory in the system can be exhausted with
a small number of processes that allocate the maximum al-
lowed memory without freeing it.

When the entire usable memory is exhausted, the OS
has no alternative but to reclaim memory from processes.
It calls an out-of-memory handler that chooses the pro-
cess with the largest memory footprint and kills it. Unfor-
tunately, such a brute force policy does not prevent a pro-
cess that creates several child processes, each of which con-
tinuously allocate memory, from exhausting system mem-
ory. (In one experiment, with as few as �� such processes,
we were able to block any useful execution on the system.)
Moreover, this random policy can choose as victim a use-
ful process if it happens to have the largest memory foot-
print.

Despite built-in protection, a system running a memory
hog becomes unusable since no new processes can be cre-
ated. Local repair is also impossible if it requires allocation
of memory - the resource that has been exhausted. In con-
trast, a BD-based system can accurately identify the mem-
ory hog and perform state repair.

Monitoring and detection. To detect a memory
pressure situation remotely, we use a pressure sen-
sor OOM KILLER RUNNING. The monitored system incre-
ments the sensor value when the out-of-memory handler
starts execution. The monitored OS externalizes its pro-
cess table and defines an RH with the signal masks of all
processes.

The monitor process registers a Mem Reclaim Healer
healing module with the ED and associates the sensor with
it. The ED performs the coarse-grained detection using the
sensor and passes control to the Mem Reclaim Healer if
it detects memory pressure. The Mem Reclaim Healer
retrieves the process table and creates its local view.

Diagnosis. Mem Reclaim Healer uses three poli-
cies (or a combination thereof) to identify a memory hog
on the monitored machine:
(i) POLICY MAX RSS: The HM traverses the process ta-
ble to identify the process with the largest memory footprint
as the culprit. This policy is identical to that used by a lo-
cal out-of-memory handler.
(ii) POLICY MAX RSSUID: The HM traverses the pro-
cess list and classifies all processes according to the
userid. The user whose processes have allocated the max-
imum amount of memory is identified. With this policy,
all processes owned by that user are chosen as cul-
prits.
(iii) POLICY MAX RSSUID SAVEUID: This policy is
identical to POLICY MAX RSSUID, but the administra-
tor can configure a list of users whose processes are critical
to the system execution and must be spared. The pro-

Proceedings of the International Conference on Autonomic Computing (ICAC’04)

0-7695-2114-2/04 $20.00 © 2004 IEEE

cesses belonging to the users in this list are filtered out from
the process table before applying POLICY MAX RSSUID.

Repair. To reclaim memory, Mem Reclaim Healer
posts a non-maskable signal (SIGKILL) to terminate all the
culprit processes. The signal is posted by setting a flag (us-
ing remote write) in the process signal mask repair hook.

6. Security

Using Backdoors in remote repair comes at the risk of
enabling access from monitor(s) to the OS memory of a tar-
get system, which makes the BD a potential access point for
mounting attacks. An attacker that takes control of a moni-
tor machine could exploit the BD interface to read sensitive
information or to remotely write to the target system and ir-
reversibly compromise it. The rudimentary access control
provided by the BD by selective access to parts of the in-
memory state of the target OS may not be sufficient.

To address this problem, we plan to secure the BD
through a two-level solution: (i) access control through
trusted hardware and firmware, and (ii) monitor replication.

The access control level will take advantage of the nar-
row interface offered by BD to implement protected access
control and validation mechanisms in the backdoor NIC
firmware, at the level of primitive operations (e.g., mem-
ory accesses). The idea is to use the intelligent NIC as a se-
cure co-processor which executes trusted code that cannot
be tampered with, and can even store secrets in a memory
which is not accessible from the host system. To implement
trusted and protected low-level access control, a Backdoor
Guard can be run as part of the firmware that implements
low-level access operations (remote read/write). Placing the
guard in firmware and disabling access to its implementa-
tion after system initialization (even for legitimate users of
the system) makes it tamper-free.

