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Abstract Over the past decade, time series clustering has become an increasingly
important research topic in data mining community. Most existing methods for time
series clustering rely on distances calculated from the entire raw data using the Euclid-
ean distance or Dynamic Time Warping distance as the distance measure. However,
the presence of significant noise, dropouts, or extraneous data can greatly limit the
accuracy of clustering in this domain. Moreover, for most real world problems, we
cannot expect objects from the same class to be equal in length. As a consequence,
most work on time series clustering only considers the clustering of individual time
series “behaviors,” e.g., individual heart beats or individual gait cycles, and contrives
the time series in some way to make them all equal in length. However, automatically
formatting the data in such a way is often a harder problem than the clustering itself. In
this work, we show that by using only some local patterns and deliberately ignoring the
rest of the data, we can mitigate the above problems and cluster time series of different
lengths, e.g., cluster one heartbeat with multiple heartbeats. To achieve this, we exploit
and extend a recently introduced concept in time series data mining called shapelets.
Unlike existing work, our work demonstrates the unintuitive fact that shapelets can be
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learned from unlabeled time series. We show, with extensive empirical evaluation in
diverse domains, that our method is more accurate than existing methods. Moreover,
in addition to accurate clustering results, we show that our work also has the potential
to give insight into the domains to which it is applied. While a brute-force algorithm
to discover shapelets in an unsupervised way could be untenably slow, we introduce
two novel optimization procedures to significantly speed up the unsupervised-shapelet
discovery process and allow it to be cast as an anytime algorithm.

Keywords Time series · Clustering · Unsupervised-shapelet

1 Introduction

Time series occur in many real world domains and thus analysis of time series
has become an important topic within many fields of research, including aerospace,
finance, business, meteorology, medical science, motion capture, animal behavior, etc.
(Hirano and Tsumoto 2006; Hu et al. 2011; Ruiz et al. 2012; Zakaria et al. 2012a, b;
Zhang and Sawchuk 2012). However, most research on time series analysis is limited
by the need for costly labeled data. This has led to an increase of interest in clustering
time series data, which, by definition, does not require access to labeled data (Garilov
et al. 2000; Hirano and Tsumoto 2006; Jiang et al. 2004; Zhang et al. 2005).

A decade old empirical comparison by Keogh and Kasetty (2002) reveals the some-
what surprising fact that the simple Euclidean distance metric is highly competitive
with other, more sophisticated, distance measures, and more recent work confirms this
(Ding et al. 2008). However, the time series must be of equal length for the Euclidean
distance to be defined. Dynamic time warping (DTW) can both solve this problem
and handle the difficulty of clustering time series containing out-of-phase similarities
as shown in Keogh et al. (2003), Ratanamahatna and Keogh (2004), and Ding et al.
(2008). In this work, however, we argue that the apparent utility of Euclidean dis-
tance or DTW for clustering may come from an over dependence on the UCR time
series archive (Keogh et al. 2011) for testing clustering algorithms (Keogh et al. 2003;
Möerchen 2003; Zhang et al. 2005). The problem is that the data in this archive has
already been hand-edited to have equal length and (approximate) alignment. However,
the task of contriving the data in this format is often harder than the task of giving
labels to the data, i.e., the clustering itself.

As a concrete example, consider the famousGun-Point dataset, which has been used
in hundreds of studies for both clustering and classification, in every case reporting
near perfect accuracy (Ding et al. 2008). This dataset was contrived to have perfect
alignment/length by audible cues that both signaled the actor and started/stopped the
video recording. Figure 1 shows two examples of data from the archive (just the parts
highlighted in red/bold); however, by examining the original archive, we are able to
show the data with the 3 s proceeding/trailing data used in the UCR archive.

Our central argument is that this less “clean” example is a much more realistic
format in which the data is likely to appear in any real world problem worthy of our
attention. Note, however, that if we attempt to cluster the data with the Euclidean
distance (e.g. the dendrogram in Fig. 1), we get a very poor result. In Fig. 2, we show
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Fig. 1 AEuclidean distance clustering of two exemplars from the “raw” Gun-Point dataset, together with a
random walk sequence. The hundreds of papers that have used the Gun-Point dataset have only considered
the human edited version, corresponding to just the red/bold data (Color figure online)

Fig. 2 Clustering Gun-Point after ignoring some data (Color figure online)

the result of clustering these time series if we are allowed to ignore some of the data.
Here, we use the section from random walk sequence that has minimum distance to
the Gun-Point gestures.

As we can see from Fig. 2, the situation has improved drastically. For the moment,
we gloss over the question of how we knew which sections to ignore. However, as we
shall see, we can do this without any human intervention, and introducing this ability
is the core contribution of this work.

We believe that this observation, that for most datasets wemust ignore some (poten-
tially the vast majority of) data, is a critical insight in allowing time series clustering
in realistic problem settings.

We are aware of the “chicken-and-egg” nature of our claim. We must ignore some
data to allow a good clustering, and a good clustering is the obvious way to reveal the
best data to keep (and ignore). However, we will show that time series shapelets (Ye
and Keogh 2009) can be adapted to resolve this paradox.

The idea of time series shapelets was introduced by Ye and Keogh (2009) as a
primitive for time series data mining. Time series shapelets are small, local patterns
in a time series that are highly predictive of a class. Since then, numerous researchers
have shown the utility of shapelets for classifying time series data (Hartmann et al.
2010; Lin et al. 2012; Mueen et al. 2011; Xing et al. 2011; Zakaria et al. 2012a).

In this work, we show that shapelets can also be highly competitive in clustering
time series data. Since we do not know the labels of the time series in the dataset,
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this begs the question, “How can we discover shapelets from a dataset without having
any knowledge of the class labels?” We propose a new form of shapelet that we call
unsupervised-shapelet (or u-shapelet) and demonstrate its utility for clustering time
series data. While the brute-force algorithm for discovering u-shapelets is untenably
slow for most problems, we introduce two novel admissible optimizations to speed
up the u-shapelet discovery process. Moreover, we further demonstrate that our opti-
mizations enhance the diminishing returns property of the search, thus allowing us to
cast the u-shapelet discovery process as an anytime algorithm (Zilberstein 1996).

The rest of the paper is organized as follows: In Sect. 2 we define the necessary
notation; in Sect. 3, we discuss previouswork on clustering time series; Sect. 4 explains
our method for obtaining shapelets in the absence of class labels; Sect. 5 presents our
acceleration methods; Sect. 6 shows empirical evidence of our algorithm’s utility on
many datasets from diverse domains; lastly, Sect. 7 concludes and gives direction of
future research.

2 Definitions and notations

We present the definitions of key terms that we use in this work. For our problem,
each object in the dataset is a time series, which may be of different lengths.

Definition 1 (Time Series), a time series T = t1, t2, . . ., tn is an ordered set of real
values. The total number of real values is equal to the length of the time series. A
dataset D = {T 1, T 2, . . .T N } is a collection of N such time series.

In this work, we demonstrate that if we can find small subsequences of few time
series that best represent their clusters (e.g. red/bold subsequences of Fig. 1), then
those subsequences may give us a better clustering result than using the entire time
series.

Definition 2 (Subsequence), a subsequence Si,l , where 1 ≤ l ≤ n and 1 ≤ i ≤ l, is a
set of l continuous real values from a time series, T , that starts at position i .

For a time series of length n, there can be, in total, n(n+1)
2 subsequences of all

possible lengths. If there are N time series in the dataset with length n, then there will
be, in total, N × n(n+1)

2 subsequences.
Previous research efforts on shapelet discovery (Mueen et al. 2011; Ye and Keogh

2009) had to consider all the N × n(n+1)
2 subsequences to find optimal shapelets for

building the classifier. However, as we shall see, we need to explore only a small subset
of these subsequences to find the optimal u-shapelets. We will formalize the definition
of u-shapelets shortly.

