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Abstract

Software updates typically require stopping and restarting an application, but many systems cannot afford to halt
service, or would prefer not to.Dynamic software updating(DSU) addresses this difficulty by permitting programs
to be updated while they run. DSU is appealing compared to other approaches for on-line upgrades because it is quite
general and requires no redundant hardware. The challenge is in making DSUpractical: it should be flexible, and yet
safe, efficient, and easy to use.

In this paper, we present a DSU implementation for C that aims to meet this challenge. We compile programs
specially so that they can be dynamically patched, and generate most of a dynamic patch automatically. Our compiler
performs a series of analyses that when combined with some simple runtime support ensure that an update will
not violate type-safety while guaranteeing that data is kept up-to-date. We have used our system to construct and
dynamically apply patches to three substantial open-source server programs—Very Secure FTP daemon, OpenSSH
daemon, andGNU Zebra. In total, we dynamically patched each program with three years’ worth of releases. Though
the programs changed substantially, the majority of updates were easy to generate. Performance experiments show
that all patches could be applied in less than 5ms, and that the overhead on application throughput due to updating
support ranged from 0 to at most 32%.

1 Introduction
Many systems require continuous operation but nonetheless must be updated to fix bugs and add new features. For
ISPs, credit card providers, brokerages, and on-line stores, being available 24/7 is synonymous with staying in busi-
ness: an hour of downtime can cost hundreds of thousands, or even millions of dollars [26, 28]. Many more systems
would prefer on-line upgrades in lieu of having to stop and restart the system every time it must be patched; an ob-
vious example is the personal operating system. In a large enterprise, such reboots can have a large administrative
cost [35]. Despite this, stop/restart upgrades are common—one study [22] found that 75% of nearly 6000 outages of
high-availability applications were planned for hardware and software maintenance.

In prior work, we and others have proposed variations of a fine-grained, compiler-based approach to supporting
on-line upgrades which we calldynamic software updating(DSU). In this approach, a running program is patched with
new code and data on-the-fly, while it runs. DSU is appealing because of its generality: in principle any program can
be updated in a fine-grained way. There is no need for redundant hardware or special-purpose software architectures,
and application state is naturally preserved between updated versions, so that current processing is not compromised or
interrupted. DSU can also be used naturally to support dynamic profiling, debugging, and “fix-and-continue” software
development. Nonetheless, there has been little implementation experience reported in the literature to suggest that
DSU can work in practice for non-stop services written in mainstream programming languages. (A review of past
work appears in Section 8.)

This paper presents Ginseng, a new DSU implementation for C programs that aims to satisfy three criteria we
believe are necessary for practicality:

DSU should not require extensive changes to applications.DSU should permit writing applications in a natural
style: while an application writer should anticipate that software will be upgraded, he should not have to know what
form that update will take.
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DSU should restrict the form of dynamic updates as little as possible. The power and appeal of DSU is to permit
applications to change on the fly at a fine granularity. Thus, programmers should be able to change data representations,
change function prototypes, reorganize subroutines, etc. as they normally would.

Dynamic updates should be neither hard to write nor hard to establish as correct. The harder it is to develop
applications that use DSU, the more its benefit of finer granularity and control is diminished.

To evaluate Ginseng, we have used it to dynamically upgrade three open-source servers:vsftpd (the Very Secure
FTP daemon), thesshd daemon from the OpenSSH suite, and thezebra server from the GNU Zebra routing software
package.

Based on our experience, we believe Ginseng squarely meets the first two criteria for the class of single-threaded
server applications we considered, and makes significant headway toward the third. These programs are realistic,
substantial, and in common use. Though they were not designed with updating in mind, we had to make only a
handful of changes to their source code to make them safely updateable. Each dynamic update we performed was
based on an actual release, and for each application, we applied updates corresponding to at least three years’ worth of
releases, totaling as many as twelve different patches in one case. To achieve these results, we developed several new
implementation techniques, including new ways to handle the transformation of data whose type changes, to allow
dynamic updates to infinite loops, and to allow updates to take effect in programs with function pointers. Though we
have not optimized our implementation, overhead due to updating is modest: between 0 and 32% on the programs we
tested.

Despite the fact that changes were non-trivial, generating and testing patches was relatively straightforward. We
developed tools to generate most of a dynamic patch automatically by comparing two program versions, reducing
programmer work. More importantly, Ginseng performs two safety analyses to determine times during the running
program’s execution at which an update can be performed safely. The theoretical development of our first analysis,
called theupdateability analysis, is presented in earlier work [33]. The contribution of this paper is the implementation
of that analysis for the full C programming language, along with some practical extensions, and the development of
a newabstraction-violating alias analysisfor handling some of the low-level features of C. These safety analyses go
a long way toward ensuring correctness, though the programmer needs a clear “big picture” of the application e.g.,
interactions between components and global invariants.

In short, we make the following contributions in this paper:

1. We present a practical framework to support dynamically updating running C programs. Ours is the most
flexible, and arguably the most safe, implementation of a DSU system to date.

2. We present a substantial study of the application of our system to three sizeable C server programs. Our expe-
rience shows that DSU can be practical for updating realistic server applications as they are written now, and
as they evolve in practice. We are optimistic that our approach can ultimately be practical for many non-stop
applications, including game servers, operating systems and embedded systems software.

The next section presents an overview of our approach and outlines the rest of the paper.

2 Ginseng Overview
Ginseng consists of a compiler, a patch generator and a runtime system for building updateable software.1 Basic
usage is illustrated in Figure 1, with Ginseng components in white boxes. There are two stages. First, for the initial
version of a program,v0.c, the compiler generates an updateable executablev0, along with some prototype and
analysis information (Version Data d0). The executable is deployed. Second, when the program has changed to
a new version (v1.c), the developer provides the new and old code to thepatch generatorto generate a patchp1.c
representing the differences. This is passed to the compiler along with the current version information, and turned into
a dynamic patch v0 → v1. The runtime systemlinks the dynamic patch into the running program, completing the
on-line update. This process continues for each subsequent program version.

The Ginseng compiler has two responsibilities. First, it compiles programs to be dynamically updateable, so that
existing code will be redirected to replacement functions present in a dynamic patch. In addition, when a type is
updated, existing values of that type must be transformed to have the new type’s representation, to be compatible
with the new code. Code is compiled to notice when a typed value is out of date, and if so, to apply the necessary

1The compiler and patch generator are written in Objective Caml using the CIL framework [25].The runtime system is a library written in C.
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Figure 1: Building and dynamically updating software with Ginseng.

transformation function. We explain in Section 3 how our implementation supports these features by transforming a
program to usefunction indirectionsandtype wrappers.

Second, the Ginseng compiler uses a suite of analyses to ensure that updates are alwaystype-safe, even when
changes are made to function prototypes or type definitions. The basic idea is to examine the program to discover
assumptions made about the types of updateable entities (i.e., functions or data) in the continuation of each program
point. These assumptions become constraints on the timing of updates. For example, a call toint f(int) constrains
the program point just before the call to not allow an update tof that would changef’s type. The formal details of our
analysis are presented elsewhere [33]; Section 4 discusses its application to C programs, including several extensions.

