
Towards Self-healing Smartphone Software via
Automated Patching

Tanzirul Azim
Univ. of California, Riverside

Riverside, CA
USA

mazim002@cs.ucr.edu

Iulian Neamtiu
Univ. of California, Riverside

Riverside, CA
USA

neamtiu@cs.ucr.edu

Lisa Marvel
US Army Research Laboratory

Aberdeen Proving Ground, MD
USA

lisa.m.marvel.civ@mail.mil

ABSTRACT
Frequent app bugs and low tolerance for loss of functionality
create an impetus for self-healing smartphone software. We
take a step towards this via on-the-fly error detection and
automated patching. Specifically, we add failure detection
and recovery to Android by detecting crashes and “sealing
off” the crashing part of the app to avoid future crashes. In
the detection stage, our system dynamically analyzes app
execution to detect certain exceptional situations. In the
recovery stage, we use bytecode rewriting to alter app be-
havior as to avoid such situations in the future. When us-
ing our implementation, apps can resume operation (albeit
with limited functionality) instead of repeatedly crashing.
Our approach does not require access to app source code
or any system (e.g., kernel-level) modification. Experiments
on several real-world, popular Android apps and bugs show
that our approach manages to recover the apps from crashes
effectively, timely, and without introducing overhead.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—Reliability, Validation; D.2.5 [Software Engineer-
ing]: Testing and Debugging—Testing tools,Tracing

Keywords
automatic patch construction; automated software repair;
smartphone applications; bytecode rewriting; self-healing soft-
ware; Google Android

1. INTRODUCTION
As smartphones and tablets continue to increase in pop-

ularity [14, 13], more and more critical software (e.g., fi-
nancial, military, medical apps) shifts to these new plat-
forms. Unfortunately, smartphone software (from the OS
to libraries to apps) has a high defect rate [9] due to many
factors, including the novelty and rapid evolution pace of
smartphone software, the low barrier to entry for publish-
ing software via app marketplaces, as well as the myriad
devices and user-specific configurations on which it is run-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASE 2014
Copyright 2014 ACM 978-1-4503-3013-8/14/09 ...$15.00.
http://dx.doi.org/10.1145/2642937.2642955.

ning. Maintaining certain functionality (such as the ability
to place phone calls) is critical on smartphones, and unlike
on desktop systems, we cannot always rely on network con-
nectivity for downloading and applying a patch to fix the
bug. Hence there is a strong impetus for self-healing smart-
phone software. We take a step towards this by presenting
an approach for automating patch construction to recover
from and prevent future crashes in Android apps.

Our approach is more suitable for smartphone apps than,
say, desktop or server programs, due to the compartmental-
ized nature of smartphone apps: many pieces of functional-
ity, e.g., GUI elements, can be turned off without affecting
user experience [17]. Our implementation first employs dy-
namic analysis to detect when an app has entered an error
state and to identify the offending part of the app; then it
implements recovery, either by eliminating transient faults
and continuing to run at full functionality, or rolling back
to a safe state followed by sealing-off the offending part and
operating in a limited mode while avoiding further crashes.
An example would be a bug in the auto-completion code
that crashes the smartphone’s Dialer app whenever the user
tries to dial a number: when we detect the crash, rather
than rendering the whole app inoperable and unable to place
emergency (911) calls, we create and apply a patch to turn
off auto-completion, hence containing the damage and al-
lowing the Dialer app to continue to run (albeit with some
limitations). While this is an incipient form of self healing
in smartphone software, it is compelling nevertheless.

Exceptional conditions or bugs have many causes, and
manifest in a variety of ways: unhandled exceptions, asser-
tion failures, system overload; our framework detects several
such exceptional conditions and reacts accordingly, depend-
ing on whether the fault is transient or persistent.

As the context of the error may be different in differ-
ent situations, it is unreasonable/infeasible to expect the
smartphone user to know how to circumvent the error and
keep the app functional. Hence our system automatically
detects the error and changes the app’s behavior to respond
to these circumstances so that most of the normal app work-
flow is not hampered. The approach is centered around sev-
eral techniques which facilitate self-healing: (1) extracting
a high-level model of app operation which captures legal
app transitions as a graph; (2) continuous monitoring to de-
tect crashes; (3) identifying and sealing-off the offending app
component through app bytecode rewriting.