We can compute the distance between two time series of equal length by sim-
ply calculating the Euclidean distance between them. To make our distance measure
invariant to scale and offset, we need to z-normalize the time series before computing
their Euclidean distance. As demonstrated in Keogh and Kasetty (2002) and Hu et al.
(2013), even tiny differences in scale and offset rapidly swamp any similarity in shape.

In order to compare or rank candidate u-shapelets, we need to consider the util-
ity (i.e. discriminating power) of subsequences of different lengths, as in most cases
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we expect the distance between shorter subsequences will be less than the distance
between longer subsequences. Thus, we normalize the distance by the length of the
subsequence. We call this the length-normalized Euclidean distance. The length-
normalized Euclidean distance between two time series TX and TY can be com-
puted using

√
1
n
∑n

i=1 (TXi − TYi)
2, which takes time linear to the length of time

series.
We can reduce the amortized time complexity of this calculation from linear to

constant by caching the results of some calculations. The five results to cache are∑n
i=1TXi,

∑n
i=1TYi,

∑n
i=1TX

2
i ,

∑n
i=1TY

2
i , and

∑n
i=1(TXi ×TYi). This method has

been adopted and described in Mueen et al. (2011). For more description, we refer
the interested reader to that work (Mueen et al. 2011). Using these numbers, we can
compute the mean μ (1) and standard deviation (std) σ (2).

μTX = 1

n

∑n

i=1
TXi (1)

σTX = 1

n

∑n

i=1
TX2

i − μTX2 (2)

The positive correlation (3) and the length-normalized Euclidean distance (4) can
be computed as follows (Mueen et al. 2011),

C(TX,TY) =
∑n

i=1(TXi × TYi ) − nμTXμTY

nσTXσTY
(3)

dist(TX,TY) = √
2 (1 − C (TX,TY)) (4)

We are now in a position to explain how we calculate the distance between a
(typically short) subsequence S and a (typically much longer) time series T . We need
to “slide” S against T to find the alignment that minimizes the distance.

Definition 3 The subsequence distance between a subsequence S of length m and a
time series T of length n is the distance between S and the subsequence of T that has
minimum distance. We denote it as sdist(S, T ).

sdist(S, T ) = min1≤i≤n−mdist (S, Ti,m); [1 ≤ m ≤ n] (5)

Note that we generally expectm � n, and that both sdist(S, T ) and sdist(T, S) are
only defined if n = m. This subsequence distance is essentially the nearest neighbor
distance of S to a time series T .

In previous works, a definition similar to sdist was used to support a definition of
shapelets; small subsequences that separate time series into twoormore distinct groups
by their “nearness” or “distance” to that subsequence (Ye and Keogh 2009), Mueen
et al. (2011). Since we cannot use the class labels of the time series to discover the
shapelets, we call our definition of informative subsequences unsupervised-shapelets
or u-shapelets to differentiate them from the classic shapelets which assume access to
class labels (Mueen et al. 2011; Ye and Keogh 2009).
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Definition 4 Anunsupervised-shapelet Ś is a subsequence of a time series T forwhich
the sdists between Ś and the time series from a group DA are much smaller than the
sdists between Ś and rest of the time series DB in the dataset D (6).

sdist (Ś, DA) � sdist (Ś, DB) (6)

We will expound on how we formalize “much smaller” below. The reader may
wonder how we identify DA and DB without class labels. In Sect. 4.2, we have
formalized an algorithm to discover u-shapelets from a dataset. The algorithm will
rigorously clarify the concept of DA and DB , so we defer a detailed discussion about
it until then.

Note that, unlike the trivial example shown in Fig. 2, many problems may require
more than one u-shapelet. Thus, we need to generalize our representation to allow
for multiple u-shapelets. We call the matrix that contains the sdists vectors between
u-shapelets and each time series in the dataset a Distance map.

Definition 5 A Distance map contains the sdists between each of the u-shapelets and
all the time series in the dataset. If we have m u-shapelets for a dataset of N time
series, the size of the distance map is [N ×m] where each column is a distance vector
of a u-shapelet.

For any dataset, once we have this distance map of the u-shapelets’ distances, we
can simply pass it into an off-the-shelf clustering algorithm such as k-means. Thus,
the focus of our work is in algorithms for obtaining high quality distance maps. Note
that the distance map representation is somewhat similar to the vector space model,
which is a cornerstone of most text mining algorithms (Salton et al. 1975).

2.1 A discrete analogue of U-shapelet

In order to enhance the reader’s understanding of u-shapelets and to lay the groundwork
for the intuition about our proposed distance map building method, we present a
very simple example from a discrete (rather than real-valued) sequence domain. This
example is a close analogue of the task at hand. The use of the discrete data simply
allows us to explain our ideas in a domain where the reader’s intuitions are highly
developed and without the need of resorting to the indirection of figures.

Consider the following collection of phrases, which is an analogue of a dataset of
time series:

San Jose; Earth Day; San Francisco; Memorial Day; Fink Nottle; Labor Day;
Bingo Little

If we are asked to cluster this set of phrases into three groups, then, as intuitive
humans, we would almost certainly split the data based on the presence/absence of
the two substrings “San” and “Day.”

However, doing this algorithmically is a little more challenging. Since the phrases
differ in length, we cannot applyHamming distance, which is analogous to Euclidean
distance, to compute the distance vector of the full phrases. The problem of length
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Table 1 Distance map of “Day” and “San”

San Jose Earth Day San Fran.. Mem.. Day Fink Nottle Labor Day Bingo Little

San 0 2 0 2 2 2 2

Day 2 0 2 0 3 0 3

difference is solved by using Edit distance, which is the discrete version of DTW, but
the Edit distance produces a clustering that looks essentially random, as it needs to
“explain” the irreverent sections e.g., Earth, Francisco, Memorial, etc.

Instead, we can try to find representative substrings of the above phrases. By visual
inspection, the obvious candidates are “San” and “Day.” We compute the Hamming
distances of these words to their nearest substrings in all phrases and produce the
distance map shown in Table 1.

Using this distance map, we can cluster the phrases perfectly by using k-means on
the columns. Moreover, examining the key-phrases (u-shapelet analogues) chosen for
clustering gives us some intuition about the domain. For example, we may notice that
the second, fourth, and sixth phrases are some kind of “day.”

The above example is rather simple and the reader may wonder if this method
works only if some u-shapelets have zero distance to the nearest neighbors of their
own group. The answer is no this method can handle more complex datasets. Consider
the following set of sentences,

Abraham Lincoln lived here for many years (English)
She is looking for Ibrahim (Arabic)
You can find Abrahan in that house (Portuguese)
Michael is singing a song for her (English)
She bought a gift for Michaël (Dutch)
She can teach Michales chess (Hebrew)

The Hamming distances from the key-phrase Abraham to its nearest neighbors is
[0, 2, 1, 7, 7, 7] respectively, and this distance vector is only entry necessary in a
distance map that can cluster the sentences correctly into two groups. Note, however,
that the choice of Abraham is somewhat arbitrary, as the data can also be correctly
clustered by using either the similar key-phases Ibrahim/Abrahan or by any of the
three variants of Michael.

We conclude this section by summarizing what we have learned from this analogy.
First of all, to cluster data, we are generally-somewhat paradoxically-better off ignor-
ing large sections of the data. Secondly, while sometimes a single key element (e.g.
Abraham) may be enough to separate the data into meaningful clusters, in some cases
we may need two or more (e.g. Day and San) elements to separate the data.

3 Related work

The literature on clustering time series is vast; we refer the reader to Liao (2005) which
offers a useful survey. Much of the work can be broadly classified into two categories:
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• Shape-based clustering, which attempts to cluster the data based on the shape of
the entire time series (Garilov et al. 2000), using Euclidean distance, DTW, or
one of a host of other distance measures (Ding et al. 2008). Note that our method
contrasts with these ideas in that we explicitly allow our representation to ignore
much of the data.