The Ginseng patch generator (Section 5) has two responsibilities. First, it identifies those definitions (be they
global variables, functions, or types) that have changed between versions. New and changed definitions are included
in the output patch file, while old definitions are madeextern. Second, for each type definition that has changed,
it generates atype transformerfunction used to convert values from a type’s old representation to the new one. The
compiler inserts code so that the program will make use of these functions following a dynamic patch. If the new
code assumes an invariant about global state, this invariant has to hold after the update takes place. Users can write
optional state transformerfunctions that are run at update time to convert global state and run initialization code
for this purpose. Users also may adjust the generated type transformers as necessary. We found that writing state
transformers or adjusting type transformers was rarely needed.

The dynamic update itself is carried out by the Ginseng runtime system (Section 5) linked into the updateable
program. Once notified, the runtime system will cause the patch to be dynamically loaded and linked at the next safe
update point. This is essentially a call into the runtime system inserted by the programmer. Our safety analysis will
annotate these points with constraints as to how definitions are allowed to change at each particular point. The runtime
system will check that these constraints are satisfied by the current update, and if so, it “glues” the dynamic patch
into the running program. In our experience, finding suitable update points in long-lived server programs is quite
straightforward, and the analysis provides useful feedback as to whether the chosen spots are free from restrictions.

The next three sections describe these features of Ginseng in detail, while Sections 6 and 7 describe our experience
using Ginseng and evaluate its performance. We finish with a discussion of related work and conclude.

3 Enabling On-line Updates
To make programs dynamically updateable we address two main problems. First, existing code must be able to call
new versions of functions, whether via a direct call or via a function pointer. Second, the state of the program must be
transformed to be compatible with the new code. For a type whose definition has changed, existing values of that type
must be transformed to conform to the new definition.

Ginseng employs two mechanisms to address these two problems, respectively:function indirectionand type-
wrapping. We discuss them in turn below, and show how they can be combined to update long-running loops.
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3.1 Function Indirection
Function indirection is a standard technique that permits old code to call new function versions by introducing a level
of indirection between a caller and the called function, so that its implementation can change. For each functionf
in the program, Ginseng introduces a global variablef_ptr that initially points to the first version off.2 Ginseng
encodes version information through name mangling,f initially beingf_v0, thenf_v1 and so on. Each direct call to
f within the program is replaced with a call through*f_ptr. Ginseng also handles function pointers in an interesting
way: if the program passesf as data (i.e., as a function pointer), Ginseng generates a wrapper function that calls
*f_ptr and passes this wrapper instead. To dynamically updatef to version1, the runtime system dynamically loads
the new versionf_v1 and then stores the address off_v1 in f_ptr.

3.2 Type Wrapping
The Ginseng updating model enforces what we callrepresentation consistency[33], in which all values of typeT
in the program at a given time must logically be members ofT’s most recent version. The alternative would be
to allow multiple versions of a type to coexist, where code and values of old and new type could interact freely
within the program. (Hj́almtýsson and Gray [18] refer to these approaches asglobal updateandpassive partitioning,
respectively.) Representation consistency is a useful property because it more closely models the “forward march” of
a program’s on-line evolution, making it easier to reason about.

To enforce representation consistency, Ginseng must ensure that when a particular typeT’s definition is updated,
values of that type in the running program are updated as well. To do this, a dynamic patch defines atype transformer
functionused to transform a valuevT from T’s old definition to its new one. Just like functions, types are associated
with a version, and the type transformercTn→n+1 converts values of typeTn to be those of typeTn+1. As we explain
later, much of a type transformer function can be generated automatically via a simple comparison of the old and new
definitions.

Given this basic mechanism, we must address two questions. First, when are type transformers to be used? Second,
how is updateable data represented?

Applying Type Transformers To transform existingvTn
values the runtime system must find them all and apply

cTn→n+1 to each. One approach would be to do this eagerly, at update-time; this would require either implementing
a garbage-collector-style tracing algorithm [14], or maintaining a registry of pointers to every (live) value of typeTn

during execution [4]. More simply, we could restrict type transformation to only those data reachable from global
variables, and require the programmer to implement the tracer manually [17]. Finally, we could do it lazily, as the
program executes following the update [12, 7].

Ginseng uses the lazy approach. The compiler renames versionn of the user’s definition ofT to beTn, where the
definition ofT simply wraps that ofTn, adding aversion field. Given a valuevT (of wrapped typeT), Ginseng inserts
a coercionfunction calledconT (for concretization ofT) that returns the underlying representation. This coercion is
inserted wherevervT is used concretely, i.e., in a way that depends on its definition. For example, this would happen
when accessing a field in astruct. WheneverconT is called onvT , the coercion function comparesvT ’s versionn
with the latest versionm of T. If n < m, then the necessary type transformer functions are composed and applied to
vT , changing it in-place, to yield the up-to-datevTm

(of typeTm).
The lazy approach has a number of benefits. First, it is not limited to processing only values that are reachable

by global variables; stack-allocated values, or those reachable from stack allocated values are handled easily. Second,
it amortizes transformation costs, reducing the potential pause at update-time that would be required to transform all
data in the program. The drawback is that per-type access during normal program execution is more expensive (due
to the calls toconT), and the programmer has little control over when type transformers are invoked, since this is
determined automatically. Therefore, transformers must be written to be timing-independent. In our experience, type
transformers are used rarely, and so it may be sensible to use a combination of eager and lazy application to reduce
total overhead.

Without care, it could be possible for a transformed value to end up being processed by old code, violating repre-
sentation consistency. This could lead aconT coercion to discover that the versionn onvT is actuallygreaterthan the
versionm of the typeT expected by the code. A similar situation arises when function types change: old code might
end up calling the new version of a function assuming it has the old signature. We solve these problems with some
novel safety analyses, described in more detail in Section 4.

2Ginseng is more careful than we are in these examples about generating non-clashing variable names.
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Original program Updateable program

struct T {

int x; int y;

};

void foo(int* x) {

*x = 1;

}

void apply(void (*fp)(int*),

int* x) {

fp(x);

}

void call() {

struct T t = {1,2};

apply(foo,&t.x);

t.y = 1;

}

struct T {

unsigned int version;

union { struct __T0 data;

char padding[X]; } udata;

};

struct __T0* __con_T(struct T* abs) {

__DSU_transform(abs);

return &abs->udata.data;

}

void * foo_ptr = &__foo_v0;

void * apply_ptr = &__apply_v0;

void * call_ptr = &__call_v0;

void __foo_wrap(int* x) {

(*foo_ptr)(x);

}

struct __T0 { int x; int y; };

/* D=D’={T}, L={T}, x:T */

void __foo_v0(int* x) { *x = 1; }

/* D={foo,T}, D’={T}, L={}, x:T */

void __apply_v0(void (*fp)(int*),

int *x) {

fp(x);

}

/* D={T,apply}, D’={}, L={} */

void __call_v0() {

struct T t = { 0, {.data={1,2}}};

(*apply_ptr)(__foo_wrap,

&(__con_T(&t))->x);

/* D={T} */

&(__con_T(&t))->y = 1;

}

Figure 2: Compiling a program to be dynamically updateable.