Although crash prevention has value and is preferable,
smartphone software bugs are a fact of life, so in this work we
will outline our ideas regarding recovering (potentially lim-

ited) functionality, as follows. Using the statically-constructed
model and the crash point, the app goes to a “rollback”
point and depending on the nature of the fault (transient
or persistent) it creates appropriate conditions, potentially
via seal-off, to avoid future crashes.

We have implemented a prototype that equips Android
apps with the aforementioned self-healing functionality; we
have chosen Android as a target due to its leader status [7].
Our framework is robust, running on actual phones and sup-
porting widely popular apps such as K-9 Mail and Facebook
Mobile. Moreover, our approach does not require access to
the app source code or modifications to the kernel or li-
braries; rather we rely on static analysis and rewriting at
the bytecode level.

We have evaluated our implementation on a set of bugs
in real-world, popular Android apps running on Motorola
Droid Bionic phones. Experiments show that our implemen-
tation manages to successfully perform self-healing without
prohibitive overhead, and the self-healing process is accom-
plished very efficiently, in less than one minute.

We expect that the fault information revealed by our sys-
tem could provide feedback to the app developers to help
them develop bug-fixing patches.

2. APPROACH
We first present a brief overview of the Android platform,

discuss self-healing in the context of the platform and then
present our approach in detail.

Android platform. The Android platform consists of the
Android OS (a Linux kernel customized for smartphones),
the Dalvik VM (virtual machine) and apps, written mostly
in Java, that are compiled to a bytecode format named DEX
and execute in the Dalvik VM. Apps can also embed native
code (written in C/C++) that is executed directly by the
OS. Apps have access to a rich set of libraries (Android
Application Framework), that offer services from hardware
abstractions to orchestrating the GUI control flow.

Self-healing in the context of Android apps. Self-healing
computing systems’ capabilities include inferring (1) ways
of detecting failures (e.g., due to system malfunctions such
as exceptions, violations of operational constraints), and
(2) strategies for applying corrections to restore (some or
all) system functionality. The key concept behind our self-
healing mechanism in Android is that an app must resume
to a normal GUI state after the app experiences a failure.
Hence, it is key that we discover a model (set of GUI states)
beforehand, so during recovery the app can be driven to an
appropriate state and avoid future crashes. For the purpose
of this work, we focus on two types of Android app faults:
transient and persistent. Transient faults occur when op-
erations fail as a result of resource unavailability and will
disappear if the operation executes again if the resource be-
comes available; a simple and effective recovery strategy for
these is re-execution. Persistent faults do not go away via
re-execution, e.g., because they are due to errors in applica-
tion logic; in such cases, sealing-off the offending operation
is an effective recovery strategy.

Our approach consists of the following phases:

• Model construction and rollback point identi-
fication. In this phase we identify discrete, safe and
unsafe points in the app (which form the basis for our
approach), as well as transitions between them, using
static analysis.

Model	

Dynamic	

Analysis	

Log	

App	

Self-­‐healing	

Capable	
 App	

Seal-­‐off	

Patch	

Figure 1: System architecture.

• Detection. In this phase, our framework performs dy-
namic analysis on systems’s behavior and app output
(e.g., system-wide resource usage, app method calls,
GUI elements, privileged actions) to detect crashes and
identify faulty components.

• Recovery. Our recovery mechanism works in two
phases. First, after a crash point is detected, we iden-
tify a safe rollback point and if needed (depending on
the nature of the fault), we seal off the bytecode as-
sociated with the crash point by using the model to
identify the faulty part of the binary and then rewrite
the bytecode to avoid future execution of code associ-
ated with the crash point. Second, we restart the app
to a nearby safe point so that users can continue their
work and interaction with the app.

2.1 Architecture
Figure 1 shows our system architecture, centered around

detecting crashes and in response applying seal-off patches.
A model is constructed first, via static analysis on the app
(bytecode); the model includes rollback (resume) points where
the app will be driven when recovering from a fault. Next,
the app is executed, either manually by users or automati-
cally via systematic exploration tools and its execution log
is monitored via dynamic analysis. When a failure is de-
tected, we employ bytecode rewriting (code generation and
instrumentation) to create a patch. We apply the patch via
bytecode rewriting; the patch seals off the functionality re-
sponsible for the crash, yielding a self-healing capable app.
We now describe our system’s operation in detail.

