
Adapting Graph Application Performance Via
Alternate Data Structure Representations

Amlan Kusum
University Of California,

Riverside
akusu001@cs.ucr.edu

Iulian Neamtiu
University Of California,

Riverside
neamtiu@cs.ucr.edu

Rajiv Gupta
University Of California,

Riverside
gupta@cs.ucr.edu

ABSTRACT
Graph processing is used extensively in areas from social
networking mining to web indexing. We demonstrate that
the performance and dependability of such applications crit-
ically hinges on the graph data structure used, because a
fixed, compile-time choice of data structure can lead to poor
performance or applications unable to complete. To ad-
dress this problem, we introduce an approach that helps
programmers transform regular, off-the-shelf graph appli-
cations into adaptive, more dependable applications where
adaptations are performed via runtime selection from alter-
nate data structure representations. Using our approach,
applications dynamically adapt to the input graph’s char-
acteristics and changes in available memory so they con-
tinue to run when faced with adverse conditions such as low
memory. Experiments with graph algorithms on real-world
(e.g., Wikipedia metadata, Gnutella topology) and synthetic
graph datasets show that our adaptive applications run to
completion with lower execution time and/or memory uti-
lization in comparison to their non-adaptive versions.

Keywords
runtime data structure selection, space-time trade-off

1. INTRODUCTION
Graph processing continues to increase in popularity with

the emergence of applications such as social network min-
ing, real-time network traffic monitoring, etc. Due to their
data-intensive nature, the performance and dependability of
such applications depends upon how well the choice of run-
time data structure matches the input data characteristics
and availability of memory (low memory can prevent the
applications from completing).

Input Data Characteristics. Programmers often choose spe-
cific, fixed data structures when developing graph applica-
tions. The memory used by the data structure can be greatly
influenced by the input data characteristics. Thus, it is pos-
sible that the characteristics of data may not match the
choice of the data structure. This is particularly problematic
when the application is expected to encounter a wide range
of input data characteristics, and these characteristics may
change during the course of execution. For example, matri-
ces can be represented in the Compressed Column Storage
(CCS) format, appropriate for sparse matrices, or the array
representation, appropriate for dense matrices. An appli-
cation, e.g., matrix multiplication, programmed to use the
sparse CCS format, could take longer to complete when pre-
sented with a dense input. Similarly, evolving graphs [33],
where nodes or edges are added during execution, are an-
other example of changes in input data characteristics. The

data structure selection based on input pre-analysis will fail
under such scenario. Therefore, in our approach, adaptive
applications tailor the choice of data structure to match in-
put data characteristics at runtime.

Availability of Memory. Since real-world applications of-
ten do not run in isolation, they share the available mem-
ory resources with other applications. There could be times
where the application experiences a resource crunch, caused
by other running programs. In this scenario the perfor-
mance of the application may be degraded, or the appli-
cation may even be prematurely terminated. Therefore, in
our approach, adaptive applications tailor the choice of data
structure to match availability of memory at runtime.

It is well known that for data-intensive applications, the
choice of data structure is critical to memory usage and exe-
cution time. There has been previous work on data structure
identification [11], as well as data structure prediction and
selection [5, 6, 17, 22]. While these prior approaches help
in data structure selection, none of them support switch-
ing from one data structure to another as the application
executes. There has also been work on dynamically adapt-
ing the representation of individual data items for impacting
memory usage and performance—employing data compres-
sion [29] or replacing float data with int data [20]. These
techniques are orthogonal to our work that switches between
alternate high level data structures. Other approaches dy-
namically switch between implementations. Elastin [20] al-
lows a program to switch between versions using dynamic
software update techniques [21, 9]; however, it does not con-
sider switching between alternate high level data structures.
IBM’s K42 Operating System [1, 3] supports hot-swapping
classes as a mechanism for performing dynamic updates.
Scenario Based Optimization [19], a binary level online op-
timization technique dynamically changes the course of ex-
ecution through a route meant for a particular runtime sce-
nario as predefined by developer. Wang et al. [32] proposed
dynamic resource management techniques based on user-
specific, application-specific and hardware-specific manage-
ment policies. In contrast, our objective is to simultaneously
support alternate data structures and switch between them.

In this paper we consider several widely-used graph appli-
cations and study how data structure representations impact
execution time and memory consumption on a range of input
graphs (Section 2). The input graphs consist of both real-
world graphs such as Wikipedia metadata, Gnutella net-
work topology (from the SNAP library [31]), and synthetic
graphs. Based upon the observations from our study, we
design a concrete adaptation system that supports switch-

ing between alternate representations of the data in mem-
ory (Section 3). We demonstrate that the cost of perform-
ing the runtime adaptations is quite small in comparison
to the benefits of adaptation (Section 4). Moreover, the
lightweight monitoring we employ to detect adaptation op-
portunities imposes acceptable overhead even when no adap-
tations are triggered at runtime. Thus, our adaptive versions
have nearly the same performance as the most appropriate
non-adaptive versions for various input characteristics. We
compare our approach with related work in Section 5, and
in Section 6 we conclude.