Type Representations While lazy type updating is not new, there has been little or no exploration of its implemen-
tation, particularly for a low-level language such as C. Based on our experience, a given type is likely to grow in size
over time, so the representation of the wrapped typeT must accommodate this. One approach is to define the wrapper
type to use a fixed space, larger than the size ofT0 (padding). This strategy allows future updates toT that do not
expand beyond the preallocated padding. The main advantage of the padding approach is that the allocation strategy
for wrapped data is straightfowrward: stack-allocated data in the source program is still stack allocated in the compiled
program, and similarly formalloced data. This is because type transformation happensin place: the transformed data
overwrites the old data in the same storage. On the other hand, growth in the size of a data type is limited by the initial
padding, hampering on-line evolution. Padding also changes the cache locality of data; for example, if a two-word
structure in the original program is expanded to four words, then half as many elements can fit in a cache line. For
simplicity, Ginseng employs this approach.

An alternative approach is to use indirection, and represent the wrapped type as a pointer to a value of the underly-
ing type. This mechanism is used in the K42 operating system [20], which supports updating objects. The indirection
approach solves the growth problem by allowing the size of the wrapped type to grow arbitrarily, but introduces an ex-
tra dereference per access. More importantly, the indirection approach makes memory management more challenging:
how should storage for the transformed data be allocated, and what is to happen to the now-unneeded old data? Also,
when data is copied, the indirected data must be copied as well, to preserve the sharing semantics of the application.
The simplest solution would be to have the compilermalloc new representations andfree (or garbage collect) the old
ones; this is less performance-friendly than stack allocation. A better alternative would be to useregions[34], which
have lexically-scoped lifetimes (as with stack frames), but support dynamic allocation. Of course, a hybrid approach is
also possible: data could start out with some padding, and an indirection is only added if the padding is ever exceeded.

3.3 Example
Figure 2 presents a simple C program, and how we compile it to be updateable. The original program is on the left,
and the resulting updateable program in the middle and right columns. The comments can be ignored; these are the
results of the safety analysis, explained in the next section.

First, we can see that all function definitions have been renamed to include a version, and that Ginseng has in-
troduced a_ptr variable for each function, to keep a pointer to the most current version. Calls to functions are
indirected through these pointers. Second, we can see that the definition ofstruct T is now a wrapper forstruct
__T0, the original definition. The__con_T function unwraps astruct T, potentially transforming it first via a call to
__DSU_transform. The__con_T function is called twice in__call_v0 to extract the underlying value oft. Finally,
we can see that Ginseng has generated__foo_wrap to wrap an indirected call tofoo; this is passed as a function
pointer toapply.
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Original program Updateable program

int foo(float g) {

int x = 2;

int y = 3;

L1:while (1) {

x = x+1;

if (x == 8) break;

else continue;

if (x == 9) return 42;

}

return 1;

}

struct L1_ls {

float *g; int *x; int *y;

};

int L1_loop(int *ret,

struct L1_ls *ls) {

*(ls->x) = *(ls->x) + 1;

if (*(ls->x) == 8) {

return (0); // break

} else {

return (1); // continue

}

if (*(ls->x) == 9) {

*ret = 42;

return (2); // return

}

return (1); // implicit continue

}

int foo(float g) {

int x = 2;

int y = 3;

struct L1_ls ls;

int retval;

int code;

ls.g = & g; // init loop state

ls.x = & x;

ls.y = & y;

while (1) {

code = L1_loop(&retval, &ls);

if (code == 0) break;

else if (code == 1) continue;

else return (retval);

}

return (1);

}

Figure 3: Loop extraction.

3.4 Loops
When a functionf is updated, in-flight calls are unaffected, but all subsequent calls, including recursive ones, take the
newf. In general, this is a good thing, because it makes reasoning about the timeline of an update simpler. On the
other hand, this presents a problem for functions that implement long-running or infinite loops: if an update occurs to
such a function while the old version is active, then the new version may not take effect for some time, or may never
take effect.

We solve this problem by a novel transformation we callloop extraction. The idea is that the body of a loop can be
extracted into a separate function that is called on each iteration of the loop. If the function containing the loop is later
changed, then this extracted function will notice the changes to the loop on the next iteration. As the code and state
preceding the loop might have changed as well, the loop function must be parameterized by someloop state. This
state will be transformed using our standard type transformer mechanism on the next iteration of the loop. Extracting
the loop body into a function parameterized by loop state is similar to closure conversion followed by lifting.

For illustration, consider the code in the left column of Figure 3. The programmer directs Ginseng that the loop
labeledL1 should be extracted. The result is shown in the middle and right columns. In the middle is the extracted
loop function,L1_loop, and on the right side is the rewritten original functionfoo. The functionL1_loop takes two
arguments:struct L1_ls *ls, andint *ret. The first argument is the loop state, which contains pointers to all
of the local variables and parameters referenced infoo that might be needed by the loop; we can see infoo where
this value is created. WithinL1_loop, references to local variables (x) or parameters (g) have been changed to refer
to them through*(ls).

Within the functionfoo, the loop function is called on each loop iteration. Within the extracted loop function,
expressions that would have exited the loop—notablybreak, continue, andreturn statements—are changed to
return x, wherex is 0 for break, 1 for continue and2 for return. In foo, this return code is checked and the
correct action is taken.

If in a subsequent program version the loop infoo were to change, the extracted versions of the two loops would
be different, with the new one updating the old one. The new version will be invoked on the loop’s next iteration, and if
the new loop requires additional state (e.g., new local variables or parameters were added tofoo), then this is handled
by the type transformer function forstruct L1_ls. This type transformer might perform side-effecting initialization
as well, for code that would have preceded the execution of the current loop. Note thatfoo’s callers are neither aware
nor affected by the loop extraction inside the body offoo.

When extracting infinite loops, nothing else needs to be done. However, if the loop might terminate, we must
extract the code that follows the loop as well, so that an updated loop does not execute a stale postamble when it
completes. This can be done using loop extraction itself: to extract a statementS, the programmer rewrites that

6



statement to bewhile (1){ S; break;}, and then Ginseng extracts the loop.
Replacing arbitrary code on the stack was critical for supporting two of our three benchmark applications,vsftpd

andsshd(Section 6). Both applications are structured around event loops: a parent process accepts incoming connec-
tion requests, and forks. The forked child breaks out of the loop and executes the loop postamble. If the loop body
and loop postamble change in later versions, this will translate into updates to both extracted functions, hence both the
parent and the children will get to execute the most up to date version.

4 Safety Analysis
Let us look again at the example in Figure 2. Suppose the program has just entered thecall function—is it safe to
update the typeT? Generally speaking the answer is no, because codet.x assumes thatt is a structure with fieldx,
and a change to the representation oft could violate this assumption, leading to unexpected behavior. In this section
we look at how Ginseng helps the programmer avoid choosing bad update points like this one using static analysis.

4.1 Tracking Changes to Types
The example given above illustrates what could happen when old code accesses new data, essentially violating rep-
resentation consistency. To prevent this situation from happening, Ginseng applies a constraint-based, flow-sensitive
updateability analysis[33] that annotates each update point with the set of types that may not be updated if represen-
tation consistency is to be preserved. This set is called thecapabilitybecause it defines those types thatcanbe used by
old code that might be on the call stack during execution. Of course, the capability is a conservative approximation, as
it approximates all possible “stack shapes.” It is computed by propagating concrete uses of data backwards along the
control flow of the program to possible update points.