The second level of protection against attack is the func-
tional level, by logical replication of the monitor side of
the BD across different machines. In a practical system, to
achieve fault tolerance of the monitoring function, the mon-
itor side of a BD will have to be replicated on different ma-
chines. This redundancy can be exploited to also achieve
resilience to attacks. Operations on the same target system
issued from multiple monitors will be subject to low-level
protected validation mechanisms implemented in the BD
guard, before being applied to the target machine.

Remote write operations can be validated by the guard
on the target side of a BD through a delayed write agree-
ment protocol implemented in the BD firmware. In this pro-
tocol, a target-side guard will enforce consistency rules,
e.g., write operations used to repair a system by modifying
a region of its memory must produce the same values when
performed from multiple monitors. The target BD guard
(trusted, not malicious, not faulty) will monitor incoming

No. of processes Time (ms)
100 140
500 263

1000 350
1500 426

Table 1. Variation of the repair time with the
number of processes in the system.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 50 100 150 200 250 300 350 400 450 500
T

im
e(

s)

Number of forkbomb processes

Ideal
CPU bound forkbomb

I/O bound forkbomb
CPU bound forkbomb with Remote Repair

I/O bound forkbomb with Remote Repair

Figure 2. Variation of the execution time of a
test program with number of forkbomb pro-
cesses.

writes for a particular memory location and only perform
the write if values agree. Similarly, remote reads will only
be allowed if they match in address and length. This sim-
ple all-or-none scheme specifically relies on the asymme-
try of the parties involved (the possibly malicious monitors
and the low-level “guard” entity on the target side of the
BD). The guard is weaker, in the sense that it does not have
enough intelligence to decide whether a particular operation
is correct or not, but can be trusted to propagate correct op-
erations when all or a majority of monitors are correct, ac-
cording to a preset access policy.

7. Evaluation

The goal of our evaluation is threefold. First, we show
that the monitoring and repair in our system are efficient.
Second, we show that a computer system can be brought
down using the programs described in Section 5. We also
show that the system cannot be repaired locally, i.e., either
the system is unresponsive, or it terminates essential pro-
cesses. Third, we show that we can detect and repair such
cases using BD.

The experimental setup consists of DELL PowerEdge

Proceedings of the International Conference on Autonomic Computing (ICAC’04)

0-7695-2114-2/04 $20.00 © 2004 IEEE

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

T
im

e
(s

)

Number of Memoryhog processes

Ideal
Memoryhog

Memoryhog with Remote Repair

Figure 3. Variation of the execution time of a
test program with number of memory hogs.

2600 2.4 GHz, 1 GB RAM dual-processors interconnected
by 1 Gb/s Ethernet. Server nodes run FreeBSD 4.8 incor-
porating our BD prototype. The BD is implemented with
Myrinet LanaiX NICs with a 133MHz PCI-X interface [6].

Monitoring Overhead. On a monitor node, the over-
head includes (i) monitoring cost (reading the local view
of the monitored SB, comparing sensor values, etc.), and
(ii) cost of transferring the remote SB from the monitored
node. To determine it, we measured the CPU usage of a
monitor process while varying the sampling rate of a re-
mote SB with 100 sensors. In the worst case (sampling the
SB in an infinite loop), the CPU usage was 46%. Sampling
every 10 ms (the lowest granularity of a timer), the CPU us-
age is about 5%, while at 100 ms it drops under 1%. This
shows that fast detection can be performed with low over-
head on a monitor node.

Diagnosis and Repair Cost. Diagnosis and repair in-
volve traversing the remote process table and building a lo-
cal view, identifying the culprit, and killing all its processes.
The cost of repair therefore depends on the number of pro-
cesses present on the target machine.

Table 1 shows the variation of the average cost of repair
with the number of processes on the target system. While
the repair cost grows with the number of processes, in the
worst case, it takes less than half a second to execute. This
shows that repair (an exceptional action) is fast, and also
that it should not impose too much overhead on the moni-
tor system.

Repair Effectiveness.
To illustrate the two case studies of Section 5 and to show

that remote repair works while local repair is practically im-
possible, we developed two programs: a forkbomb and a
memory hog.