2. A STUDY OF GRAPH APPLICATIONS
In this section we study the execution time and memory

usage behavior of a set of graph applications. The goal of
this study is two fold. First, we want to quantify how input
data characteristics and the choice of data structures used
to represent the graphs impact memory usage and execution
time. Second, we would like to develop a simple characteri-
zation of program behavior that can be used to guide data
structure selection at runtime.

We considered six graph algorithms: Muliple Source Short-
est Path (MSSP) finds the shortest path from all the nodes
to every other node; Betweenness Centrality (BC) computes
the importance of a node in a network; Breadth First Search
(BFS) traverses the graph with each node as root per iter-
ation; Boruvka’s Algorithm (MST-B) and Kruskal’s Algo-
rithm (MST-K), finds the minimum spanning tree; Preflow
Push (PP), finds out the maximum flow in a network start-
ing with each individual node as source. The core data
structure used in these applications is a graph. We con-
sider two different representations of graphs: Adjacency List
(ADJLIST); and Adjacency Matrix (ADJMAT). When the graph
is sparse, it is expected that ADJLIST will use less memory
than ADJMAT. On the other hand, for highly dense graphs
ADJMAT may use less memory than ADJLIST. Determining
whether a pair of nodes is connected by an edge can be
done in constant time using ADJMAT while it may require
searching through a list with ADJLIST. Thus, the runtime
memory usage and execution time depend upon the spar-
sity, or conversely the density, of the input graph. The input
graphs with relevant properties and densities were generated
to study program behavior.

To observe the trade-offs of using the alternative represen-
tations of graphs, we executed each of the programs using
the two representations. The programs were run on inputs
consisting of randomly-generated graphs with varying den-

sity which is computed as |E|
|V ||(V−1)| , where |V | and |E| are

number of nodes and edges in the graph. The inputs were se-
lected such that the trade-offs could be exposed easily. The
results of these executions are summarized as follows:

Impact of data structure selection on memory usage and exe-
cution time. We present the relative memory usage and exe-
cution time of program versions in Table 1. In particular, we
computed the ratios of memory usages and execution times
for ADJLIST and ADJMAT versions across all graph densities
considered. The minimum and maximum values of observed
ratios is given in Table 1. As we can see, in terms of both
memory usage and execution time, the relative performances
vary a great deal. Moreover, neither representation gives the
best memory usage or execution time performance across all
graph densities. Hence, it is crucial to select the data struc-
ture at runtime, based upon the input data characteristics.

Table 1: Relative performance ranges.
Application ADJLIST / ADJMAT

Memory Usage Execution Time

MSSP 0.68 - 8.02 0.40 - 4.00
BC 0.40 - 4.00 0.59 - 2.88
MST-K 0.72 - 2.44 0.35 - 3.83
BFS 0.54 - 5.47 0.72 - 3.14
MST-B 0.71 - 1.67 0.16 - 7.21
PP 0.60 - 5.40 0.50 - 3.53

Table 2: Density ranges where each data structure prevails.
Application ADJLIST

best space &
time

ADJLIST
best space,
ADJMAT
best time

ADJMAT
best space &
time

MSSP < 9% 9% - 25% > 25%
BC < 10% 10% - 25% > 25%
MST-K < 25% 25% - 37% > 37%
BFS < 8% 8% - 25% > 25%
MST-B < 10% 10% - 40% > 40%
PP < 2% 2% - 34% > 34%

Characterization of application behavior. For the purpose of
runtime data structure selection, we characterize the behav-
ior of each application as shown in Table 2. Note that graph
densities are divided into three subranges. In the first range
(e.g., < 9% for MSSP) the ADJLIST is both more memory-
and time-efficient than ADJMAT. In the second range (e.g.,
9% − 25%) ADJLIST is more memory-efficient while ADJMAT

is more time-efficient. Thus, the selection can be made at
runtime based upon memory availability. Finally, in the
third range (e.g., > 25% for MSSP) ADJMAT is both more
memory and time efficient than ADJLIST.

3. ADAPTIVE APPLICATIONS

!"#$!"%$

!"#$

!"%$

&''()*)+,$"(-./+$0(,+$ &,*123+$&1145/*2('$

&,*1)*2('$6(,-4+$

7.*'852('$

1(45/5+8$

9-'26+$

6('5)(.8$

"(-./+$/(,+$:5);$

).*'852('$4(<5/$

Figure 1: High level overview of our approach.

We now present our approach for building adaptive ap-
plications; an overview is shown in Figure 1. The starting
point is the annotated source code: in the source code, pro-
grammers add annotations to identify the alternative data
structures, e.g., DS1 and DS2, and functions operating on
them. The compiler takes heed of these annotations and
generates the source code with transition logic, that is capa-
ble of dynamically switching among alternative data struc-
ture representations. The transitions are allowed at selected
program points where the processing of an input item has
just completed and that of another item is about to be-
gin. Lastly, the adaptation module consists of the runtime
monitors for tracking input data characteristics and mem-
ory usage as well as the code that implements the transition
policy that triggers the switch from one data structure rep-
resentation to another. The adaptation can be triggered by
a mismatch between the input data characteristics and the
data structure currently in use. To discover this mismatch
the characterization of application behavior as performed in
the previous section is used. The adaptation can also be
triggered by the system during high memory usage.