Statically-approximated capabilities are illustrated in Figure 2, where the sets labeledD in the comments define
the current capability; on functions,D defines the capability at the start of the function andD′ defines it at the end.
WhenT appears inD, it means that the program has thecapabilityto use data of typeT concretely. An update must not
revoke this capability when it is needed. For example, the concrete use oft at the end of thecall function requiresT
to be inD, which in turn forcesapply not to permit an update toT.

Programmers indicate where updates may occur in the program text by inserting a call to a special runtime system
functionDSU_update. When our analysis sees this function, it “annotates” it with the current capability. At run-time
this annotation is used to prevent updates that would violate the static assumption of the analysis. Moreover, the
runtime system ensures that if a typeis updated, then any functions in the current program that use the type concretely
are updated with it. This allows the static analysis to be less conservative. In particular, although the constraints on
the form of capabilities induced by concrete usage are propagated backwards in the control flow, propagation does not
continue into the callers of a function. This propagation is not necessary because the update-time check ensures that
all function calls are always compatible with any changed type representations.

We have formalized the updateability analysis and proved it correct in previous work [33]. One contribution of
the present work is the implementation of this analysis for the full C language. Our implementation extends the basic
analysis to also track concrete uses of functions and global variables, which permits more flexible updates to them.
In the former case, by considering a call as a concrete use of a function, and function names as types, we can safely
support a change to the type of the function. Similarly, in the latter case, by taking reads and writes of global variables
as concrete uses, and the name of a global variable as a type, we can support representation changes to global variables.
In our experience, the types of functions and global variables do change over time, so this extension has been critical
to making DSU work for real programs.

To illustrate the analysis, consider Figure 2 again. We can see that function names appear in the initial capability
of apply andcall. In the former case, this is because the analysis determines thatfp could befoo at run-time, and
thus the call tofp placesfoo (and other functionsfp could be) into the current capability. For the latter case, the call
to apply within call places it incall’s initial capability. This means that if we were to attempt an update at the start
of apply (respectivelycall), then the type offoo (respectivelyapply) must either remain unchanged or the new
type be a subtype of the old type [33].

The implementation also properly accounts for both signals and non-local control transfers viasetjmp/longjmp,
albeit quite conservatively. Since signal handlers can fire at any point in the program, we prevent updates from occur-
ring inside a signal handler (or any function that handler might call), to avoid violating assumptions of the analysis
(we could allow updates to occur, but prevent updates that would change type representations, function signatures,
etc.) We modelsetjmp/longjmp as non-localgoto; that is, the updateability analysis assumes that anylongjmp in
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the program could go to anysetjmp. The server programs in Section 6 do not employsetjmp/longjmp, but all of
them use signals.

In future work, we plan to extend our approach to multithreaded programs. Because thread executions are inter-
leaved, we will have to either extend our safety analysis to account for capabilities of other threads, and/or synchronize
threads at safe update points before allowing an update to take effect [31].

4.2 Abstraction-Violating Aliases
C’s weak type system and low level of abstraction sometimes make it difficult for us to maintain the illusion that a
wrapped type is the same as its underlying type. In particular, the use of unsafe casts and the address-of (&) operator
can reveal a type’s representation through an alias. An example of this can be seen in Figure 2 whereapply is called
passing the address of fieldx of structt. Within foo, called byapply with this pointer, the statement*x = 1 is
effectively a concrete use ofT, but this fact is not clear fromx’s type, which is simplyint *. An update to the
representation ofstruct T while within foo could lead to a runtime error. We have a similar situation when using a
pointer to atypedef as a pointer to its concrete representation. We say that these aliases areabstraction violating.

One extreme solution would be to markstructs whose fields have their address taken as non-updateable. How-
ever, this solution can be relaxed by observing that only as long as an alias into a value of typeT exists is it dangerous
to updateT. Thus if we know, at each possible update point, those types whose values might have liveabstraction-
violating aliases(AVAs), we can prevent those types from being changed.

We discover this set of types using a novelabstraction violating alias analysis. The analysis follows the general
approach of effect reconstruction [23, 10, 1], and is described in more detail in Stoyle’s thesis [32]. Pointers are
annotated with an “effect” which lists the types whose values they may be pointing into. For example, a pointer
created by&t.x would include the type oft in its effect. If such a pointer might be live at an update point, then no
types in its effect may be updated. To approximate the set of live pointers at a given program point, we simply need to
look to the lexical environment of the program at that point, along with the lexical environments of possible callers to
the current function, ultimately back tomain(). For each function, we define a setL as those types with abstraction
violating pointers in at least one of the callers’ environments. We calculate this set through a simple constraint based
analysis that uses the control flow of the program. Finally, the capability of each possible update point is extended to
include the current function’sL and the effects appearing in the free variables of the current environment.

The comments in Figure 2 illustrate the AVA analysis results for the example, whereL’s contents are shown for
each function, and the effect associated with variablex in functionsfoo andapply is shown to beT via the notation
x:T. Looking at the example, we can see thecall function violatesT’s abstraction by taking the address oft.x,
and then passes this pointer toapply. This pointer is not used concretely incall, so does not effect subsequent
computation in this function:call’s environment has no abstraction violating pointers. Ascall is the only caller
of apply, its associatedL is empty. However, the environment of the body ofapply does contain an abstraction-
violating pointer, namely the parameterx. Thus whenapply callsfoo via the pointerfp, T’s abstraction is violated
and theL annotation forfoo must containT. In the example, we consider all statements as possible update points, and
so extendD according to the results of the AVA analysis. This is why, for example,T appears in the capability of both
foo andapply. In both casesT is in L or in the effect of a free variable in the environment (i.e.,x).

4.3 Unsafe Casts andvoid *

To ensure that the program operates correctly, many representation-revealing casts are disallowed. For example, if
we had a declarationstruct S { int x; int y; int z; }, a C programmer might use this as a subtype of
struct T from Figure 2, by casting astruct S * to astruct T *. Given the way that we represent updateable
types, permitting this cast would be unsafe, sincestruct S andstruct T might have distinct type transformers and
version numbers and treating one as the other may result in incorrect transformation. As a result, when our analysis
discovers such a cast, it rules both types as non-updateable.

However, it would be too restrictive to handle all such casts this way. For example, C programmers often usevoid
* to program generic types. One might write a “generic” container library in which a function to insert an element
takes avoid * as its argument, while one that extracts an element returns avoid *. The programmer would cast
the inserted element tovoid * and the returnedvoid * value back to its assumed type. This idiom corresponds
to parametric polymorphismin languages like ML and Haskell. Programmers also encodeexistential typesusing
void * to build constructs like callback functions, and use upcasts and downcasts when creating and using callbacks,
respectively.

If these idioms are used correctly, then they pose no problem to Ginseng’s compilation approach since they do not
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reveal anything about a type’s representation. However, we cannot treat casts to and fromvoid * as legal in general,
becausevoid * could be used to “launder” an unsafe cast. For example, we might caststruct S * to void *,
and then thevoid * to struct T *. Each cast may seem benign on its own, but becomes unsafe in combination.
To handle this situation, our analysis annotates eachvoid * type in the program with the set of concrete types that
might have been cast to it, e.g., casting astruct T * to avoid * would addstruct T to the set. When casting a
void * to struct S *, the analysis ensures the annotation on thevoid * contains a single element, which matches
struct S. If it does not, then this is a potentially unsafe cast and bothstruct T andstruct S are made non-
updateable. Since our analysis is not context-sensitive, some legal downcasts will be forbidden, for example when a
container library is used twice in the program to hold different object types. Fortunately, such context-sensitivity is
rarely necessary in the programs we have considered. In the worst case, we inspect the program manually to decide
whether a cast is safe or not, and override the analysis results in this case with apragma. We leave to future work the
task of more properly inferring polymorphic usage.