2.2 Model Construction and Rollback Point
Identification

The app model forms the basis for identifying safe and
unsafe points in the app. Safe points will be used for roll-
back and unsafe points will be sealed off. The model, named
Static Activity Transition Graph (SATG [17]), is a transition
graph where nodes are app screens (“activity” = GUI screen
in Android parlance) and edges represent possible transi-
tions between screens (which will take place, e.g., as the
user navigates around using the GUI). For example, a di-
rected edge from activity A to activity B points to a valid
transition from A to B as a result of the user exercising a
GUI object associated with A.

A	

C	
 B	

D	
 Crash	

E	

Ac+vity	

Figure 2: Our static analysis infers B as the rollback
point when the app crashes at point D.

Note that SATG construction is not a contribution of this
work, but the SATG is nevertheless essential to identifying
rollback points and taking recovery actions: in the case of
a fault, we calculate the nearest “safe” activity that can be
used as a rollback point. Static analysis is important because
it reveals the sequence of callbacks associated with activity
transitions: invoking these callbacks (which in normal user
interaction corresponds to exercising a sequence of GUI ele-
ments) allows us to reach the rollback point. Figure 2 shows
a SATG constructed with our A3E tool [17]. Here the root
node A is the initial activity. Each edge to the next node is
labeled with the callbacks or events triggering that transi-
tion. For example Event 1 is responsible for the transition
from activity A to activity B. Suppose the app crashes at
activity D (marked in the figure). From the SATG we can
see that activity D was reached via activity B, so activity B
is the nearest safe point to restart the app. More generally,
rollback points can be obtained via a backward traversal
from a crash point.

2.3 Detection
We now discuss what we detect —classes of faults in An-

droid app—and how we detect them via monitoring.

What we detect. We begin by presenting several common
classes of Android apps faults, along with app names that
contain these faults (in certain versions). Note that these
faults are not particular to Android, as they affect other
smartphone platforms as well.

(a) Resource Shortage/Unavailability. Unlike the desk-
top or server platforms, resource availability cannot be
taken for granted. For example, smartphone multitask-
ing is much more restrictive: when an app is not in focus
it is placed on a stack and essentially put to sleep, its re-
sources taken away and assigned to apps in focus. Apps
not properly designed to work with this kind of behavior
may experience failure because of resource shortage.

(b) Unhandled Exceptions. These failures are mostly
due to poor programming practices and inadequate test-
ing that result in failure to anticipate and handle the po-
tential exceptions raised by the app or the system (e.g.,
NPR News, SoundCloud, K-9 Mail).

(c) Crashes due to Semantic Errors. This is a broad
class of errors; for example the app fails to accepts cer-
tain types of input that otherwise should be accepted
and dealt with by the program. For example, an app
crashes because the input file is not in the correct format
or broken, hence the app crashes instead of generating
appropriate warnings (APV PDF Viewer).

(d) Crashes due to Loss of Network Connectivity.
Most Android apps communicate with remote servers.
Even the apps which do not require a network to carry
on their functionality may still require network access
for loading advertisements. However, Internet connec-
tivity might be intermittent, hence apps must deal with
situations where network access is temporarily unavail-
able (e.g., Facebook Mobile).

(e) Permission Violations. In Android, access to sensi-
tive resources is protected by a set of permissions. When
the app tries to access resources or functionality it does
not have permission for, the OS will terminate the app.

(f) IPC errors. Inter Process Communication (IPC) is
heavily used in Android for isolation and security. Apps
must abide by the IPC communication protocol; failure
to do so may lead to apps being terminated.

How we detect. Currently our detection strategy relies on
Android’s system-wide logging facility (logcat). In An-
droid, the Dalvik VM constantly monitors the app and when
a fault is encountered, the VM reports the potential cause
of error and the associated methods or callback into the
logcat. To implement monitoring, we add a listener in the
Dalvik VM’s logging system and in the event of a fault, we
isolate the exact method and activity (screen) responsible
for the fault.

2.4 Recovery
Example: recovering from a bug in NPR News. We first
illustrate how our system recovers from an actual bug in
the NPR News app (Figure 3). App execution starts from
the root activity, NewsListActivity. The A3E systematic ex-
plorer clicks a menu button to get the hourly news update,
which takes the app to HourlyNewsActivity. Then A3E plays
the radio stream repeatedly. This initiates a service compo-
nent, PlaybackService. At this time the program enters an
illegal state and crashes; the crash is captured in the log.
Analyzing the log, our system finds that the closest method
associated with the crash is prepareThenPlay in the service
class PlaybackService. This concludes the online fault detec-
tion phase. Next, in the recovery phase, we apply a seal-off
patch to prepareThenPlay, as described next.