Programming for adaptation. To enable adaptation, the
programmer implements the alternate data structures. In
addition, a compute-intensive function during whose execu-
tion adaptation may be performed, must be coded as follows.
First, it should contain a variable that tracks the progress
in terms of processing steps defined as either the amount of
input processed or results produced. Second, it should be
written so that it can commence execution from any point
between two processing steps. The latter is needed because
we allow execution to switch from one data representation to
another at these points. We used a set of pragmas in our ap-
proach to identify alternate data structure representations,
enable generation of code that transfers code from one rep-
resentation to another, and identify program points where
transitions may be performed. First, the programmer iden-
tifies the data structure to the compiler. The programmer
annotates the alternate representation of data structures
in multiple files with #pragma ADP(<SRC_FILENAME>, "data1_def").
<SRC_FILENAME>’s presence clearly differentiates the alternate
representation of the data structure in multiple files. If there
are multiple data structures with alternate representations
in different files, then they could be annotated with a differ-
ent index, e.g., #pragma ADP(<SRC_FILENAME>, "data2_def"). Sec-
ond, the programmer uses several pragmas to identify the
key methods (insert, delete, traverse, and fetch) that man-
age data stored in the data structure. Another pragma al-
lows access to the initialization parameters which must be
migrated from one data structure to another. All of this in-
formation is used to generate the code for data and function
migration when we switch between data structures.

Triggering adaptations. The adaptation module decides
whether or not to switch between data structures based
upon the input from runtime monitors and the transition
policy. Since the adaptation could be program-triggered or
system-triggered, there are two kinds of monitors which are
required by the adaptation module. The input data monitor
captures input data characteristics and the memory moni-
tor reports the available system memory. The transition
policy defines which data structure representation is bet-
ter for what range of input data characteristics in terms of
execution time and memory consumption. Its specification
consist of three parts, as illustrated below:

/* EXECUTION TIME */
DS1 [0,9)
DS2 [9,100]

/*MEMORY*/
DS1 [0,25)
DS2 [25,100]

/*THRESHOLD*/
MEMORY 100

The first part indicates the ranges for which a particular
data structure representation is best in terms of execution
time: under EXECUTION TIME in the figure, the input data prop-
erty for which ADJLIST (DS1) is better is denoted by direc-
tives DS1, which means that ADJLIST is favorable in terms
of execution time if the input data property or density of
the graph (in case of MSSP) is in between 0% and 9%. The
second part consists of the ranges of the input data prop-
erty for which a particular data structure representation is
better in terms of memory. According to the figure, under
MEMORY, we see that ADJLIST (DS1) is better when the density
of the input graph is between 0% and 25% while ADJMATRIX

(DS2) is better when the density of the graph is between
26% and 100%. The third part is the threshold for memory,
defined by the programmer to notify the system that if the

available memory is below this threshold then, regardless
of input data characteristics always use the representation
requiring least memory; in the figure (under THRESHOLD) the
threshold is set to 100MB.
dataMigrationDS1DS2(void* DS1, void* DS2)
{
initializationParameters* ip;
ip = getInitializationParameter(DS1);
initializeDS2(&DS2,ip);
transferDataDS1DS2(&DS1,&DS2)
deleteDS1(&DS1);

}
transferDataDS1DS2(void** DS1, void** DS2)
{
i = 0; void* dataValue;
for(i = 0;i< **DS1->maxData;i++) {

dataValue = fetchDataDS1(i,*DS1);
if(dataValue != NULL) {
insertDataDS2(*DS2, dataValue, i);deleteDataDS1(i,*DS1);

}}} Figure 2: Data migration.
Switching between data structure representations. The data

structure transition logic is inserted into the source files by
the compiler, guided by the pragmas. This transition logic
carries out on-the-fly transitions from one data structure
representation to another whenever required. To accomplish
the transition, the in-memory data must be transformed
from one representation to another, along with the func-
tions operating on them. The transition logic handles this
by function migration and in-memory data methods con-
tained in the logic. When the code for transition logic is
inserted, appropriate header files are also inserted such that
source code after modification compiles and links properly.
To avoid recomputation of already-computed results, the re-
sult transfer logic (injected into code along with the transi-
tion logic) will transfer the already-computed results from
one representation to the other representation.

An example data migration function is shown in Figure 2.
The code in the figure transfers the data from the data struc-
ture representation DS1 to another representation DS2. It
begins with initialization of the DS2 data structure repre-
sentation. The initialization parameters are fetched from
DS1 and they consist of standard parameters that are in-
variant in both DS1 and DS2. For example, in the MSSP
benchmark the invariant data is the number of nodes. In
the PP benchmark the invariant data consists of number
of nodes, the height, capacity and flow of each node. The
transferData function is generated from traverseData function
of DS1 as provided by the developer. This function traverses
through the data by reading each data value, migrating it
to DS2 representation using insertDataDS2 and also deleting
that data from DS1 using deleteDataDS1 thus releasing mem-
ory. The deleteDS1 clears memory which contains the data
regarding the initialization parameters.