• Statistical-based clustering, which attempts to cluster the data based on statistical
features extracted from the time series. These features include common measures
such asmean, standard deviation, skewness, etc., in addition tomore exotic features
such as coefficients of ARIMA models (Kalpakis et al. 2001), fractal measures
(Wang et al. 2006), etc.

One problem with the latter approaches is that they typically require a great many
parameters and (at least apparently) ad-hoc choices. The problem with the former
approaches is that the distance measures consider all data points, even though (as
hinted in Figs. 1, 2) we may be better off ignoring much of the data. Note that there are
a handful of methods that combine both ideas by using statistics/features which are
derived from time series shapes (Ding et al. 2008; Hirano and Tsumoto 2006; Zhang
and Sawchuk 2012).

The work closest to ours in spirit is that of Rakthanmanon et al., which shows
the utility of ignoring some data for clustering within a single time series stream
(Rakthanmanon et al. 2011).

4 Our algorithm

We are finally in a position to present a more direct insight and formal description of
our algorithm.

4.1 An intuition of our clustering algorithm

Consider the Trace dataset from the UCR archive (Keogh et al. 2011). It contains 50
instances from each of four classes, all with a length of 275. In Fig. 3, we present
ten random instances from each class. Note that while the global patterns within each
class are the same, they are not aligned perfectly. As a result, if we use entire time
series for k-means clustering with the Euclidean distance as distance measure, we will
get poor results (we formally measure the quality of the results using the Rand index
in the experimental section below, for the moment it is suffice to note the results are
poor).

Class 1 Class 2 Class 3 Class 4

Fig. 3 Sample time series from four classes of Trace dataset (Color figure online)
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u-shapelet 1

u-shapelet 2

Class 1
Class 2
Class 3
Class 4

distance from u-shapelet 1
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Fig. 4 (left) Two u-shapelets (marked with red) used for clustering Trace dataset. (right) A plot of distance
map of the u-shapelets. An animated video based on this figure is at Jesin’s Webpage (2013) (Color figure
online)

However, suppose that we use subsequences that are prominent in one class but
not in other classes as u-shapelets (e.g. the red subsequences in Fig. 4 (left)). We can
then use their distance map to separate all the time series. In Fig. 4 (right), we plot the
distance map of the two u-shapelets in two-dimensional space. In this plot, the X-axis
represents the sdists of the first u-shapelet while the Y-axis encodes the sdists of the
second u-shapelet. From this plot, it is clear that by using the distance map, we could
get a perfect clustering.

The choice of u-shapelets here is not arbitrary. For example, if we slide u-shapelet
2 to the right, the cloud of blue points (class 3) will rise up and intermingle with the
clouds of red and green points (classes 1 and 2). In a sense, this would be like trying
to use a stop-word to cluster text documents (Kosala and Blockeel 2000). Stop-words
simply do not have any such discriminating power. At Jesin’s Webpage (2013) there
is an animation that shows how the clouds of points defuse and intermingle as we
change the location of the candidate u-shapelets.

Note that in this example we are “cheating” in so much as that in our (visual)
evaluation we know the class labels. However, in the next section, we will introduce
an algorithm that we can use to discover the u-shapelets without using class labels.

4.2 A formal description of our algorithm

The high-level idea of our algorithm is that it searches for a u-shapelet which can
separate and remove a subset of time series from the rest of the dataset, then iteratively
repeats this search among the remaining data until no data remains to be separated.

As hinted at before, an ideal u-shapelet Ś has the ability to divide a dataset D
into two groups of time series, DA and DB . DA consists of the time series that have
subsequences similar to Ś, while DB contains the rest of the time series in D. Simply
stated, we expect the mean value of sdist(Ś, DA) to be much smaller than the mean
value of sdist(Ś, DB). Since we ultimately use a distance map that contains distance
vectors to cluster the dataset, the larger the gap between these two means of these
distances vectors, the better.

We use the algorithm in Table 2 to extract u-shapelets. In essence, this algorithm
can be seen as a greedy search algorithm which attempts to maximize the separation
gap between two subsets of D. This separation measure is formally encoded in the
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Table 2 An algorithm to extract U-shapelets

following equation:
gap = μB − σB − (μA + σA) (7)

Here,μA andμB representmean(sdist(Ś, DA)) andmean(sdist(Ś, DB)), respectively,
while σA and σB represent std(sdist(Ś, DA)) and std(sdist(Ś, DB)), respectively.

In the nested for loop of lines 6–9, we consider all subsequences of the time series as
candidate u-shapelets and compute their distance vectors. We can represent a distance
vector as a schematic line, which we call an orderline. In line 10, we search these
orderlines for the location that maximizes the gap function introduced in (7). We refer
to this point as dt. Points to the left of dt represent sdist (Ś, DA), while points to the
right correspond to sdist (Ś, DB).

Figure 5 presents the orderline of the words “Abraham” and “Lincoln” from the
discrete toy example of Sect. 2.1. Several tentative locations of dt are shown with
gray/light lines and are annotated by their gap scores. However, the locations of the
actual dt are shown with blue/bold lines.

Note that the maximum gap score for “Lincoln” is larger than the maximum gap
score for “Abraham.” Nevertheless, wewould rather use “Abraham” as the key phrase.
This is because we want a u-shapelet to have discriminative power. If all but one time
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0 7

1.8 2 5

dt

DB

DA

(a)

0 7

5.7 -0.5

dt
DB

DA (b)

Fig. 5 Orderline for (left) “Abraham,” (right) “Lincoln” (Color figure online)

Table 3 An algorithm to compute gap

series belong to either DB or DA, then we do not have discriminating ability, but rather
have a single outlier or universal pattern, both of which are undesirable. In order to
exclude such pathological candidate u-shapelets, we check if the ratio of DA and DB

is within a certain range (8).

(
1

k

)
< |DA|/|DB | <

(
1 − 1

k

)
, k : total number of clusters (8)

The algorithm shown in Table 3 is called as a subroutine in line 9 of Table 2 to
compute the maximum gap score (7) and dt of a candidate u-shapelet. This subroutine
takes a candidate u-shapelet and the dataset as input. In line 1, the algorithm computes
the distance vector of the candidate u-shapelet. The for loop is then used to compute
the gap for every possible location of dt. Note that for a distance vector with N values,
there are just N−1 possible locations to check. The first if block is used to check the
condition of (8), while the second if block is used to find the maximum gap.

The algorithm in Table 4 is used to compute the distance vectors. It takes a sub-
sequence and the dataset as input and computes the sdists between the subsequence
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Table 4 An algorithm to compute distance vector

and each time series in the dataset. In order to return the length normalized Euclidean
distance we divide the sdists by the square root of the subsequence length (cf. line 9).

Once we know the gap scores for all the subsequences of a time series, we add the
subsequence with maximum gap score in the set of u-shapelets (cf. lines 10, 11 of
Table 2).

Given that we have selected a u-shapelet, we do not want subsequences similar to
it to be selected as u-shapelets in subsequent iterations. Thus, we remove the time
series (cf. line 19 of Table 2) that have subsequences similar to the u-shapelet from
the dataset and use only the remaining dataset to search for the next u-shapelet.