Constructing seal-off patches. We sketch the construc-
tion of the bytecode patch (inserting code in the app via
binary rewriting, achieving seal-off) in Figure 4. Suppose
erroneousMethod is the method associated with the fault.
First, we surround the original method code with a generic
exception handler. Upon failure, the handler will just return
(because the original method’s return type is void), thus pre-
venting executing the erroneous code. Custom code can be
added at this point, e.g., to perform more extensive check-
pointing. In general, though, the returned value will have
to be of the same type as the original mehtod’s return type,
hence we create a return object of the appropriate type.

Next, for methods containing activities (recall that an ac-
tivity roughly corresponds to a screen in Android), we apply
a similar technique, inserting a try/catch block around the
onCreate virtual method from the Activity class. The on-
Create method is called when the activity is loaded (i.e.,
the screen is displayed). If the sealed-off method execu-
tion generates further exceptions, the handler will catch the
exception and refresh the activity. Thus the activity will
remain operational. With the above technique, we gain two

Systema(c	
 Explora(on	

NewsListAc(vity	

HourlyNewsAc(vity	
 PlaybackService	
 onHandleIntent	
 playCurrent	
 prepareThenPlay	

Start	
 Monitoring	

App	
 	

Excep(on:	

Illegal	
 State	

	

	

Recovery	

Seal-­‐off	
 Method	

via	
 Binary	
 Rewri(ng	

Rebuild	
 App	

Binary	
 Restart	

Monitoring	

News	
 Play	
 Back	

Service	
 Started	

Mehod	
 1	
 Mehod	
 2	
 Mehod	
 3	

Figure 3: Example: fault point detection and rollback in the NPR News app.

// inside the faulty method
void erroneousMethod(T param)
{

//surround method with try/catch block
try
{

// original method code
}
catch(Exception e) //generic exception handler
{

//write custom exception handling code
return ;

}
}

// inside the activity
@Override
protected void onCreate(Bundle savedInstanceState)
{

//Surround with generic try−catch block
try
{

// initialize activity and load GUI components
}
catch(Exception e)
{

//write custom error handling code
// refresh the activity
startActivity (getIntent ());

}
}

Figure 4: Code sketch of patch construction.

advantages: first, by sealing off just the actual problematic
method we are ensuring the least amount of functionality
loss; second, we are limiting the functionality seal-off only
in the time of an actual fault—the rest of the time the app
will behave normally. We thus implement a demand-driven
approach, with self-healing taking over only when necessary,
and minimizing operational limitations.

The general technique. Our failure detection is dynamic
hence it takes an actual execution to find and recover from a
crash. When the system is used “in the wild,” users interact
with the app as they normally do, and if the app crashes,
users will experience a small delay due to recovery. For this
paper, however, we used an automated exploration tool we
develop in prior work, A3E [17] to drive the execution, so we
could reliably drive the app into a state where it crashes.
In the background, we constantly monitor the VM log for
events that may indicate failure (Section 2.3).

When a failure does occur, we determine the finest gran-
ularity level for inserting our fault-avoiding code. Note that
we have several options here. First, we could mark the en-
tire current activity as the potential fault point and deny
access to the activity; but this is not realistic, as an activity

contains many other GUI features that may be completely
unrelated to the fault observed. Second, we could limit the
functionality of the associated GUI object. For example, if
the crashing GUI object is a button we can disable it. But
this may be also unrealistic. For example, for some inputs
the button code may fail, but it will work on other inputs.
Third, we can operate (seal off) at the method level. There-
fore, the method is the finest seal-off granularity; we employ
this granularity level in our approach by assigning the fault
to the crashing method. For example, in Figure 3 we will
seal-off the third method, prepareThenPlay (using the patch-
ing procedure explained above) because it is on the lowest
level of the exception trace.

Once a crash point is reached, we rollback and resume the
app. The rollback point depends on whether the crash is
transient or persistent.

For transient errors (generated in response to external
events such as illegal sensor data, unexpected shared mem-
ory deletion by the Android OS, background services shut-
down due to low energy, network unavailability, resource
shortage, etc.) the rollback point is the point of the crash.
The idea is that after rollback and restart these transient en-
vironmental exceptions may not be raised and the app can
resume its functionality normally.