The transition between implementations, i.e., switching
from one set of functions operating on representation DS1
to functions operating on representation DS2 must be care-
fully orchestrated. The developer denotes an operation with
a directive such as #pragma ADP("DS1","data1_op1"), which in-
forms the compiler that the function is compute-intensive,
as shown in Figure 3. Any call to that function is re-
placed by our customized method, which checks and exe-
cutes operations with the suitable data structure. In this
example computeMSSP_DS1 is replaced by callOP1. The addi-
tional parameter, startDS, denotes the type of the current
data structure representation in memory. The other three
parameters are the data structure, a progress gauge, and
the result set for storing the result. For example in the

#pragma ADP("DS1",
"ds1_op1")

void computeMSSP_DS1(
void* graph, void*

rs,
int* progress);

...
computeMSSP_DS1(graph,

rs, progress);

...

//#pragma ADP("DS1",
"ds1_op1")

void computeMSSP_DS1(
void* graph,void*

rs,
int* progress);

...
callOP1(graph,

rs,progress,
startDS);

...

Figure 3: Function migration method before compilation
(left) and after compilation (right).
1 void callOP1(void* ds, void* rs, int progress, currentDS){
2 extern int changeReq; void* newDS; void* newRS;
3 while(progress < 100){
4 if(changeReq == 1){ switch(currentDS) {
5 case 1:
6 currentDS = 2; dataMigrationDS1DS2(ds, newDS);
7 resultMigrationRS1RS2(rs, newRS);
8 ds = newDS; newDS = NULL; rs = newRS; newRS = NULL;
9 computeMSSPDS2(ds, rs, progress);

10 break;
11 case 2:
12 currentDS = 1; dataMigrationDS2DS1(ds, newDS);
13 resultMigrationRS2RS1(rs, newRS);
14 ds = newDS; newDS = NULL; rs = newRS; newRS = NULL;
15 computeMSSPDS1(ds, rs, progress);
16 break;
17 }}
18 else { switch(currentDS) {
19 case 1: computeMSSPDS1(ds, rs, progress); break;
20 case 2: computeMSSPDS2(ds, rs, progress); break;
21 }}}}

Figure 4: Switching between implementations.

case of MSSP, a method that finds MSSP has the signature
void computeMSSP_DS1(void* graph, void* rs ,int* progress). The
first parameter is the input graph and the second param-
eter rs stands for the result set and its declaration must
be annotated by the programmer with #pragma ADP("DS1",

"data1_res1"). The last parameter identifies the progress,
which is the iteration number of the outer most long running
loop. For example, if the method is called with a progress
value 10, then the execution is started from progress value 10
and continuously updated with the loop iteration number.

The detailed function selection and migration activity is
shown in Figure 4—for MSSP benchmark. An external vari-
able changeReq, set by the adaptation module, is checked
(line 4). If a transition has been requested, then first the
data is migrated from one data structure representation to
another (lines 6 and 12). Next, if needed, the result is mi-
grated from one representation to another (lines 7 and 13).
Finally, the corresponding MSSP function for that data struc-
ture is called (lines 9 and 15) and the operation is resumed
from the progress point. If there is a change request from
the adaptation module, then operation is paused and it re-
turns back to callOP1. This process continues until the MSSP
computation completes.

The question arises where ongoing MSSP computations
should be interrupted to check if the adaptation module has
requested a change or not. To solve this problem, we rely
on the programmers to use the directive #pragma ADP("DS1",

"ds1_op1_safe") to indicate the safe transition points in operation1

as shown in Figure 5. This directive notifies our framework
that, if the operation is paused and the transformation is
performed at that point, then there is minimal recomputa-
tion of result. This is typically the end of an iteration in
long-running loops. Since the programmer is well aware of
the long running loops in the compute-intensive function, it
is best to have the programmer mark the points appropri-

void computeMSSP_DS1(
void* graph,
void* rs,
int* progress){

...
#pragma ADP("DS1",

"ds1_op1_safe")
...

}

void computeMSSP_DS1(
void* graph,
void* rs,
int* progress){

...
//#pragma ADP("DS1"

,"ds1_op1_safe")
if(checkChangeStatus()==1)

{
*progress = curProgress;
return;

}
}

Figure 5: Adaptation module interrupt before compilation
(left) and after compilation (right).

Table 3: Comparison of execution times of non-adaptive ver-
sions with adaptive version under program triggered adap-
tations, on the original p2p-Gnutella graph. Note that AD-
JLIST is the better representation.