5 Dynamic Patches
Patch Generation For each new release we need to generate a dynamic patch, which consists of new and updated
functions and global variables, type transformers and state transformers. The Ginseng patch generator generates most
of a dynamic patch automatically by comparing the old and new versions of a program to discover the new and
modified definitions, and then adds these definitions to the patch file, where unchanged definitions are madeextern.
It also generates type transformers for all changed types by attempting to construct a conversion from the old type
into the new type [17]. For example, if astruct type had been extended by an extra field, the generator would
produce code to copy the common fields and add a default initializer for the added one. This simplistic approach to
patch generation is surprisingly effective, requiring few manual adjustments. After the patch is generated and the state
and/or type transformers are written, we pass the resulting C file to Ginseng, and the final result is compiled to a shared
library so that it can be linked into the running program.

Runtime System To perform an update, the user sends a signal to the running program, which alerts the runtime
system. Once the program reaches a safe update point, the runtime system loads the dynamic patch usingdlopen,
checks the validity of the patch and installs it. Ginseng compiles the patch just as it does the initial version of a
program, but also introduces initialization code to be run at update-time. The initialization code will effectively “glue”
the dynamic patch into the running program by updating the function indirection pointers for all the updated functions,
installing the type transformers for the updated types, and running the user-provided state transformer function, if any.
Prior to this, it makes sure that the constraints imposed by the updating analysis on the current program point are
satisfied by the patch; if not then the update is delayed until the next possible update point.

Our current runtime system has two main limitations. We do not support patch unloading, so old code and data
will persist following an update. Fortunately, this memory leak has been minimal in practice—between 21% and 40%
after three years’ worth of patches for our benchmark applications. Second, dynamic updates are not transactional. If,
during an update, an error is encountered, we do not yet have a safe mechanism to abort the update and restore the
state to the pre-update one. We plan to address these problems in future work.

6 Experience
We have used Ginseng to dynamically update three open-source programs: the Very Secure FTP daemon (vsftpd
(http://vsftpd.beasts.org), the OpenSSHsshd daemon (http://www.openssh.com), and thezebra routing
daemon from the GNU Zebra routing package (http://www.zebra.org). We chose these programs because they
are long-running, maintain soft state that could be usefully preserved across updates, and are in wide use. For each
program we downloaded releases spanning several years and then applied the methodology shown in Figure 1. In
particular, we compiled the earliest release to be updateable and started running it. Then we generated dynamic patches
for subsequent releases and applied them on-the-fly in release order, while the program was actively performing work
(serving files, establishing connections, etc.).

With this process, we identified key application features that make updating the applications easy or hard. We also
identified strong points of our approach (that enabled most of the updates to be generated automatically), along with
issues that need to be addressed in order to make the updating process easier, more flexible and applicable to a broad
category of applications. In the rest of this section, we describe the applications and their evolution history, and the
manual effort required to dynamically update them; identify application characteristics and Ginseng features that make
updating feasible; and conclude by reviewing factors that enabled us to meet the challenges set forth in Section 2.
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Figure 4: Evolution history of test applications.

Prog. First release Last release Functions Types Global variables
Ver. Date LOC Ver. Date LOC Add Del. Proto Body Add Del. Chg. Add Del. Chg.

changes changes
vstfpd 1.1.0 07/02 10141 2.0.3 03/05 17424 97 21 33 308 12 2 6 72 9 15
sshd 3.5p1 03/02 47424 4.2p1 09/05 58104 131 19 85 752 27 2 19 70 19 29
zebra 0.92a 08/01 41630 0.95a 09/05 45586 134 44 13 321 24 6 4 56 11 52

Table 1: Application update information (all versions).

6.1 Applications

Figure 4 shows the release timeline for each application, along with the nature of individual releases3 and the code
size of each release. We briefly discuss each application first, then describe how the applications changed over a three
year period, and finally discuss the manual effort required to dynamically update them.

Vsftpd stands for “Very Secure FTP Daemon” and is now thede factoFTP server in major Unix distributions. Vsftpd
was first released in 2002. It began to be widely used with version 1.1.0 and is now at version 2.0.3, so for our
study, we considered the 13 versions from 1.1.0 through 2.0.3. As can be seen in Figure 4, in the time frame
we considered there were 3 major feature enhancements, 3 major bugfixes, 2 minor feature enhancements and 1
minor bugfix.

Sshd is the SSH daemon from the OpenSSH suite, which is the standard open-source release of the widely-used
secure shell protocols. We upgradedsshd 10 times, corresponding to 11 OpenSSH releases (version 3.5p1 to
4.2p1) over three years.

Zebra GNU Zebra is a TCP/IP routing software package for building dedicated routers that support the RIP, OSPF,
and BGP protocols on top of IPv4 or IPv6. It consists of protocol daemons (RIPd, OSPFd, BGPd) and azebra
daemon which acts as a mediator between the protocol daemons and the kernel (Figure 5), storing and managing
acquired routes. Storing routes inzebra allows protocol daemons to be stopped and restarted without discarding
and re-learning routes (which can be a time consuming process). We upgradedzebra 5 times, corresponding to
6 releases (version 0.92a to 0.95a) over 4 years.

Evolution History Table 1 summarizes the release information and shows some of the ways the programs changed
over time. The first two grouped columns describe the first and last release we considered for each program. The last
three grouped columns contain the cumulative number of changes that occurred to the software over that span. ‘Types’
refers to structs, unions and typedefs together. Global variable changes consists of changes to either global variable
types or to global variable static initializers. As an example reading of the table, notice that forvsftpd, 97 functions
were added, 21 were deleted, 33 functions had their prototype changed, and 308 functions had the bodies changed.
Forsshd, 19 types changed; forzebra, there were 52 global variable changes.

These statistics make clear that a dynamic software updating system must support changes, additions, and deletions
for functions, types and global variables if it is to handle realistic software evolution. Ginseng supports all these

3As described athttp://freshmeat.net/
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changes, and we have been able to dynamically update the applications from the earliest to the latest versions we
considered.

Source Code Changes To safely update these applications with Ginseng required a few small changes to their source
code, amounting to around 50 lines of code forvsftpd andsshd and 40 lines forzebra. The changes consisted of
introducing named types for some global variables (to support changes in types and static initializers), directives to the
compiler (analysis and loop extraction) and in one case (vsftpd), instantiating an existential use ofvoid *. Another
one-line change tovsftpd is discussed in the next subsection.

For each new release, we would use the Ginseng patch generator to generate the initial patch, and then verify or
complete the auto-generated type transformers and write state transformers (where needed, which was rare). This
effort was typically minimal. Table 2 presents the breakdown of patches, across all releases, into manual and auto-
generated source code: the first column shows the number of source code lines we had to write for type and state
transformers, the second column shows code lines we had to write to cope with changes in global variables’ types or
static initializers, and the third column shows the amount of code coming out of the patch generator. The code dealing
with changes in static initializers for global variables is frequently a mere copy-paste of the variable’s static initializer.