For persistent errors (e.g., unhandled exceptions, semantic
errors, IPC communication errors, unauthorized access), we
rollback to an earlier point (previous node in the SATG) and
use bytecode rewriting to seal off the faulty method in the
faulty SATG node. While this limits functionality, it ensures
that the app will not call the offending method again.

3. IMPLEMENTATION
Platform. We implemented our approach and conducted
experiments on a Motorola Droid Bionic phone, running An-
droid 2.3.4 (note, however, that the test results can also be
achieved by running the app in the emulator).

Tools. For model construction we used the SATG extrac-
tion component (static analysis-based) of A3E. To drive ex-
ploration, we used the systematic exploration component of
A3E. Bytecode rewriting was done using the smali Dalvik
assembler/disassembler [1]. We wrote the main instrumen-
tation code in Java.

In our current setup the phone was “tethered” to a laptop;
this was necessary for running A3E, smali, and initiating
rollback/restart. However, we expect that in the future the
approach will run solely on the phone, as we envision it
should run “in the wild,” with no tethering required.

App Version Bug Type Size
Kinst. KBytes

Facebook Mobile 1.6.0 Network Unavailability 173 3,000
NPR News 2.1b Semantic Error 21 70
K-9 Mail 4.0.0.3 Unhandled Exception 157 2,300
SoundCloud 1.2.2 Unhandled Exception 48 250
APV PDF Viewer 0.2.7 Semantic Error 3 1,100

Table 1: Examined apps.

4. EVALUATION
Examined apps. For evaluation we chose several sizable,
popular Android apps that contained known bugs. In Ta-
ble 1 we present the apps: version, type of bug, and app
size. According to Google Play, each app was highly popu-
lar, with more than 1 million downloads. We have evaluated
our approach in terms of effectiveness, i.e., can the system
recover from actual bugs in popular sizable apps? and effi-
ciency, i.e., is the overhead of our approach acceptable?

Effectiveness. Our approach was effective at performing
self-healing in response to three categories of bugs encoun-
tered in five popular apps.

Efficiency. Our approach incurs a one-time overhead for
model extraction, via static analysis, to enable rollback point
detection. The second column of Table 2 shows the static
analysis time for each app. Model extraction time is solely
depending on the app’s binary size and code complexity, and
as it is a one-time cost incurred before running the app, we
believe that the 34–94 seconds figure is acceptable.

We drove the apps to crash points via systematic explo-
ration. Depending on the bug, exploration time will vary,
though techniques such as targeted exploration [17] or fast-
forwarding record-and-replay [10] can significantly acceler-
ate the procedure. The time-to-crash is presented in the
third column of Table 2. For example, for Facebook Mobile,
the actual fault was in the initial login screen, hence the sys-
tematic exploration time (4 seconds) was much lower than
for the other apps.

As mentioned in Section 2.4, self-healing might require
bytecode rewriting (if seal-off is involved) and always re-
quires rollback and restart. The bytecode rewriting time
(performed only once after the crash, for non-transient bugs)
depends on the size of the app. This time is shown in the
fourth column of Table 2: 13–44 seconds. Facebook Mobile
required no rewriting because it experiences a transient bug,
hence the ‘0’ figure for rewriting time. Finally, the time re-
quired for rollback and restart is shown in the last column
of Table 2. The rollback time involves uninstalling the cur-
rent version, installing the modified app, and rolling back
to the nearest safe point within the app. While just rolling
back requires very little time (in our case not more than 1
second), uninstalling the current faulty app and reinstalling
the modified app takes longer, 3–8 seconds. However this is
much shorter than any manual rollback and restart because
not only a human would require longer time to uninstall
and reinstall but also a human would restart the app from
the home screen and therefore would take longer to reach
the former point (the point where the app was before the
crash). As we rollback to the nearest safe point, we can en-
sure faster exploration to the safe state. As shown in the
last column of Table 2, our automated rollback required at
most 9 seconds for the apps. Hence the total self-healing
time is 9–50 seconds, which we believe is acceptable.