To illustrate with our toy example phrases of Sect. 2.1, once we identify the key-
phrase “San” as a high quality key-phrase (i.e. “u-shapelet”), we remove “San Jose”
and “San Francisco” from the set of phrases and search for the second key-phrase
within just:

Earth Day, Memorial Day, Fink Nottle, Labor Day, Bingo Little

When we identify the second key-word “Day,” we remove the relevant phrases and
search only within:

Fink Nottle, Bingo Little

…and so on, until the terminating condition in line 14 is true.
For our real-valued time series, we use the threshold θ to exclude the time series

that have sdists less than θ from the dataset (cf. line 17–18).
The reader may wonder why we use θ instead of just directly removing DA from

D. In simple terms, the use of θ is more selective than use of DA.
Imagine that we add the phrases “Hoover Dam” and “Alamo Dam” to the above set

of phrases. If we observe the orderline of “Day” in Fig. 6, we find “Hoover Dam” and
“Alamo Dam” are included in DA. Using θ , we are more selective and only remove
the phrases that contain the word “Day,” a tighter cluster.
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0 1 2dt

..Dam..Day ..ttle

DA
DB

θ

Fig. 6 Orderline for “Day”.� is shown with red/thick line and dt is shown with blue/thin line (Color figure
online)

Table 5 An algorithm to cluster time series

The extraction algorithm terminates when the search reveals that for the best u-
shapelet choice, the size of DA is just one. In practice, this means the algorithm
tends to run beyond the point where the u-shapelets are useful, and we must do some
post-pruning, an idea we discuss in detail in Sect. 4.3.

Note that our algorithm only requires the users to provide a single parameter:
the desired length, or range of lengths, for the u-shapelets. Moreover, they can even
abrogate this responsibility-at the expense of speed-by searching in the full range of
[2:inf].

While the distance map created by our algorithm can be used by essentially any
clustering algorithm, for concreteness in Table 5, we show how we use the ubiquitous
k-means.

Because the result of k-means clustering may differ from run to run, we call k-
means multiple times (cf., for loop of lines 7–11). In the if block of lines 9–11, we
compute the objective function and keep the clustering that minimizes it.

4.3 Stopping criteria

For any non-trivial time series dataset, the algorithm in Table 2 will almost certainly
extract toomany u-shapelets. Thus, the last step of our approach involves pruning away
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u-shapelet 1

u-shapelet 5

u-shapelet 4

u-shapelet 3

u-shapelet 2

u-shapelet 6 (random noise)

(a)

1 2 3 4 5 6
0

0.5

1

Rand index using whole time series

change in Rand index is 0, and
we stop adding shapelet

original Rand index is 1(b)

Fig. 7 (left) The six u-shapelets returned by our algorithmon theTrace dataset. (right) TheCRI (green/bold)
predicts that the best number of u-shapelets to use is two. By peeking at the ground truth labels (blue/light),
we can see that the choice does produce a perfect clustering (Color figure online)

some u-shapelets (much like decision-tree post-pruning algorithms, Muata 2007). Our
task is made easier by the fact that the order in which our algorithm selects the u-
shapelets is “best first,” thus our task reduces to finding a stopping criterion.

Many iterative improvement algorithms (e.g. k-means, EM) have stopping criteria
based on the observation that the model does not change much after a certain point.
We have adopted a similar idea for our algorithm. In essence, our idea is that, for i
equals 1 to the number of u-shapelets extracted, we treat the i th clustering as though
it were correct and measure the Change in Rand index (CRI) that the i th +1 clustering
produces. The value of i whichminimizes thisCRI (i.e., the clustering ismost “stable”)
is the final clustering returned. Ties are broken by choosing the smaller set.

The clustering algorithm in Table 5 takes the dataset, the set of u-shapelets returned
by algorithm 1, and the user-specified number of clusters as input. The distance map
is initially empty. Inside for loop of lines 3–11, the algorithm computes the distance
vector of each u-shapelet and adds the distance vector to the distance map. For each
addition of a distance vector to the distance map, we pass the new distance map into
k-means. The k-means algorithm returns a cluster label for all the time series in the
dataset. In line 12, we use the labels of the current step and the labels of the previous
step to compute the change in Rand index. Finally, in line 14, we return the cluster
labels for which the CRI is minimum.

In Fig. 7 (left), we present all six u-shapelets returned by the Trace dataset experi-
ment shown in Fig. 3. The first two u-shapelets are sufficient to cluster the dataset (cf.
Fig. 4 (right)) and the remaining four u-shapelets are spurious. The red curve in Fig. 7
(right) shows the value of CRI as u-shapelets are added. This curve predicts that we
should return two u-shapelets, but how good is this prediction? In this case we happen
to have ground truth class labels for this dataset, we can do a post-hoc analysis and
add a measurement of the true clustering quality to Fig. 7 (right) by showing the Rand
index with respect to the ground truth. As we can see, at least in this case, our method
does return the minimal set that can produce a perfect clustering.

5 Speeding up the discovery of unsupervised shapelets

The reader will have now gained an appreciation of the utility of u-shapelets for clus-
tering time series (Zakaria et al. 2012a). However, the reader may also notice that
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the algorithm in the previous section searches for a u-shapelet only in a subset of the
dataset. As searching for an unsupervised shapelet in the entire dataset is a computa-
tionally expensive process, thus far we contented ourselves with the u-shapelets we
discover from searching a small subset of data. In particular, we searched just the
first object in the dataset. Thus, the algorithm in the previous section (cf. Table 2)
depends on the ordering of the time series within the dataset, and its performance can
be degraded if the first time series happens to be noisy or simply atypical.

In this section we introduce two novel techniques that result in a faster search,
allowing an exhaustive algorithm for discovering u-shapelets. By “exhaustive” we
simply mean that the entire dataset is searched.

Our experimental results show that for most datasets our new u-shapelet discovery
algorithm terminates thirty times faster than the brute-force algorithm. It is this speed
that allows us to expand the search space to an exhaustive search of the dataset in most
cases, making our algorithm order independent and more robust to the occasional
noisy/atypical object.

In addition to the above, we further show that we can cast the u-shapelet discovery
algorithm as an anytime algorithm (Zilberstein 1996). Obviously, like any iterative
improvement search algorithm, it is trivial to consider a u-shapelet search as an anytime
algorithm simply by adding the ability to “break out” of the loops at the user’s direction.
However, as we shall show, we can intelligently change the search order from the
normal left-to-right, top-to-bottom (cf. Table 2) to an ordering that maximizes the
diminishing returns property of anytime algorithms. As we shall show, in most cases,
we can obtain 95% of the utility of u-shapelets after examining only 5% of the data.

Both our speedup technique and rapid anytime convergence technique rely upon the
consideration of the complexity of time series subsequences (wewill define complexity
below, cf. Sect. 5.1). In brief, we demonstrate that the utility of a candidate u-shapelet
is highly related to its complexity, and we can leverage this fact to optimize the search
order. In addition, we introduce a novel lower bound based on complexity that can
admissibly prune off unpromising candidates.

InSect. 5.1,wedescribe the concept of complexity thatwe exploit; Sect. 5.2 contains
the description of the relationship of complexity with u-shapelets; and finally we
describe our complexity-based speed up techniques in Sect. 5.3.

5.1 Complexity and complexity difference

The term complexity is notoriously difficult to define, but in the context of time series
can be intuitively thought of as reflecting the number of peaks/valleys/features in the
data.

The complexity of a time series can be estimated by a number of different
approaches, such as Kolmogorov complexity (Li and Vitanyi 1997), many variants
of entropy (Andino et al. 2000; Aziz and Arif 2006), the number of zero crossings,
etc. Recently, Batista et al. proposed a parameter-free method tomeasure the complex-
ity of two z-normalized time series (Batista et al. 2011). The authors use their measure
to develop a correction factor for Euclidean distance between objects of different com-
plexities, showing that this produces a significant reduction in the classification error
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rate in most cases. We refer the reader to Batista et al. (2011) for more details. In this
work, we adopt this complexity measure, but use it for a completely different purpose.
We present the formula to measure the complexity from Batista et al. (2011) in (9).