The forkbomb creates processes that execute in a tight
loop until the CPU cycles on the system are exhausted. An

I/O bound version of the forkbomb program continuously
reads from a pseudo-device (/dev/zero) and writes to a null
device (/dev/null). This prevents the scheduler from lower-
ing the priority of the forkbomb and of its children.

The memory hog allocates memory until it exhausts sys-
tem memory and swap space. It is structured as a controller
process that maintains a number of children processes, each
of which allocates memory in a loop. If a child is killed by
the system, the controller spawns a new process.

To illustrate the effects of the forkbomb and memory
hog, we run a simple “useful” test program that executes
in a loop, alone and concurrently with the forkbomb or the
memory hog program. We measure the wall clock time the
useful test program takes for each iteration. The results are
plotted in Figures 2 and 3.

When there is no other load on the system, the time is
constantly 5 seconds (the ideal time shown in Figures 2
and 3 as an horizontal line). When the forkbomb or the
memory hog are executing, the useful process takes longer
to receive its CPU share and the running time increases.

Figure 2 shows the variation of the wall clock time for
the test program with the number of processes created by
the forkbomb when (i) a CPU bound forkbomb executes,
and (ii) when an I/O bound forkbomb executes. We see that
the execution time grows unbounded for the forkbomb cases
without repair, while it stays close to the ideal value when
remote repair is performed.

Figure 3 shows the variation of the wall clock time for
the test program with the number of processes created by
the memory hog. Our system has 1GB of RAM and 2GB
of swap space. Our test OS (FreeBSD) limits the maximum
memory allocated by a process to 512MB, therefore up to 5
processes the system is well behaved and repair is not trig-
gered. Once the memory is exhausted, the system becomes
unavailable and execution time without remote repair ex-
plodes. With remote repair, the memory hog is identified,
all processes with the same userid are killed and the sys-
tem recovered with minimal disruption.

With around ��� processes created by the forkbomb, or
with a pool of �� memory hog processes, the test program
did not complete for more than 30 minutes. In fact, we were
unable to access the affected machine through the console
to attempt any manual repair and we had to reboot in or-
der to regain control over it. With remote repair, our system
correctly identified the problem in all runs and was able to
quickly recover the impaired machine.

8. Related Work

In [11], the remote healing concept and the Backdoors
architectural vision were introduced. In [12], we described
a system that uses BD to detect the failure of a computer and
to recover its functionality by extracting good OS and appli-

Proceedings of the International Conference on Autonomic Computing (ICAC’04)

0-7695-2114-2/04 $20.00 © 2004 IEEE

cation state from the failed system and reinstating it on an-
other healthy machine. The system was used to dynamically
recover live service sessions from server node failures in a
cluster-based Internet service. This paper describes a BD ar-
chitecture for automated remote monitoring, detection and
in-place repair of the damaged OS state of a computer.

Self-monitoring was used in [9] for adapting OS be-
havior with the goal of increasing performance. Our sys-
tem also relies on introspection by the monitored system
(through the SB mechanism), but uses external, nonintru-
sive observation of the SB and of other OS state to detect
and diagnose exceptional events in the monitored system.

Language support for automatic error detection and re-
pair of data structures is explored in [1]. A BD-based ar-
chitecture can be integrated with and leverage such support
to define diagnosis/repair algorithms on OS data structures.
Using a BD-based architecture in conjunction with a sys-
tem like [1] can also solve its vulnerability to system faults
and resource exhaustion by monitoring resource constraints
and performing repairs remotely from another system.

Defensive programming [8] is a technique in which
compiler-assisted program annotation is used to insert in-
trospecting and reactive code (sensors and actuators) into
application/OS code, with the goal of detecting and alle-
viating DoS attacks. Similarly to BD, defensive program-
ming requires cooperation from system and/or application
code through the use of minimal APIs for augmenting soft-
ware functionality. Defensive programming could be used
(at least in principle) to detect and react to violations of con-
straints on system resource usage. However, in the case of
OS resources, this would require extensive changes to be
integrated with the OS kernel code, including complex de-
tection and repair policies to be statically built into the OS.
Moreover, collocation of such code with the system it pro-
tects would incur CPU overhead to execute the monitoring
and detection algorithms. In contrast, our system provides a
simple monitoring abstraction along with support for flexi-
ble detection/repair mechanisms to be easily implemented,
tested and deployed from a different system, without using
resources of the target system.