6.2 Dynamic Updating Catalysts
In the process of updating the three applications, we discovered four factors that make programs amenable to dynamic
updating.

Quiescence. We define aquiescent pointin the program as one at which there are no partially-completed transac-
tions, and all global state is consistent. Dynamic updates are best applied at such quiescent points, and preferably those
that are stable throughout a system’s lifetime. Fortunately, each application was structured around an event processing
loop, where the end of the loop defines a stable quiescent point: there are no pending function calls, little or no data
on the stack, and the global state is consistent. At update time, new versions of the functions are installed and global
state is transformed so at the next iteration of the loop will be effectively executing the new program.

For instance,vsftpd is structured around two infinite loops: one for accepting new client connections, and one
for handling commands in existing connections. Here is the simplified structure:

int main() { int accept_loop() { void handle_conn(fd) {
init(); L2:while (1) { L3:while (1) {
conn = accept_loop(); fd = accept(); read(cmd,fd);}
L1:{init_conn(conn); if (!fork()) }
handle_conn(conn);} return fd; }

} }

Each time a connection is accepted, the parent forks a new process and returns from the accept loop within the child
process. Themain function then initializes the connection and callshandle_con to process user commands. To be
able to update the long running loops, and to handle updates following the accept loop inmain, we used loop extraction
(Section 3.4) at each of the three labeled locations so that they could be properly updated. Note that althoughL1 is not
a loop, by using loop extraction we were able to update code onmain’s stack (the continuation ofaccept_loop())
without replacingmain itself.
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Application Source code (LOC)
Type/state xform Gvar changes Patch gen.

(manual) (manual*) auto
vsftpd 162 930 83965
sshd 125 659 248587
zebra 49 244 43173

Table 2: Patch source code breakdown.

A quiescent point is related to, but not identical with a point with empty capability (Section 4); its capability
may not necessarily be empty, although it is usually small. On the other hand, an empty capability does not imply
quiescence, but rather indicates there are no concrete uses of types beyond the current point.

Functional State Transformation. Our mechanisms for transforming global state (state transformers) and local
state (type transformers) assume that we can write a function that transforms old program state into new program
state. Unfortunately, sometimes it is not possible to impose the semantics of the new application on the existing
state; we encountered two such cases in our test applications. In the upgrade fromsshd 3.7.1p2 tosshd 3.8p1 a
new security feature was introduced: the user’s Unix password is checked during the authentication phase and if the
password has expired, port forwarding will be not be allowed on the SSH connection. However, when upgrading a
live connection from version 3.7.1p2 to 3.8p1, the authentication phase has passed already, so the new policy is not
enforced for existing connections (though they could be shut down forcibly). For new connections requests coming in
after the update, the new check is, of course, performed.

A similar situation arose in going fromvsftpd 1.1.1 to 1.1.2. The new release introduced per-IP address connec-
tion limits by mapping the ID of each connection process with a count related to remote IP address. These counts are
increased when a process is forked and decremented in a signal handler when a process dies. Unfortunately, following
an update, any current processes will not have been added to the newly introduced map, and so the signal handler will
not execute properly. In effect, the new state is not a function of the old state. In this case, the easy remedy is to modify
the 1.1.2 signal handler to not decrement the count if the process ID is not known.

When transforming some value, a type transformer can only refer to the old version of the value and global
variables, which means that in principle some transformations may be difficult or impossible to carry out. In practice
we did not find this to be a problem: for all the 29 type transformers we had to write, the programmer effort was
limited to initializing newly addedstruct fields.

Type-safe Programs. As mentioned in Section 4, low-level programming idioms might result in types being marked
non-updateable by the analysis. Since having a non-updateable type restricts the range of possible updates, we would
like to maximize the number of updateable types, so the solution is to either have a more precise analysis, or inspect
specific type uses by hand and override the analysis for that particular type. For the programs we have considered,
the techniques presented in Sections 4.2 and 4.3 have significantly increased the precision of the analysis and greatly
reduced the need to inspect the program manually. For instance, invsftpd, strings are represented by astruct
mystr that carries the proper string along with length and the allocated size. The address of the string field is passed
to functions, hence revealingstruct mystr’s representation, but our abstraction violation analysis was able to detect
that the aliases were temporary and did not escape the scope of the callee, hence the type was updateable at the
conclusion of the call. Polymorphism is employed in all three programs; using thevoid * analysis (Section 4.3) we
were able to detect type-safe uses ofvoid *, and reduce the number of casts that have to be manually inspected.
Inline assembly can compromise type safety as well, and our analysis does not detect type-unsafe uses that might be
introduced by assembly code. We only had one such situation insshd, and a manual inspection confirmed the type
was used safely. In the end, we manually overrode the analysis only for a handful of types: 0 forvsftpd, 1 forzebra,
and 4 forsshd.

Our type wrapping scheme relies on the fact that programs rarely rely on how types are physically laid out in
memory; i.e. that they are treated abstractly in this respect. Fortunately, this was a good assumption for these programs.
We could not type wrap some “low level” types, e.g.,vsftpd’s representation of an IP address, since its layout is
ultimately fixed by the OS syscall API. On the other hand, this and low-level structures like this one rarely change,
since they are tied to external specifications.
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Robust Design. We wanted our DSU approach to be general enough to be applied to off-the-shelf software, written
without dynamic updates in mind (as was the case with our test applications). However, there are measures developers
can take to make applications more update-friendly. Apart from features mentioned above (quiescent points, type
safety, and abstract types), we have also found defensive programming and extensive test cases to be helpful in devel-
oping and validating the updates. All three programs we looked at were written defensively usingassert liberally,
which facilitated error detection, and helped us spot Ginseng bugs relatively easy. By looking at the assertions in the
code, we were able to detect the invariants the programs relied on, and preserve them across updates.Sshd comes
with a rigorous test suite that provides extensive code coverage, forzebra andvsftpd we created our own suites to
test a broad range of features.

6.3 Summary
We believe we have addressed all the DSU challenges set forth in Section 2. We did not have to change the applications
extensively to render them updateable. Patch generation was mostly automatic, and writing the manual parts was easy.

We were able to support a large variety of changes to applications; as can be seen in Table 1 and Figure 4,
the applications have changed significantly during the last three years. Once we became familiar with the application
structure (e.g., interaction between components, global invariants), writing patches was easy, with all the infrastructure
generated automatically; the only manual task was to initialize newly added fields, write state transformers, or make
some small code changes.

A combination of factors have helped us address these challenges: (1) programs were amenable to dynamic up-
dating (easily identifiable quiescence points the application, application changes that allowed updates to be written
as functions from the old state to the new state, robust application design and moderate use of type-unsafe, low-level
code), and (2) Ginseng, especially analysis refinements and support for automation, has made the task of constructing
and validating updates easy, even for applications in the range of 50-60 KLOC.

7 Performance
In this section, we evaluate the impact of our approach on updateable software. We analyzed the overhead introduced
by DSU by subjecting the instrumented applications to a variety of ’real world’ tests. We considered the following
aspects:

1. Application performance.We measured the overhead that updateability imposes on an application’s perfor-
mance by running ’real world’ stress tests. We found that DSU overhead is modest for I/O bound applications,
but significant for CPU-bound ones.

2. Memory footprint.Type wrapping, extra version checks and dynamic patches result in an increased memory
footprint for DSU applications; we found the increase to be negligible for updateable and updated applications,
but after stacking multiple patches, the memory footprint increase is detectable.