C (Q) =
√∑n−1

i=1
(qi − qi+1)2 (9)

This complexity measure is trivial to implement; for example, in Matlab it requires
just the statement:C(Q) = sqrt(sum(diff(Q).ˆ2)). The intuition behind the
measurement is to see it as the total length of the time series in the y-axis. Equivalently,
a more physical intuition is to imagine that if we could hold the first and last points of
the time series and “stretch,” it becomes a straight line; the length of this line is the
complexity (Batista et al. 2011).

The time taken to compute the complexity of a time series of length n is O(n).
However, recall that we must z-normalize each subsequence (cf. Definition 2). We can
compute the complexity at the same time with essentially zero overhead; thus, we can
get the time series complexity for free. Moreover, we only need O(1) space to save
the complexity of a candidate u-shapelet.

For this work, we have developed a novel one-dimensional lower bound of the
Euclidean distance between two time series using only the complexities of those time
series. Our claim is that, if we divide the difference in complexity between two z-
normalized time series by two, the resulting value is always less than or equal to their
Euclidean distance. We present our claim in Theorem 1,

Theorem 1 CD(P, Q)/2 ≤ ED(P, Q); where, P andQ are two time series of length

n; CD (P, Q) = abs(C (P) − C(Q)), and ED (P, Q) =
√∑n

i=1 (Pi − Qi )
2.

In order to enhance the flow of the paper, we defer the proof of Theorem 1 to
Appendix 1. In the remaining subsections, we show how this complexity-based lower
bound is exploited to speed up our u-shapelet discovery process.

5.2 Relationship between complexity and shapelet-score

We have discovered that there is a significant relationship between a time series
shapelet-score and its complexity. The plot in Fig. 8 illustrates one example of this
relationship on a particular dataset. Note that in line 9 of the extract u-shapelets algo-
rithm in Table 2, we compute gap to measure the goodness of a candidate u-shapelet.
We denote this gap as shapelet-score in the rest of the work.

Here we plot the complexity versus shapelet-score of 10,000 candidate u-shapelets
from Two-Pattern dataset. We observe that subsequences with high complexity have
low probability to be a u-shapelet. This observation holds for other datasets, although
the exact shape of the point cloud can vary. For the example in Fig. 8, we note that,
at least for this dataset, any subsequence with a complexity greater than six clearly
has no chance to be a u-shapelet. Moreover, if we start our u-shapelet search in the
ascending order of the complexities of subsequences (i.e., from left-to-right in Fig. 8),
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Fig. 8 The relationship between complexity and shapelet-score. Here the correlation is −0.30. Note that
computing the complexity of a single time series takes time dependent on the length of that time series only,
and can be done essentially for free during z-normalization. In contrast, computing the shapelet-score of a
single time series takes time dependent on the size of the dataset, and may take several orders of magnitude
longer than the complexity calculation. Thus we have discovered a very cheap approximate proxy for our
measure of interest, which we will exploit in several ways (Color figure online)

we will find the u-shapelet at the very early stage of the search, which in this particular
example is after examining just 3.2% of the data.

In order to demonstrate the utility of the complexity measure in accelerating the
u-shapelet discovery process, let us first consider the time required to find a u-shapelet
using brute-force search. If there are N time series in a dataset, and each time series
is n points long, then there are N × (n − m + 1) candidate u-shapelets of size m.
Thus, brute-force search takes O(N × (n −m + 1)) Euclidean distance computations
to compute the shapelet-score of one candidate u-shapelet and O((N × (n−m+1))2)
Euclidean distance computations to discover a u-shapelet. This is a very computation-
ally expensive process. Let us denote the total number of candidate u-shapelets as S,
and the total amount of time to discover a u-shapelet as O(S2).

Note that it takes only O(S) time to compute the complexity of all candidate u-
shapelets and O(S) space to save those complexities. Thus, the computation of com-
plexities is inconsequential compared to the number of computations required in the
brute-force algorithm. We can exploit these complexities to order the search of can-
didate u-shapelets, producing a more rapid convergence to high scoring candidates,
the desirable “diminishing returns” property of anytime algorithms. Moreover, as we
shall show in the next section, if we find a high-scoring u-shapelet best-so-far
in the early stages of our search, we can use its shapelet-score to admissibly prune off
many Euclidean distance computations.

5.3 Speeding up the discovery of U-shapelets

Our proposed method comprises of two novel optimization procedures which can
speed up the u-shapelet discovery independently of each other. Moreover, if we com-
bine the two optimization procedures, it results in a super linear speedup. The first
procedure optimizes the order of choosing the candidate u-shapelets and tends to pro-
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Fig. 9 Example of stop-word, complex candidate, and good candidate with their corresponding orderlines.
The complex candidates become noisier after z-normalization (Color figure online)

duce a very good best-so-far early in the search. The second procedure prunes
off Euclidean distance computations for candidate u-shapelets and can prune most
aggressively when the best-so-far has a larger value. Thus, both methods work
best in each other’s presence.

We begin by presenting some notation before describing the speed up techniques
in detail.

We note that there are essentially three types of candidate u-shapelets that we will
encounter and have to evaluate during search.

1. Stop word candidate u-shapelets. These have a very small nearest neighbor dis-
tance to almost every time series in the dataset. These candidates are like “stop-
words” in text processing (Silva and Ribeiro 2003). That is to say, they are so
ubiquitous that they have little or no discriminating power and are thus useless for
clustering.

2. Complex candidate u-shapelets. These candidate u-shapelets are noisy and have
a large nearest neighbor distance to almost every time series in the dataset. These
candidates are like hapax legomena in text processing (Silva and Ribeiro 2003);
that is to say, they are so rare that they have little or no discriminating power.

3. Good candidate u-shapelets. These candidate u-shapelets have a small nearest
neighbor distance from some time series but a large nearest neighbor distance
from some other time series (in essence, Definition 4)

In Fig. 9, using a single time series from the trace dataset, we present examples of
these three types of candidates along with their orderlines.

By definition, the third group contains the most promising candidates. Thus, if we
can find a method that helps us to identify the good candidate u-shapelets very early
in our search, then we can design a fast anytime algorithm for u-shapelet discovery.
Moreover, if the shapelet-score is high at the beginning of the search, we can exploit
the high shapelet-score to prune off a huge number of Euclidean distance computations
(cf. Sect. 5.3.2) and result in a faster exact algorithm.

Thus, in the first stepwe determine the order inwhichwewill consider the candidate
u-shapelets to compute their shapelet-score. We call this step outer loop ordering. In
the second step, inside the inner loop for each candidate u-shapelet, we use the best
shapelet-score that we have thus far to prune asmany Euclidean distance computations
as possible. We refer to our new algorithm as Outer Loop Ordering with Inner Loop
Optimization (OLLO) and present the algorithm in Table 6.
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Table 6 OLLO: An algorithm to speed up U-shapelet discovery

Algorithm: speeding up u-shapelet discovery

1. Optimize outer loop ordering using complexity

2. Prune off the Euclidean distance computations that are
unpromising in inner loop

5.3.1 Algorithm for optimizing outer loop ordering

If we could “magically” begin our u-shapelet search with the candidate u-shapelet
that has the highest shapelet-score, that would clearly be the best possible outer loop
ordering (the ordering of the remaining candidates would be irrelevant). However, this
is clearly not possible as it introduces a “chicken and egg” paradox. Therefore, we will
exploit the relationship between complexity and shapelet-score that we presented in
the last two subsections to design our Outer Loop Ordering algorithm.

In order to optimize the convergence rate of the outer loop, we compute an approx-
imate orderline for each candidate u-shapelet. The candidate u-shapelets that have
a high spread in their approximate orderline have high probability to be a good u-
shapelet, and are thus worth examining early in the search. We will refer to this spread
as approximate shapelet-score. To calculate this term from the approximate orderline,
we must first compute the approximate nearest neighbor distance of the candidate
u-shapelet to a time series in the dataset.