K42 [10] is an OS with built-in support for component
hot-swapping. While in principle hot-swapping can fix cer-
tain cases of damaged OS state (e.g., when the cause is an
OS bug, the faulty OS module can be dynamically replaced
with a correct one), it cannot address the more frequent sit-
uations when the trigger lies in user space (e.g., faulty or
malicious user programs). Moreover, such systems are built
from scratch to provide hot-swapping support. In contrast,
our system uses a slightly modified general-purpose OS to
provide generic support for monitoring, diagnosis and re-
covery of a computer system from damage to its OS state.

9. Conclusions

We have presented a prototype system that supports re-
mote monitoring, detection and repair of damage to the OS
state of a computer system. The prototype is based on Back-
doors, a remote healing architecture that enables remote ac-
cess to the software state of a system without using its pro-
cessors or relying on its OS resources.

We have described enabling mechanisms and showed
how Backdoors can be used to detect, diagnose and repair
damage to OS state. We have described two case studies of
remote healing of damaged OS state using our prototype:
remote memory reclamation from memory hogging pro-
cesses, and remote process table repair after a fork bomb.
We show that our system detects OS damage fast and with
low overhead, and that it effectively recovers the affected
machine.

References

[1] B. Demsky and M. Rinard. Automatic Detection and Repair
of Errors in Data Structures. In Proc. 1st Workshop on Al-
gorithms and Architectures for Self-Managing Systems, June
2003.

[2] D. Dunning et al. The Virtual Interface Architecture. IEEE
Micro, 1998.

[3] IBM Autonomic Computing. http://www-
3.ibm.com/autonomic/index.shtml.

[4] The Infiniband Trade Association.
http://www.infinibandta.org, August 2000.

[5] Mellanox, Inc. http://www.mellanox.com.
[6] Myricom: Creators of Myrinet. http://www.myri.com.
[7] D. Patterson et al. Recovery Oriented Computing (ROC):

Motivation, Definition, Techniques, and Case Studies. Tech-
nical Report UCB//CSD-02-1175, UC Berkeley Computer
Science, Mar. 2002.

[8] X. Qie, R. Pang, and L. Peterson. Defensive Programming:
Using an Annotation Toolkit to Build Dos-Resistant Soft-
ware. In Proc. 5th Symposium on Operating Systems De-
sign and Implementation (OSDI), December 2002.

[9] M. Seltzer and C. Small. Self-Monitoring and Self-Adapting
Operating Systems. In Proc. of the Sixth Workshop on Hot
Topics in Operating Systems, May 1997.

[10] C. A. N. Soules, J. Appavoo, K. Hui, D. D. Silva, G. R.
Ganger, O. Krieger, M. Stumm, R. W. Wisniewski, M. Aus-
lander, M. Ostrowski, B. Rosenburg, and J. Xenidis. System
Support for Online Reconfiguration. In Proc. USENIX An-
nual Technical Conference, June 2003.

[11] F. Sultan, A. Bohra, I. Neamtiu, and L. Iftode. Nonintrusive
Remote Healing Using Backdoors. In Proc. 1st Workshop
on Algorithms and Architectures for Self-Managing Systems,
June 2003.

[12] F. Sultan, A. Bohra, Y. Pan, S. Smaldone, P. Gallard, and
L. Iftode. Nonintrusive Failure Detection and Recovery for
Internet Services Using Backdoors. Technical Report DCS-
TR-524, Rutgers University, Dec. 2003.

Proceedings of the International Conference on Autonomic Computing (ICAC’04)

0-7695-2114-2/04 $20.00 © 2004 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	footer1: 0-7803-8367-2/04/$20.00 ©2004 IEEE
	01: 3
	02: 4
	03: 5
	04: 6
	05: 7
	06: 8
	07: 9
	08: 10
	09: 11
	10: 47