App. Non-Adaptive Ex.
Time (sec)

Adaptive:
ADJMAT→
ADJLIST (sec)

Benefit
Realized

ADJLIST ADJMAT Ex.
Time

Transition
Latency

(%)

MSSP 1,386 2,489 1,408 3.00 98.05
BC 1,362 2,565 1,383 2.73 98.32
MST-K 389 956 397 3.17 98.55
BFS 1,434 2,594 1,457 2.56 98.05
MST-B 1,454 2,114 1,465 3.15 98.35
PP 81 256 87 3.2 96.35

ate for the insertion of adaptation module interrupts. The
directive is replaced by an interrupt which checks if there is
a change required and thus returns back to callOP1.

 0

 1000

 2000

 3000

8 9 10 20E
X

E
C

U
T

IO
N

T

IM
E

 (
S

E
C

)

% DENSITY

BC

ADAPTIVE VERSION

 0

 1000

 2000

 3000

8 9 10 20

% DENSITY

BFS

ADJMAT

 0

 1000

 2000

 3000

8 9 10 20

% DENSITY

MSSP

ADJLIST

 0

 1000

 2000

 3000

9 20 30 40

E
X

E
C

U
T

IO
N

T

IM
E

 (
S

E
C

)

% DENSITY

MST-B

 0

 500

 1000

10 20 30 40

% DENSITY

MST-K

 0

 40

 80

1 2 3 4

% DENSITY

PP

Figure 6: Adaptive vs. non-adaptive performance.

4. EVALUATION
In this section we evaluate the performance of adaptive

versions of graph algorithms and compare them with cor-
responding non-adaptive versions of the applications. The
goals of these experiments are as follows. First, we evalu-
ate the efficiency of our approach by measuring its benefits
and overhead. Second, we consider the benefits of adapta-
tion under two scenarios: adaptation triggered by the in-
put characteristic, i.e., graph density; and system triggered
adaptation. All experiments were run on a 24-core machine
(4 six-core AMD OpteronTM 8431 processors) with 32GB
RAM. The system ran Ubuntu 10.04, Linux kernel version
2.6.32-21-server. The sources were compiled with Gcc 4.4.3.

Real World Data-sets: We evaluate our system on some of
the real-world graphs from the SNAP graph library [31]. The
first graph, wiki-Vote, contains the who-votes-for-whom
graph in Wikipedia administrator elections. This graph has
7,115 nodes and 103,689 edges. The second graph, p2p-

Gnutella, is a snapshot of Gnutella, a decentralized peer to
peer file sharing network from August 9, 2002. This graph

Table 4: Programming effort.
Application MSSP BC MST-K BFS MST-B PP
pragmas 8 9 9 8 9 8
Additional
LOC

9 12 10 8 14 6

has 8,114 nodes representing hosts and 26,013 edges rep-
resenting the connections between these hosts. For experi-
ments, in cases where a more dense graph was needed, we
added edges in both the graphs to raise the required density.

4.1 Programming Effort
The programmers need to add annotations to transform

off-the-shelf applications to adaptive ones. In addition to
this, programmers also need to modify the compute-intensive
methods so they can be executed in incrementalized fashion.
The number of pragmas added and the number of additional
lines of code added to modify the methods are shown in Ta-
ble 4. As we can see, these numbers are fairly modest.

4.2 Input Triggered Adaptation
In this scenario we study how adaptive applications re-

spond to the mismatch between the data structure repre-
sentation fixed a priori at compile time and the density of
the input graph. We compute the benefit realized by our ap-
proach for various applications. In particular, we start the
program by using the ADJMAT representation and select a real
world graph (p2p-Gnutella) which is 0.004% dense, which
makes ADJLIST the ideal representation. Therefore, when
the adaptive application is run, it dynamically switches from
the ADJMAT to the ADJLIST representation.

In Table 3 we present the execution times of the non-
adaptive (ADJLIST and ADJMAT representations) and adap-
tive (ADJMAT→ADJLIST) versions of the applications. For the
latter version, we also present the transition latency which
is the execution time after which the program has completed
the transition to the ADJLIST representation. From the re-
sults in Table 3, we observe the following. The execution
time of the adaptive version, on average, is 2.49% higher
than the non-adaptive ADJLIST version; but 48.09% lower
than the non-adaptive ADJMAT version. For example, for
MSSP, the execution of the adaptive version is 1,408 seconds
which is 1.54% higher than the execution time of the non-
adaptive ADJLIST version (1386 seconds) and 56.55% lower
than the execution time of the non-adaptive ADJMAT version
(2,489 seconds). In addition, we observe that the transition
latency of the adaptive version is small in comparison to the
total execution time. For example, for MSSP, the transition
latency of 3 seconds is approximately 0.21% of the total exe-
cution time of 1,408 seconds. That is, the adaptation is per-
formed quickly (low transition latency) and efficiently (low
transition overhead). Thus, nearly all the benefits of using
ADJLIST over ADJMAT are realized by the adaptive version.

We quantify the benefit realized by our approach as fol-
lows. The maximum possible benefit is given by the differ-
ence in the execution times of the non-adaptive ADJMAT and
non-adaptive ADJLIST versions. The benefit our approach
realizes is the difference between the execution times of the
non-adaptive ADJLIST version and the adaptive version. The
realized benefit, as a percentage of maximum possible ben-
efit, is given in the last column of Table 3. As we can see,
the realized benefit is over 96% for these applications.