Definition 6 (Approximate nearest neighbor distance) It is the Euclidean distance
between a candidate u-shapelet and a subsequence in a time series which hasminimum
complexity difference with the candidate u-shapelet.

If the length of a time series is n and the u-shapelet length is m, then to find
the true nearest neighbor of a candidate u-shapelet in that time series, we need to
perform n × m Euclidean distance computations. However, we propose finding the
approximate nearest neighbor using only a single Euclidean distance computation.
If we randomly choose a subsequence to compare to the candidate u-shapelet, we
would generally expect it to be a poor match. However, we propose to compare with
the subsequence of the time series that has minimum complexity difference with that
candidate. The overhead for this is inconsequential, as the subsequence complexities
are calculated once and cached in a sorted list; however, this tends to produce a much
closer approximate nearest neighbor on average. The set of approximate distances from
the candidate u-shapelet to every time series in the dataset is called an Approximate
Orderline:

Definition 7 (Approximate orderline) An orderline that contains all the approximate
nearest neighbor distances of a candidate u-shapelet to all the time series of a dataset.

If there are N time series in a dataset, then it takes O(N ) time to compute the
approximate orderline for a candidate u-shapelet, which is trivial compared to the total
amount of Euclidean distance computations required to obtain an exact orderline. An
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Table 7 An algorithm for finding the optimal order of the candidate U-shapelets

Algorithm: Complexity-Based Outer Loop Ordering

For each candidate u-shapelet

1. Find approximate nearest neighbor distance from each time
series

2. Compute approximate shapelet-score

3. Sort the candidate u-shapelets in the descending order of
their approximate shapelet-score

Fig. 10 The complexities of a
time series in sorted order with
the pointers to the subsequences
(Color figure online)

Cn-2C1 C2 C3 CnCn-1C4 …… ……

exact orderline contains the exact nearest neighbor distances and it requires O(N ×
(n − m + 1)) time to compute the exact orderline. The approximate orderline allows
the calculation of an Approximate shapelet-score:

Definition 8 (Approximate shapelet-score) The difference between themaximum and
minimum point in the approximate order line.

The approximate shapelet-score is neither an upper nor a lower bound to the true
shapelet-score. However, the two are correlated, and thus, we can use the former as a
cheap-to-compute proxy for the latter when creating a search order.

We search candidate u-shapelets in the descending order of their approximate
shapelet-score. We summarize the steps for optimizing the outer loop in Table 7.
We refer to this candidate u-shapelets ordering as the complexity-based outer loop
ordering.

Wenote here that in order to speed up the search of an approximate nearest neighbor,
we must maintain a data structure. During the computation of the complexities of the
subsequences of a time series, we store them in sorted order. Thus, it takes just log(n)

time to find an approximate nearest neighbor of a candidate u-shapelet in a time series.
In Fig. 10, we illustrate the data structure for one time series. Here, C1,C2,C3, . . .Cn
represent the complexities of the subsequences in sorted order, and the pointers show
the positions of the subsequences with those complexities.

Before we move on to the next section, we will illustrate the improvement in
convergence rate we obtain using our optimization method for the outer loop.

Consider the Trace dataset, which contains 200 time series of length 275. Let
the length of u-shapelet be fifty. Thus, there are 45,200 candidate u-shapelets in the
dataset. Using brute-force search, it would require 45,199 Euclidean distance com-
putations to obtain the shapelet-score for one candidate u-shapelet. However, using
our complexity-based outer loop ordering, we find the best u-shapelet after just 2,086
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Fig. 11 Comparison of outer loop ordering with random ordering. Complexity-based outer loop ordering
is 21.6 times faster than random ordering (Color figure online)

Euclidean distance computations. We compared our method with random ordering,
the only obvious strawman. Fig. 11 shows the convergence plot for both approaches
by comparing the shapelet-score vs. percentage of Euclidean distance computations.
Here our outer loop ordering method converged to the final answer 21.6 times faster
than random ordering.

5.3.2 Pruning Euclidean distance computations in inner loop

The complexity-based outer loop ordering produces the desirable fast conver-
gence/diminishing returns property as required by anytime algorithms; however, the
absolute time to termination has not changed.Herewe consider an inner loop technique
to address this.

In order to speed up the computations in the inner loop, we leverage off the shapelet-
score we get from the outer loop ordering. We keep track of the shapelet-score that has
maximum value and call it best-so-far. For the candidate u-shapelet in hand, we
compute an inner loop approximate orderline, which is different from the approximate
orderline we described in the previous section.

Definition 9 (Inner loop approximate orderline) An orderline that contains the lower
bounds and upper bounds of the nearest neighbor distances of a candidate u-shapelet
to each time series of a dataset.

This definition begs the question, how do we obtain the lower bounds and upper
bounds of the nearest neighbor distances? Since the complexity difference between two
time series can give us a lower bound of their Euclidean distance (cf. Theorem 1), we
can say that the complexity difference of a candidate u-shapelet and a sub-sequence
of a time series that has minimum value can give us a lower bound of the nearest
neighbor distance.
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Definition 10 (Lower bound of a nearest neighbor distance) The complexity differ-
ence between a candidate u-shapelet and a subsequence from a time series that has
minimum value divided by two is a lower bound of the nearest neighbor distance of
the candidate u-shapelet to that time series.

Moreover, we can use the Euclidean distance between the candidate u-shapelet and
the subsequence that has minimum complexity difference as an upper bound of the
nearest neighbor distance.

Definition 11 (Upper bound of a nearest neighbor distance) The Euclidean distance
between a candidate u-shapelet and any subsequence from a time series is an upper
bound of the nearest neighbor distance to all subsequences.

From an inner loop approximate orderline, we compute an upper bound of a can-
didate’s shapelet-score and denote it as best-possible-score for the candidate. This
idea is worth explicitly rephrasing to avoid confusion. We are using an order line that
contains upper (and lower) bounds of Euclidean distance to compute an upper bound
of a candidate’s shapelet-score.

If this best-possible-score of a candidate is less than the best-so-far we have,
we can abandon that candidate because its shapelet-score can never be greater than
the best-so-far and thus it cannot become a u-shapelet. On the other hand, if
the best-possible-score is greater than the best-so-far, then we keep updating
the inner loop approximate orderline until the best-possible-score is less than the
best-so-far or we have computed the exact orderline. We summarize these steps
in Table 8.

Each time we update an inner loop approximate orderline, we update the upper
bounds and lower bounds. In order to get the nearest neighbor distance, we need to
update the upper bound and the lower bound until the lower bound is less than the
upper bound or we have searched all the subsequences of the time series. In Table 9,
we present an algorithm for updating the bounds.

In lines five to eleven, we update the lower bounds and upper bounds. We update
the lower bound with the next minimum complexity difference. If the lower bound
is less than the upper bound, then we compute the Euclidean distance between the
candidate u-shapelet and the subsequence with next minimum complexity difference.
If the Euclidean distance is less than the current upper bound, then we update the
upper bound with this Euclidean distance. Once there is a change in upper bound,
we return to line eight of Table 8 and check if the best-possible-score is less than the
best-so-far.

If there are N time series in a dataset, then for each candidate u-shapelet, we have
N points in the exact orderline, each of which represents a nearest neighbor distance.
Similarly, we should have N points in an inner loop approximate orderline. As we
have a lower bound and an upper bound of a nearest neighbor distance, this opens the
question of how to use these to compute the upper bound of the shapelet-score.