3. Service disruption.We measure the cost of performing an actual update while the application is in use. The
update will cause a delay in the application’s processing, while the patch is loaded and applied, and will result
in an amortized overhead as data is transformed. In all the updates we performed, even for large patches, we
found the update time to be less than 5 ms.

4. Type wrapping overhead.In order to measure the impact of type wrapping on CPU-bound applications, we
instrumented an application that performs computations on named types exclusively—KissFFT. We found type
wrapping to introduce a significant overhead, in terms of both performance and memory footprint.

We also measured the running time of Ginseng to compile our benchmark programs, to measure the overhead of
compilation and our analyses.

We conducted our experiments on dual Xeon@2GHz servers with 1GB of RAM, connected by a 100Mbps Fast
Ethernet network. The systems ran Fedora Core 3, kernel version 2.6.10. All C code, generated by Ginseng or
otherwise, was compiled withgcc 3.4.2 at optimization level-O2. We have compiled and run the experiments with
optimization level-O3, but apart form a slight increase in memory footprint (less than 1%), there was no detectable
difference in performance. Unless otherwise noted, we report the median of 11 runs.
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Application Connection time (ms)
stock updateable upd. once streak

vsftpd 6.71 6.9 7.04 8.4
sshd 47.62 49.26 49.5 62.89

Application Transfer rate (MB/s)
stock updateable upd. once streak

vsftpd 7.95 7.95 7.97 7.98
sshd 7.85 7.84 7.83 7.84

Table 3: Server performance.

7.1 Application Performance
In order to assess the impact of updateability on application performance, we tried different ’real world’ stress tests
on the updateable applications. For each application, we measure the performance of its most recent version under
four configurations. Thestockconfiguration is the application compiled normally, without updating. Theupdateable
configuration is the application compiled with updating support. Theupdated onceconfiguration is the application
after performing one update, whereas theupdated streakconfiguration is the application compiled from its oldest
version and then dynamically updated multiple times to bring it to the most recent version; this configuration is useful
for considering any longer-term effects on performance due to updating.

Vstfpd. We testedvsftpd performance with two experiments: connection time and transfer rate. For connection
time, we measured the time it tookwget to request 500 files of size 0, and divided by 500. Sincewget opens a new
connection for each file, and disk transfers are not involved, we get a picture of the overhead DSU imposes on FTP
clients. As seen in Table 3, the updateable, updated and streak-updated versions were 3%, 5% and 25% slower than
the stock server. With a difference of at most 1.7 ms, we don’t believe this to be a a problem for FTP users. We also
measured the median transfer rate of a single 600 MB file to a single client. The results are shown in Table 3; the
transfer rates of the different configurations are virtually identical.

Sshd. Forsshd we measured the same indicators as forvsftpd, connection time and transfer rate. For the former,
we blasted the server with 1000 concurrent requests, and measured the total elapsed time, divided by 1000. (Client-
server authentication was based on public key hence no manual intervention was needed.) Each client connection
immediately exited after it was established (by running theexit command). The measured connection time is shown
in Table 3. The updateable, updated and streak-updated versions were 3%, 4% and 32% slower than the stock server.
Again, we don’t think the 15ms difference is going to be noticed in practice. The CPU-intensive nature of authenti-
cation and session key computation accounts for SSH connection time being almost 10 times larger than for FTP. To
measure the sustained transfer rate over SSH we usedscp to copy a 600MB file. As shown in Table 3, the results are
similar to thevsftpd benchmark—the DSU overhead is undetectable.

Zebra. Sincezebra is primarily used for route proxying and redistribution, the focus ofzebra experiments was
different than forvsftpd andsshd. First, we measured the overhead DSU imposes on route addition and deletion
by starting each protocol daemon alone withzebra, and have it add and delete 100,000 routes. When passing routes
through the updatable, updated and streak-updated versions of thezebra daemon, the DSU overhead was 4%, 6%
and 12%, compared to the stock case (first three clusters in Figure 6). Second, we measured route redistribution
performance. We started the RIP daemon, turned on redistribution to OSPF and BGP daemons, made RIP add and
delete 100,000 routes, and measured the time it took until the route updates were reflected back into the OSPF and
BGP routing tables. Similarly, we timed redistribution of OSPF routes to RIP and BGP daemons. BGP redistribution
is not supported byzebra. The DSU overhead in the route redistribution case (last two clusters in figure 6) is the same
as for the ‘no redistribution’ case above: 4%, 6% and 12% respectively.

Zebra offers a command line interface for remote administration, so as a sanity check only, we measured the
connection time forzebra as well. We wrote a simple client that connects to thezebra daemon, authenticates,
executes a simple command (’show version’) and the exits. We measured (table 3) a 3% / 3% / 6% increase in
connection times for the updatable, updated once and streak-updatedzebra versions.
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Figure 9: Memory footprints.

KissFFT The overhead of DSU is dwarfed by I/O costs in our experiments. On the one hand, this is good be-
cause illustrates that for a relevant class of applications, DSU is not cost-prohibitive. On the other hand, it does not
give a sense of the costs of DSU for more compute-bound applications. To get a sense of this, we instrumented
KissFFT(http://sourceforge.net/projects/kissfft), a Fast Fourier Transform library. Figure 8 shows the
total time to perform 100000 Fast Fourier Transforms on 10000 points. The updateable, updated once and updated
streak versions were on average 129% slower than the stock version.

We analyzed KissFFT to understand the source of the overhead. The program operates on a large array of com-
plex numbers, and each complex number is represented as astruct complex. Therefore, before accessing fields a
__con_complex has to be performed. Moreover, each complex number will have some slop to accommodate future
growth.

Together, these two overheads can make a significant difference, as shown in Figure 7. First, the compiler does not
attempt to optimize away redundant__cons; that is, KissFFT will perform consecutive__cons for data that could not
have been updated in between. As shown in the figure, hand-optimizing away redundant cons in the main loop yielded
some improvement. Second, the added slop results in poor cache behavior, as far fewer complex numbers in the array
would be hot in the cache. The figure shows the effect of setting the slop to 0, effectively just adding the version field
to thestruct. Avoiding redundant__cons reduces the DSU penalty to 100%, eliminating the slop reduces the DSU
penalty to 78%, and combining the two techniques yields a final DSU overhead of only 42%.

We believe that in the future we’ll be able to leverage static analysis in order to avoid introducing redundant
__cons, and we shall explore different updateable type representations (such as the hybrid solution described in
Section 2) for reducing the overhead of the slop.

7.2 Memory Footprint
Type wrapping, function indirection, version checking and loop extraction all consume extra space, so updateable
applications have larger memory footprints. Figure 9 reports memory footprints for the four scenarios, with quartiles as
error bars. Measurements were made usingpmap at the conclusion of each throughput benchmark. For the updateable
and updated cases, the only significant increase is displayed by KissFFT. The explanation is quite simple: KissFFT
uses a large number ofstructs whose size grows by a factor> 2 due to type wrapping. The footprint increases for
vsftpd, sshd andzebra are overshadowed by OS variability.

However, for the streak updates, the median footprint increase (relative to the stock version) is 21%, 40% and 27%
for vsftpd, sshd andzebra respectively. The larger footprint increase for streak updates is expected, since dynamic
patches for three years worth of updates are added into the memory space of the running program, and never unloaded
(Section 5).
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Figure 11: DSU compilation time breakdown for updateable programs.