The additional execution time taken by the adaptive ver-
sion over the non-adaptive ADJLIST version can be divided
into three categories: time spent on converting from one

Table 5: Breakdown of adaptation overhead.
Application MSSP BC MST-K BFS MST-B PP
DS Conversion 1.56 1.44 1.98 1.4 1.98 1.98
Monitoring &
Transition Logic

10.78 10.11 5.89 12.74 7.19 2.92

Suboptimal Mode 9.07 8.62 0.3 8.41 1.71 1.48

 0
 50

 100
 150
 200
 250
 300

 0 2 4 6 8 10

M
E

M
O

R
Y

C

O
N

S
U

M
P

T
IO

N
 (

M
B

)

TIME (SEC)

BC

ADJMAT

 0
 50

 100
 150
 200
 250
 300

 0 2 4 6 8 10

TIME (SEC)

BFS

TRANSITION

 0
 50

 100
 150
 200
 250
 300

 0 2 4 6 8 10

TIME (SEC)

MSSP

ADJLIST

 0
 50

 100
 150
 200
 250
 300

 0 2 4 6 8 10

M
E

M
O

R
Y

C

O
N

S
U

M
P

T
IO

N
 (

M
B

)

TIME (SEC)

MST-B

 0
 50

 100
 150
 200
 250
 300

 0 2 4 6 8 10

TIME (SEC)

MST-K

 0
 50

 100
 150
 200
 250
 300

 0 2 4 6 8 10

TIME (SEC)

PP

Figure 7: Program-triggered adaptation.

data structure representation to another; time spent on run-
time monitoring and transition logic to trigger adaptation;
and the time lost due to running the application in subop-
timal mode, i.e., with the ADMAT data structure. The break-
down of the extra execution time into the three categories is
shown in Table 5. As we can see, the majority of the time is
spent on runtime monitoring and transition logic. The next
significant component is the time spent due to running the
program in the suboptimal configuration before the transi-
tion occurs. Note that the time spent on converting one
data structure into another (column 2) is the least.

An intuitive way to visualize adaptation is to plot how
the memory used by applications varies before, during, and
after adaptation. In Figure 7 we show how memory (y-
axis) varies over time (x-axis) when starting the application
in the ADJMAT representation and then through adaptation,
the application transitions to ADJLIST. The charts point out
several aspects. First, since we are using sparse graphs, as
expected, the memory used is reduced significantly (tens of
megabytes) when we switch from the ADJMAT to ADJLIST

representation. Second, the switch from one data structure
to the other takes place fairly early in the execution of the
program. Third, the time to perform adaptation and the
extra memory used during adaptation are very low.

In Figure 6 we show the execution time of the adaptive
version for varying input densities over the range where we
expect the adaptive application to switch from the ADJLIST

to the ADJMAT representation. For these experiments, we
have used graph size of 4000 nodes and varied densities.
The execution times of the non-adaptive versions that use
fixed representations (ADJLIST and ADJMAT) are also shown.
As we can see, the performance of the adaptive application
is very close to the best of the two non-adaptive versions.

4.3 System Triggered Adaptation
In this section we study the second scenario, i.e., when the

adaptation is triggered by the system. The graph used for
these experiments was p2p-Gnutella at 20% density. How-
ever, we select ADJMAT as the initial data structure repre-
sentation so that no adaptation was triggered due to the
mismatch between the data structure and graph density. In-
stead we provided the program with a system trigger that
forces the program to reduce its memory consumption. This

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

��

�
�
�
�

��

�
�
�
�

�
�
�
�

 0

 0.2

 0.4

 0.6

 0.8

 1

MSSP BC MST−K BFS MST−B PP

N
O

R
M

A
L

IZ
E

D
 E

X
E

C
U

T
IO

N
 T

IM
E

ADMAT ONLY
75% ADJMAT − 25% ADJLIST
50% ADJMAT − 50% ADJLIST
25% ADJMAT − 75% ADJLIST
ADJLIST ONLY

Figure 8: Comparison of adaptive vs. non adaptive normal-
ized execution time in system-triggered adaptation.

 150

 200

 250

 300

 0 2500 5000

M
E

M
O

R
Y

C

O
N

S
U

M
P

T
IO

N
 (

M
B

)

TIME (SEC)

BC

ADJMAT

 150

 200

 250

 300

 0 2500 5000

TIME (SEC)

BFS

TRANSITION

 150

 200

 250

 300

 0 2500 5000

TIME (SEC)

MSSP

ADJLIST

 150

 200

 250

 300

 0 2500 5000

M
E

M
O

R
Y

C

O
N

S
U

M
P

T
IO

N
 (

M
B

)

TIME (SEC)

MST-B

 100

 150

 200

 250

 300

 0 500 1000 1500

TIME (SEC)

MST-K

 100

 150

 200

 250

 300

 0 200 400 600

TIME (SEC)

PP

Figure 9: System-triggered adaptation for wiki-Vote.

causes adaptation to be triggered, and the program to switch
from ADJMAT to ADJLIST representation to save memory. As
expected, the execution takes longer. Since the conversion
from one representation to another can be triggered at any
time during a program’s execution, in this study we present
data for different trigger points – after 25%, 50%, and 75% of
total processing. We controlled the trigger point by tracking
the amount of processing that has been completed.