For transient faults, recovery is faster because we do not
rewrite the app: a simple rollback is usually enough to re-

App Static Systematic Self-healing
analysis exploration Bytecode Rollback

(time-to-crash) rewriting and restart
(seconds) (seconds) (seconds) (seconds)

Facebook Mobile 86 4 0 9
NPR News 53 22 22 9
K-9 Mail 94 52 44 6
SoundCloud 51 16 17 4
APV PDF Viewer 34 7 13 4

Table 2: Efficiency measurements results.

sume normal behavior. For example, our examined version
of Facebook Mobile failed when there was no network connec-
tivity. A rollback restored the app and as the connectivity
was reestablished, the app resumed its normal operation.
Hence recovery was faster than for the other apps, as no
bytecode rewriting was performed. Note that app perfor-
mance is not affected by seal-off, since only a specific part
of a method’s bytecode (i.e., the prologue) is rewritten.

4.1 Limitations
Our prototype is subject to several limitations that we

intend to address in future work.
First, mobile apps tend to be GUI-centric, so upon roll-

back and restart we only lose GUI state such as previously-
entered data, or selected items. For more stateful scenarios,
we will have to perform more sophisticated healing opera-
tions (e.g., more sophisticated fault detection analyses and
more extensive checkpoint and rollback).

Second, our approach is reactive (responds to bugs after
they manifest), rather than proactive. We expect that, us-
ing techniques such as consistency constraints or invariant
checking, we can detect and fix errors before they develop
into full-fledged crashes.

Third, in our current implementation, the phone was teth-
ered to a laptop. There is however no fundamental hurdle
to running the approach entirely on the phone. We used
tethering for systematic exploration (which will not be nec-
essary when apps crash “in the wild”); and to benefit from
existing app rewriting support offered by desktop tools.

5. RELATED WORK
Self-healing and automated patch construction have been

studied in many contexts, from clusters of Internet servers [16,
2] to web browsers [12]. Demsky et al. [6] use formal specifi-
cations for data structures that allow integrity properties in
data structures to be monitored and data structures to be re-
paired in case the specification is violated. Perkins et al. [12]
introduced a system named ClearView that monitors an
application’s execution to learn application invariants, de-
tect failures, and in case of failure automatically constructs
and applies a patch to heal the application. ClearView has
been applied to Firefox with a high degree of success and
resilience to attacks. Sidiroglou et al. [15] developed an ap-
proach named ASSURE that employs rescue points to re-
cover from unanticipated failures in desktop/server Linux
applications. ASSURE utilizes online code injection and re-
stores program execution to a rescue point where existing
error handling mechanism is used to inject fault recovery
code. Candea et al. [3] have proposed “microreboots” (re-
booting small components instead of entire applications) as
a recovery technique for Internet services. Sultan et al. [16]
and Bohra et al. [2] use remote DMA to perform peer moni-
toring and take-over in a cluster. to provide seamless service
to clients. However, to the best of our knowledge, we are
the first to study self-healing on the smartphone platform.

Wei et al. [18] proposed an automated patch generation
technique based on contracts. Their approach is limited
to systems built using the design-by-contract pattern. Al-
though their strategy has shown promising results, smart-
phone apps are not developed using design-by-contract.

Weimer et al. [19] demonstrated a fully automated, ge-
netic programming approach for finding and fixing bugs.
Their tool, GenProg, identifies legal program variants for
positive test cases and they generate fixes with the means of
structural differences and delta debugging upon the correct
program variant for the faulty input. Michail et al. [11] pro-
posed a scheme to use user-generated bug reports to predict
future bugs in a software execution path to warn the users
to avoid that path. Their scheme is based on predicting the
presence of faults in a particular execution based on previous
reports from the users. The work of Kim et al. [8] gener-
ates automatic patches from already existing patches written
by human developers. They manually inspected the human
written patches and automatically develop the repair code
by identifying common fix patterns. Their approach requires
manual effort and might not be always practical to employ
in a quick succession which is required in mobile platforms
with shorter update cycle. In contrast to these three efforts,
our approach does not rely on test cases or bug reports, but
rather reacts dynamically to a set of predefined errors.

Dallmeier et al.’s approach [5] automatically extracts anoma-
lies in object behavior and generate patches accordingly.
This idea may be useful on smartphone apps, but it does not
guarantee sealing-off faulty code in a deterministic manner,
e.g., random events can occur in a particular executions and
the same set of faults can manifest differently.

Carzaniga et al. [4] employ code rewriting to work around
API-related faults in web applications. They have showed
their approach in popular web APIs such as Google maps
and YouTube. While the are similarities (e.g., event-driven)
between smartphone and web apps, there are significant dif-
ferences: smartphone apps are centered around rich gestures
and sensors, so it is unclear how their approach would trans-
late to smartphones.