7.3 Service Disruption
One of the goals of DSU is to avoid service interruption due to the need to apply software patches. By applying these
patches on-line, we preserve useful application state, leave connections open, and sustain service. However, the service
will still be paused while new patch files are loaded, and service could be degraded somewhat due to the application
of type transformers at patch time and thereafter.

Figure 10 illustrates the delay introduced by applying a patch; the delay includes loading the shared object, per-
forming the dynamic linking and running the state transformer (type transformation time was hard to measure, and
likely very small, and so is not included). The figure presents measurements for every patch to all of our program
versions, and graphs the elapsed time against the size of the patch object files. We can see that patch application time
increases linearly with the size of the patch. In terms of service interruption, DSU is minimally intrusive: in all cases,
the time to perform an update was under 5 milliseconds.

7.4 Compilation
The time to compile various versions of our benchmarks is shown in Figure 11. The times are divided according
to the analysis time (updateability analysis, AVA analysis and constraint solving using Banshee [21]), parsing and
compilation time, and remaining tasks. In general, the majority of the overhead is due to the safety analyses, which
are whole program, constraint-based analyses. Given that Ginseng is only needed in the final stages of development,
i.e., when the application is about to be deployed or when a patch needs to be generated and compiled, this seems
reasonable.
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8 Related Work
Over the past thirty years, a variety of approaches have been proposed for dynamically updating running software. In
this section we compare our approach with a few past systems, focusing on differences in functionality, safety, and
updating model.

Updating Functionality A large number of compiler- or library-based systems have been developed for C [13, 16, 9,
2], C++ [18, 20], Java [7, 27, 11, 24], and functional languages like ML [12, 14] and Erlang [3]. Many do not support
all of the changes needed to make dynamic updates in practice. For example, updates cannot change type definitions or
function prototypes [27, 11, 18, 20, 2], or else only permit such changes for abstract types or encapsulated objects [20,
14]. In many cases, updates to active code (e.g., long-running loops) are disallowed [14, 24, 13, 16, 20], and data
stored in local variables may not be transformed [17, 16, 13, 18]. Some approaches are intentionally less full-featured,
targeting “fix and continue” development [19, 15] or dynamic instrumentation [9]. On the other hand, Erlang [3] and
Boyapati et al. [7] are both quite flexible, and have been used to build and upgrade significant applications.

Many systems employ the notion of type or state transformer, as we do. Boyapati et al. [7] improve on our interface
by letting one type transformer look at theold representation of an encapsulated object, to allow both the parent and
the child to be transformed at once. In our setting, the child will always have to be transformed independent of the
parent, which can make writing transformers more complicated or impossible (e.g., if a field was moved from a child
object into the parent), though we have not run into this problem as yet. Duggan [12] also proposes lazy dynamic
updates to types using type transformers, usingfold/unfoldprimitives similar to ourconT/absT. Ours is the first work
to explore the implementation of such primitives.

The most similar system is our own prior work on providing dynamic updating in a type-safe C-like language
called Popcorn [17]. While that system was fairly flexible, we make three substantial improvements. First, our prior
work could not transform data in local variables, could not automatically update function pointers, and had no support
for updating long-running loops. We have found all of these features to be important in the server programs, and are
part of our current work. Second, while our prior work ensured that all updates were type-safe, it did not ensure they
wererepresentation-consistent[33], as it permitted multiple versions of a type to coexist in the running program. In
particular, when a type definition changed, it required making acopyof existing data having the old type, opening the
possibility that old code could operate on stale data. Finally, in our prior work we only experimented with a single
program (a port of the Flash web server, about 8000 LOC), and all updates to it were crafted by us.

Updating Programs Safely A common theme of prior work is to define “safe states” during a program’s execution
in which an update may take place. Intuitively, we are interested in the question of whether a change to a system’s
code, realized dynamically, will properly transform the system to reflect the new code base.

Gupta et al. proved that finding such safe states is, in general, undecidable [16], so any such safety analysis must
be conservative. Many of the systems reviewed make no safety guarantees, which can lead to, among other things,
run-time type errors [3, 13, 18]. One way to avoid run-time type errors is to sacrifice representation-consistency, as
we did in our prior work, mentioned above. Duggan [12] also allows multiple versions of a type to coexist, but avoids
the need to make copies of data by requiring abackward type transformerto convert data to an older version if it is
used by old code; this prevents the problem of stale data. However, it may not always be possible to write backward
transformers, since updated types often contain more information than their older versions.

Our current work ensures representation consistency via static analysis; an alternative is to do dynamically. Boy-
apati et al [7] propose usingtransactionsfor this purpose. If code in an old object would see an updated object, the
current transaction is restarted and old object is itself updated. This basic idea was considered earlier by Bloom and
Day [5, 6] in the context of Argus, a system for writing distributed, fault-tolerant applications. We plan to explore the
use of transactions in Ginseng in future work.

To avoid the need for rollback, a number of systems aim to ensure safety by relying on a notion ofquiescence,
determined dynamically: only entities not in use by the program may be updated. Dynamic ML [14] supports updating
modulesM definingabstracttypest. Since by definition clients ofM must use values of typet abstractly,M can
be updated to redefinet as long as the old version is inactive and thus not using the old representation. The K42
object-oriented operating system [20, 4] permits updates to objects that are similarly quiescent. It actively achieves
this condition by temporarily preventing new threads from calling methods of a to-be-updated object; once existing
threads have died, the object is updated and the pending threads may continue. Our safety analysis generalizes these
ideas by defining dependency at a finer grain: we check individual uses of types or functions, rather than uses of larger
linguistic constructs like objects or modules, which are not directly supported in C.
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Updating Models A typical approach to upgrading on-line systems is to use a load-balancer. It redirects requests
away from a to-be-updated application until it is idle, at which point it can be halted and replaced with a new version.
Such approaches typically employ redundant hardware, which is undesirable in some settings (e.g., upgrading a per-
sonal OS). Microvisor [22] employs a virtual-machine monitor (VMM) to follow this basic methodology on a single
node. When an application or OS on a server node is to be upgraded, a second OS instance is started concurrently on
the same node and upgraded. When the original instance becomes idle, applications are restarted on the new instance
and the machine is devirtualized. While Microvisor avoids the need for extra hardware, it shares the same drawbacks as
the load-balancing approach: applications must be stateless (so they can be stopped and restarted) or they must be able
to save their state under the old version, and then restore the state under the new version. While checkpointing [29, 8]
or process migration [30] can be used to stop and restart the same version of an application, it cannot support version
changes. DSU handles application state changes naturally. Since all state is visible to an update, it can be changed as
necessary to be compatible with the new code. Indeed, one can imagine composing our approach with checkpointing
to combine updating with process migration.

9 Conclusions
This paper has presented Ginseng, a system for updating C programs while they run, and shown that it can be used
to easily update realistic C programs over long stretches of their lifetimes, with only a modest performance decrease.
Our system is arguably the most flexible of its kind, and our novel static analyses make it one of the most safe.
Our results suggest that dynamic software updating can be practical for upgrading running systems. We plan to
extend our approach to operating systems and multithreaded applications. Ginseng is available for download athttp:
//www.cs.umd.edu/projects/dsu/.
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