The results are presented in Figure 8. The execution times
of the following versions are presented: non-adaptive version
in the ADJMAT representation (leftmost bar); three adaptive
versions with different trigger points (middle three bars);
and non-adaptive ADJLIST (rightmost bar). All times are
normalized with respect to the time for non-adaptive AD-

JLIST. As we can see, the execution time of the adaptive ver-
sion is always greater than the non-adaptive ADJMAT version
and less than the non-adaptive ADJLIST version. In other
words, if large amounts of memory are available for longer
duration, the adaptive version yields greater reduction in
execution time over the non-adaptive ADJLIST version.

To study the behavior of our approach when there are
multiple transitions, we ran experiments on wiki-Vote at
10% density in the following scenario. For each benchmark,
the execution was started with ADJMAT and then switched to
ADJLIST and vice versa after 20 %, 40%, 60% and 80%. We
controlled the triggers for memory changes from the system
by tracking the amount of processing that has been com-
pleted. We present the results in Figure 9. We can clearly
see that, during a resource crunch when available memory
decreases, our applications adapt to decrease their memory
requirements accordingly, hence running slower; after the
resource crunch is over, our applications re-assume the un-
compressed representation and their performance increases.

4.4 Limitations of Our Approach
First, our approach is only useful when the alternative

data structures offer a significant trade-off between memory
usage and execution time. For example, for the agglomet-
ric clustering benchmark, when we tried using two alternate
data structures of kd-tree and r-tree, we observed no signif-
icant trade-off between memory usage and execution time.
Since there is a need to bulk load the data, the kd-tree al-
ways outperforms the r-tree. Second, our approach is only
useful when the application is sufficiently compute and data
intensive to justify the cost of runtime monitoring and tran-
sition logic. For example, in the case of the Max Cardinality
Bipartite Matching benchmark, although the trade-off ex-
ists, the benchmark is not sufficiently compute-intensive to
justify the adaptation cost.

5. RELATED WORK
There is a large body of work on program transforma-

tions applied at compile-time or runtime to enhance program
performance, which also influences resource usage. Some of
these techniques can be used to support adaptation. Contex-
tErlang [4] supports the construction of self-adaptive soft-
ware using different call back modules. Compiler-enabled
adaptation techniques include altering of the contentious-
ness of an application [14, 16], which enables co-location
of applications without interfering with their performance;
data spreading [18] migrates the application across multi-
ple cores; adaptive loop transformation [7] allows a program
to execute in more than one way during execution based on
runtime information. Multiple applications that are running
on multicore systems can significantly impact each other’s
performance as they must share hardware resources (e.g.,
last level cache, access paths to memory) [27]. The impact
of interference on program performance can be predicted and
estimated [10, 15], and contention management techniques
guided by last level shared cache usage and lock contention
have been developed [2, 25, 24, 13, 26, 12].

Huang et al. proposed Self Adaptive Containers [8] where
they provide the developer with a container library which
adjusts the underlying data structure associated with the
container to meet Service Level Objectives (SLO); adapta-
tion occurs during SLO violations. Similarly, CoCo [28] al-
lows adaptation by switching between Java collections dur-
ing execution depending on the size of collection. These
methods are orthogonal to our approach as they do not have
scope for user-defined data structures, and the space-time
tradeoff is not taken into consideration.

6. CONCLUSION
Graph applications have resource requirements that vary

greatly across runs due to differences in graph character-
istics; moreover, the required memory might not be avail-
able due to pressure from co-located applications. We have
observed that data structure choice is crucial for allowing
the application to get the best out of available resources.
We propose an approach that uses programming and run-
time support to allow graph applications to be transformed
into adaptive applications by choosing the most appropriate
data structure. Experiments with graph-manipulating ap-
plications which adapt by switching between data structure
representations show that our approach is easy to use on off-
the-shelf applications, is effective at performing adaptations,
and imposes very little overhead.

Acknowledgments
This work was supported in part by NSF grants CCF-0963996
and CCF-1149632. This research was sponsored by the
Army Research Laboratory and was accomplished under Co-
operative Agreement Number W911NF-13-2-0045 (ARL Cy-
ber Security CRA). The views and conclusions contained in
this document are those of the authors and should not be
interpreted as representing the official policies, either ex-
pressed or implied, of the Army Research Laboratory or the
U.S. Government. The U.S. Government is authorized to
reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation here on.

7. REFERENCES

[1] A. Baumann, J. Appavoo, D. D. Silva, J. Kerr,
O. Krieger, and R. W. Wisniewski. Providing dynamic
update in an operating system. USENIX ATC’05.

[2] M. Bhadauria and S. A. McKee. An approach to
resource-aware co-scheduling for cmps. ICS’10.