Before we answer the question, let us review the attributes of a u-shapelet. As
noted in Sect. 2, a u-shapelet separates all its nearest neighbor distances into two
distant groups (DA and DB). Moreover, a u-shapelet needs to have discriminative
power, i.e. each of the group should contain a certain amount of nearest neighbor
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Table 8 An algorithm to Prune Euclidean distance computations in inner loop

Table 9 An algorithm to update an inner loop approximate orderline

123



J. Zakaria et al.

0

shapelet-score for c

Exact-orderline at iteration N

best-so-far

c

Fig. 12 Exact orderline of a candidate u-shapelet (Color figure online)
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Fig. 13 A candidate u-shapelet and its approximate orderline inner loop at the (top) first iteration and
(bottom) ith iteration. After the first iteration, the best-possible-score is greater than the best-so-far
and we are forced to keep iterating. However, after the ith iteration the best-possible-score is less than the
best-so-far and we abandon the remaining Euclidean distance computations (figure best viewed in
color). Key: Points known by upper bound values only are in green; they can only move left if updated.
Points known by lower bound values only are in pink; they can only move right if updated. Points known
by their true values only are in blue (Color figure online)

distances. How we obtain the ranges was discussed in Sect. 2. Let us consider the
lower range as R1 and the upper range as R2. Clearly, R2 is greater than R1. The
readers will note that during iteration of the while loop in Table 8, we have T lower
bounds and T upper bounds, where T is the total number of time series in the dataset.
If we sort all the upper bounds and include R2 top upper bounds in the inner loop
approximate orderline and add lower bounds for the remaining points, we can obtain
the best-possible-score from that inner loop approximate orderline.

In order to illustrate the utility of inner loop optimization, we present a synthetic
example. Assume we have ten time series in a dataset and there are N candidate u-
shapelets. Therefore, to get the shapelet-score of one candidate u-shapelet, we need
N Euclidean distance computations. In Fig. 12, we present a candidate u-shapelet and
its exact orderline which requires N Euclidean distance computations.

Using our inner loop optimization, we can reduce the number of Euclidean distance
computations from N to some smaller value. In Fig. 13, we present the inner loop
approximate orderlines for the above example.

Our first inner loop approximate orderline requires ten Euclidean distance compu-
tations. Let, for the above example, our lower range R1 is two and our upper range
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Fig. 14 U-shapelet discovery using outer loop ordering and inner loop optimization. Note that this plot is
an updated version of Fig. 11 (Color figure online)

R2 is eight. Therefore, we put the top two upper bounds (marked with green) in the
inner loop approximate orderline and put eight lower bounds for the rest of the points
(marked with pink). If the best-possible-score that we get after the first iteration is
greater than the best-so-far, then we keep updating the inner loop approximate
orderline until the best-possible-score is less than the best-so-far. Note that the
green points can only move to the left (cf. the if block in lines eight to eleven in
Table 9), and the pink points can only move to the right (cf. line 5 in Table 9). Thus,
the best-possible-score can only decrease in the next iteration. Note also that the green
points can “jump over” with the pink points.

In order to illustrate the utility of inner loop optimization, we combine the inner
loop optimization with the plots in Fig. 11. That is to say, we combine inner loop
optimization with both complexity-based outer loop ordering and random ordering
and measure their performance. This time we find that our method converges to the
right answernine times faster than the randomordering (cf. Fig. 14). This demonstrates
that inner loop optimization helps to speed up u-shapelet discovery independent of
outer loop optimization, and if we combine inner loop optimization with outer loop
optimization, the speed up is even better.

We conclude this section with some results from two other datasets (Starlight-curve
and Mallat from UCR archive, Keogh et al. 2011). In both cases, our two methods
both terminate much earlier and converge much faster (Fig. 15).

6 Experimental evaluation

We have created a webpage (Jesin’s Webpage 2013), where we have further results in
addition to all datasets and code in order to ensure reproducibility.
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Fig. 15 Speed-up result on Starlight-curve and Mallat. The 100% marker on the X-axis is where the
brute-force algorithm (i.e. Table 2) terminates (not shown for clarity) (Color figure online)

6.1 Evaluation metrics and experimental setup

There are many different measures for evaluating the quality of time series clustering,
including Jaccard score, Rand index, Folkes and Mallow index, etc. (Halkidi et al.
2001). For brevity and clarity of presentation, we only consider the Rand index (Rand
1971). This appears to be the most commonly used clustering quality measure, and
many of the other measures can be seen as minor variants of it.

To compute the Rand index, we need the cluster labels cls1, returned by a clustering
algorithm, and the set of ground truth class labels cls2. Let A be the number of object
pairs that are placed in the same cluster in cls1 and cls2, B be the number of object
pairs in different clusters in cls1 and cls2, C be the number of object pairs in the same
cluster in cls1 but not in cls2, and D be the number of object pairs in different clusters
in cls1 but in same cluster in cls2. We can then compute the Rand index as follows
(Rand 1971):

Rand index = (A + B)/(A + B + C + D)

Values close to one indicate a high quality clustering.
For fairness, we do not present results on execution times for the various algorithms,

as we have optimized rival methods only for quality not for speed. For example, it
has been shown that for DTW, the quality of implementation can make at least a two-
order magnitude difference (Ding et al. 2008). Moreover, where possible, we take the
results directly from other authors’ papers. This is possible for quality, but essentially
meaningless for timing results. Note that in our real world case studies presented
below (geology, cardiology, electrical demand, etc.), the time to cluster the data is an
inconsequential fraction of the time to gather the data.

Unless otherwise stated, we use k-means as the underlying clustering algorithm.We
give the algorithm the objectively correct value of k where known and report the best of
twenty runs. Here, “best” means the run that minimized the objective function, before
we see the class labels and compute the Rand index. We do all this in order to allow
meaningful comparisons between variousmethods, aswe have “factored out” anything
extraneous that might influence the results. However, note that our algorithm (and
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most of the others) also allows spectral clustering, hierarchical clustering, etc. Except
where otherwise stated, we use the u-shapelet algorithm as introduced in Zakaria et al.
(2012a). The algorithm only searches the first element in the dataset for u-shapelets.
However, in Sect. 6.8 we will revisit this limitation.

6.2 Comparison to rival methods

Webegin by comparing the performance of ourmethodwith the clusteringmethod pro-
posed in Zhang et al. (2005). Zhang et al. proposed an unsupervised feature extraction
algorithm for time series clustering (Zhang et al. 2005)where they have used an orthog-
onal wavelet transform (Haar wavelet) to automatically choose the dimensionality of
features. They showed a performance improvement over other feature extraction tech-
niques, such as singular value decomposition (SVD) and discrete Fourier transform
(DFT).

We compare the clustering quality of extracted features—Zhang’smethod—and the
clustering quality of u-shapelets in Table 10.We tested ourmethod on three benchmark
datasets: Trace, Synthetic Control, Gun Point, from the UCR time series archives
(Keogh et al. 2011) and four datasets from Zhang et al. (2005) and Kalpakis et al.
(2001). Below, we present a brief description of all the datasets.

• Synthetic Control: contains 100 instances for each of the six different classes of
control chart (Ding et al. 2008).

• GunPoint: contains 100 instances for eachof the twoclasses and the dimensionality
of the data are 150 (Ding et al. 2008).

• ECG: contains seventy time series from three different groups of people. Each
time series is 2 s long. The groups are {malignant ventricular arrhythmia; normal
sinus rhythm, supraventricular arrhythmia}.

• Population: contains time series representing the population estimates from 1900
to 1999 in 20 U.S. states. The data is partitioned based on demographics (Zhang
et al. 2005).

• Temperature: contains thirty time series of the daily temperatures. The given
ground truth is based on geographical distance and climatology (Zhang et al.
2005).

• Income: contains 25 time series representing the per capita income from 1929 to
1999 in 25 states of the USA.

Note that in order to be rigorously fair to Zhang et al., we use the Rand index
numbers they reported (i.e. Table 8 of Zhang et al. 2005) on these datasets, not our
own reimplementation.