6. CONCLUSIONS
We have presented an approach that uses automatic error

detection and patch construction towards providing a cer-
tain degree of self-healing capabilities to Android apps. We
use dynamic analysis to identify crash points, static analy-
sis to identify rollback points, and binary rewriting to seal
off methods associated with crash points so that apps can
continue to function even after a crash, albeit with limited
functionality. Through experiments on actual bugs in sev-
eral popular apps, we show that our approach is effective
and reasonably efficient.

Acknowledgments
We thank the anonymous referees for their helpful com-
ments. This research was sponsored by the Army Research
Laboratory and was accomplished under Cooperative Agree-
ment Number W911NF-13-2-0045 (ARL Cyber Security CRA).
The views and conclusions contained in this document are
those of the authors and should not be interpreted as rep-
resenting the official policies, either expressed or implied,
of the Army Research Laboratory or the U.S. Government.
The U.S. Government is authorized to reproduce and dis-
tribute reprints for Government purposes notwithstanding

any copyright notation here on. This research was also sup-
ported in part by NSF grant CNS-1064646.

7. REFERENCES
[1] Smali: An assembler/disassembler for Android’s dex

format. http://code.google.com/p/smali/.

[2] A. Bohra, I. Neamtiu, P. Gallard, F. Sultan, and
L. Iftode. In ICAC’04, pages 256–263.

[3] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and
A. Fox. Microreboot: A technique for cheap recovery.
In OSDI’04.

[4] A. Carzaniga, A. Gorla, N. Perino, and M. Pezzè.
Automatic workarounds for web applications. In FSE
’10, pages 237–246.

[5] V. Dallmeier, A. Zeller, and B. Meyer. Generating
fixes from object behavior anomalies. In ASE ’09.

[6] B. Demsky and M. Rinard. Data structure repair
using goal-directed reasoning. In ICSE’05.

[7] IDC. Android Pushes Past 80% Market Share While
Windows Phone Shipments Leap 156.0% Year Over
Year in the Third Quarter, Novemeber 2013.
http://www.idc.com/getdoc.jsp?containerId=

prUS24442013.

[8] D. Kim, J. Nam, J. Song, and S. Kim. Automatic
patch generation learned from human-written patches.
In ICSE ’13, pages 802–811.

[9] A. Kumar Maji, K. Hao, S. Sultana, and S. Bagchi.
Characterizing failures in mobile oses: A case study
with android and symbian. In ISSRE’10.

[10] L. Gomez, I. Neamtiu, T.Azim, and T. Millstein.
Reran: Timing- and touch-sensitive record and replay
for android. In ICSE ’13.

[11] A. Michail and T. Xie. Helping users avoid bugs in gui
applications. In ICSE ’05, pages 107–116.

[12] J. H. Perkins, S. Kim, S. Larsen, S. Amarasinghe,
J. Bachrach, M. Carbin, C. Pacheco, F. Sherwood,
S. Sidiroglou, G. Sullivan, W.-F. Wong, Y. Zibin,
M. D. Ernst, and M. Rinard. Automatically patching
errors in deployed software. In SOSP ’09.

[13] Pew Research Center. Report: Mobile Tablet
Ownership 2013. http://pewinternet.org/Reports/
2013/Tablet-Ownership-2013.aspx.

[14] Pew Research Center. Report: Smartphone Ownership
2013. http://pewinternet.org/Reports/2013/
Smartphone-Ownership-2013.aspx.

[15] S. Sidiroglou, O. Laadan, C. R. Perez, N. Viennot,
J. Nieh, and A. D. Keromytis. Assure: Automatic
software self-healing using rescue points. In
ASPLOS’09.

[16] F. Sultan, A. Bohra, S. Smaldone, Y. Pan, P. Gallard,
I. Neamtiu, and L. Iftode. Recovering internet service
sessions from operating system failures. Internet
Computing, IEEE, 9(2):17–27, 2005.

[17] T. Azim and I. Neamtiu. Targeted and depth-first
exploration for systematic testing of android apps. In
OOPSLA ’13.

[18] Y. Wei, Y. Pei, C. A. Furia, L. S. Silva, S. Buchholz,
B. Meyer, and A. Zeller. Automated fixing of
programs with contracts. In ISSTA ’10, pages 61–72.

[19] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest.
Automatically finding patches using genetic
programming. In ICSE ’09, pages 364–374.