[3] C. A. N. Soules, J. Appavoo, D. D. Silva,
M. Auslander, G. R. Ganger, M. Ostrowski, and et al..
System support for online reconfiguration. USENIX
ATC’03.

[4] C. Ghezzi, M. Pradella, and G. Salvaneschi.
Programming language support to context-aware
adaptation: a case-study with erlang. SEAMS’10.

[5] C. Jung, S. Rus, B. P. Railing, N. Clark, and S. Pande.
Brainy: effective selection of data structures. PLDI’11.

[6] E. Schonberg, J. T. Schwartz, and M. Sharir. An
automatic technique for selection of data
representations in setl programs. ACM TOPLAS’81.

[7] R. Gupta and R. Bodik. Adaptive loop
transformations for scientific programs. IPDPS’95.

[8] W.-C. Huang and W. J. Knottenbelt. Self-adaptive
containers: Building resource-efficient applications
with low programmer overhead. SEAMS 2013.

[9] I. Neamtiu, M. Hicks, G. Stoyle, and M. Oriol.
Practical dynamic software updating for C. PLDI’06.

[10] J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L.
Soffa. Bubble-up: increasing utilization in modern
warehouse scale computers. In MICRO-44 ’11.

[11] C. Jung and N. Clark. Ddt: design and evaluation of a
dynamic program analysis for optimizing data
structure usage. MICRO-42 ’09.

[12] K. Kumar Pusukuri, R. Gupta, and L. N. Bhuyan.
Adapt: A framework for coscheduling multithreaded
programs. In ACM TACO’13.

[13] K. Pusukuri, R. Gupta, and L. Bhuyan. No more
backstabbing... a faithful scheduling policy for
multithreaded programs. PACT’11.

[14] L. Tang, J. Mars, and M. L. Soffa. Compiling for
niceness: mitigating contention for qos in warehouse

scale computers. CGO’12.

[15] L. Tang, J. Mars, N. Vachharajani, R. Hundt, and
M. Soffa. The impact of memory subsystem resource
sharing on datacenter applications. ISCA’11.

[16] L. Tang, J. Mars, W. Wang, T. Dey, M. Soffa. Reqos:
Reactive static/dynamic compilation for qos in
warehouse scale computers. ASPLOS’13.

[17] L. Liu and S. Rus. Perflint: A context sensitive
performance advisor for C++ programs. CGO’09.

[18] M. Kamruzzaman, S. Swanson, and D. M. Tullsen.
Software data spreading: leveraging distributed caches
to improve single thread performance. PLDI’10.

[19] J. Mars and R. Hundt. Scenario based optimization:
A framework for statically enabling online
optimizations. In CGO, pages 169–179, 2009.

[20] I. Neamtiu. Elastic executions from inelastic
programs. SEAMS’11

[21] I. Neamtiu and M. W. Hicks. Safe and timely updates
to multi-threaded programs. PLDI’09.

[22] O. Shacham, M. Vechev, and E. Yahav. Chameleon:
adaptive selection of collections. PLDI’09.

[23] K. Pingali, D. Nguyen, M. Kulkarni, M. Burtscher,
M. A. Hassaan, R. Kaleem, T.-H. Lee, A. Lenharth,
R. Manevich, M. Méndez-Lojo, D. Prountzos, and
X. Sui. The tao of parallelism in algorithms. PLDI’11.

[24] R. Knauerhase, P. Brett, B. Hohlt, T. Li, and
S. Hahn. Using os observations to improve
performance in multicore systems. Micro’93.

[25] S. Blagodurov, S. Zhuravlev, A. Fedorova, and
A. Kamali. A case for numa-aware contention
management on multicore systems. PACT’10.

[26] S. Zhuravlev, S. Blagodurov, and A. Fedorova.
Addressing shared resource contention in multicore
processors via scheduling. ASPLOS’10.

[27] W. Wang, T. Dey, J. Mars, L. Tang, J. Davidson, and
M. Soffa. Performance analysis of thread mappings
with a holistic view of the hardware resources.
ISPASS’12.

[28] Guoqing Xu. Coco: Sound and Adaptive replacement
of java collections. In ECOOP, pages 1–26, June 2013.

[29] Y. Zhang and R. Gupta. Data compression
transformations for dynamically allocated data
structures. LNCS 2304 ’02.

[30] J. Eastep, D. Wingate and A. Agarwal. Smart Data
Structures: An Online Machine Learning Approach to
Multicore Data Structures. In ICAC, pages 11–20,
2011.

[31] J. Leskovec et al. Stanford Network Analysis Platform.
http://snap.stanford.edu/snap/index.html

[32] Wei Wang et al. REEact: A Customizable Virtual
Execution Manager for Multicore Platforms. VEE’12.

[33] Kunegis, Jérôme. KONECT: The Koblenz Network
Collection. WWW ’13.

http://snap.stanford.edu/snap/index.html

	Introduction
	A Study of Graph Applications
	Adaptive Applications
	Evaluation
	Programming Effort
	Input Triggered Adaptation
	System Triggered Adaptation
	Limitations of Our Approach

	Related Work
	Conclusion
	References