From the results in Table 10, it is clear that the use of u-shapelets generally gives
us a better clustering result than the feature extraction method (Zhang et al. 2005).
In Table 10, we also present the result when entire time series is used for clustering,
as this has shown to be a surprisingly good straw man (Ding et al. 2008; Keogh and
Kasetty 2002).

In the following sections, we present case studies from diverse domains, showing
that our general technique is competitive with specialized techniques, even when we
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Table 10 Comparison to rival methods

Dataset (# of class) Rand index Number of u-shapelets used

Extracted features
(Zhang et al. 2005)

u-shapelets Time series ED

Trace (4) 0.74 1 0.75 2

Synthetic-Control (6) 0.85 0.94 0.87 5

Gun Point (2) 0.49 0.74 0.49 1

ECG (3) 0.4 0.7 Not-defined 1

Population (2) 0.8 0.9 0.5 1

Temperature (2) 0.8 0.9 1 1

Income (2) 0.5 0.5 0.5 1

Highest rand index are given in bold

test on the datasets proposed by the original authors as ideal showcases for their own
techniques.

6.3 Rock categorization

Hyperspectral Remote Sensing collects and processes optically recorded information
from the electromagnetic spectrum. It is used worldwide in applications as diverse as
agriculture, mineralogy, and environmental monitoring and has seen lunar andMartian
deployments in the last decade.

We consider a dataset used in Cerra et al. (2011) to test a proposed compression-
based similarity measure for time series, the normalized compression distance (NCD).
The authors in Cerra et al. (2011) compared NCD with Euclidean distance, Spectral
Angle, Spectral Correlation, and Spectral Information Divergence on a set of 41 spec-
tra from three different classes of rock (Felsic, Mafix, Shale) and showed that their
proposed distance measure gives the best clustering results in this domain.

As shown in Fig. 16 (right), in this dataset, our method extracts just two u-shapelets.

(a) FELSIC
MAFIC
SHALE

0
0

40

0

0.025

0

(b)

2 nd u-s hh apelet

1 st u-s h

250

h apelet

250

Fig. 16 (left) 41 spectra analyzed. (right) u-shapelets used for clustering (Color figure online)

123



Accelerating the discovery of unsupervised-shapelets

Fig. 17 Hierarchical clustering, (left) using u-shapelets and (right) using NCD (screenshot of Fig. 4 from
Cerra et al. 2011). All blue lines are annotations added by us (Color figure online)

In Fig. 17 (left),we present the result of hierarchical clustering using the u-shapelets.
To help the reader compare our clustering result with Cerra et al. (2011), we have
included a screen capture of their best clustering result.

Because they produce an unrooted tree, it is difficult to calculate formal metrics of
success. Cerra et al. (2011) noted, “The evaluation is done by visually inspecting if
spectra belonging to the same class are correctly clustered in some branch of the tree,
i.e. by checking howmuch each class can be isolated by ‘cutting’ the tree at convenient
points.” If we cut the tree of Fig. 17 (right) at the points where we placed the blue lines,
we find that the eleven nodes encircled are not clustered correctly. Whereas, if we use
the two u-shapelets, only three Felsic and two Mafic rocks are clustered incorrectly.
This simple experiment suggests that our clustering method can be used to cluster
spectral signatures and it outperforms a variety of methods tuned for this application
domain.

6.4 Synthetic dataset (Shahriar)

While real datasets such as the one used in the last section are the most convincing
demonstrations of our algorithm, in this section (and the next) we consider synthetic
datasets created by other researchers. We do this to demonstrate two things. First,
the u-shapelets returned by our algorithm can offer insight into the data, and second,
our very general unsupervised approach is competitive even with approaches where
researchers design an algorithm, design synthetic datasets to showcase it, and provide
supervision (i.e. class labels to their algorithm).

We first consider a synthetic dataset consisting of ten examples from two classes
of univariate sequences (Shariat and Pavlovic 2011) (the small size we consider is to
allowdirect comparison to the original paper (Shariat and Pavlovic 2011), as it happens
we get perfect results over a wide ranges of data sizes). The first class is a sinusoidal
signal, while the second class is a rectangular signal, both of which are randomly
embedded within segments of Gaussian noise. In Fig. 18, we show two examples
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Sinusoidal signal Rectangular signal

0 ∞Orderline

Fig. 18 Two examples of sinusoidal signals and rectangular signals. Sinusoid u-shapelet and its nearest
neighbors in the signals are marked with red. The orderline shows the subsequence distances of the u-
shapelet (Color figure online)

of sequences from each class. Because the time series are of different lengths, the
Euclidean distance is not defined here. DTW can be used, but as the authors (Shariat
and Pavlovic 2011) show, the presence of noise and the misalignment of sinusoidal
and rectangular signals greatly degrade DTW’s performance.

In order to deal with the noise and themisalignment of signals, Shariat and Pavlovic
(2011) proposed an approach for sequence alignment based on canonical correlation
analysis (CCA). Their method, Isotonic CCA (IsoCCA), generalizes DTW to cases
where the alignment is accomplished on arbitrary subsequence segments, instead of on
individual samples. They used a 1-NN classifier and the leave-one-out cross validation
to classify the twenty signals and reported that the classification accuracy is 90%when
using IsoCCA and 60% when using DTW.

It is important to note that these results are for classification accuracy; that is to
say, this method requires class labels during training time. In contrast, our clustering
algorithm does not see class labels when it runs and evaluates the clusters using
classification accuracy on holdout data after the clustering is complete.

Using our method, the sinusoid signal is extracted as the sole u-shapelet, and by
using that u-shapelet, we can get 100% classification accuracy. In Fig. 18, we mark
the sinusoid u-shapelet discovered with its nearest neighbors in three other randomly
chosen time series in red/bold. The orderline illustrates the subsequence distances to
the sinusoid u-shapelet. We can see from the orderline in Fig. 18 that the Rand index
will be onewhenwe cluster the dataset using the subsequence distances of the sinusoid
u-shapelet.

To summarize, herewe can beat a rival approach, on the data created by the proposed
authors, even though they exploit class labels during training time, a luxury that we
deny our approach.

6.5 Synthetic dataset (Hartmann)

The attentive reader may wonder whether the superior performance of u-shapelets in
the previous section was due to the fact that there is no intra class variability within the
sinusoidal or rectangular signals. Fortunately, the datasets created in Hartmann et al.
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class 1 class 2 class 3 class 4

Fig. 19 Sample time series of synthetic dataset 2. Classes 1 and 2, and classes 3 and 4, are confused by
most clustering methods (Color figure online)

Fig. 20 U-shapelet from class 1
and the corresponding orderline
(Color figure online)

0

subsequence distances 
of other class 

u-shapelet

Orderline

(2010) allows us to test this. The dataset consists of four classes. All the time series are
composed of embedded class signals and additional noise; however, the class signals
have significant randomly-generated variations in length and height. Moreover, the
defining shapes of classes two and three are composed of the “sub-signal” shape of
classes one and four. In Fig. 19, we present two time series from each class of the
dataset.

Hartmann et al. (2010) shows that when they use their method on just class one and
class four, they can get good results. However, theirmethod performs poorly if required
to consider all four classes. We applied our algorithm to the same set of permutations
of classes as the original paper (Hartmann et al. 2010). In all cases, the Rand index
is much better than the original author’s results (modulo slight difference in how the
results are reported, Hartmann et al. 2010). For example, only one u-shapelet is used
for the class-1 versus class-4 variant, and the Rand index is perfect (equal to one);
Fig. 20 illustrates the u-shapelet and the corresponding orderline. The Rand index is
also perfect when we consider the more difficult class 2 versus class 3 variant, but our
algorithm uses four u-shapelets in this case.

Note that, once again, we are comparing with an algorithm that was co-developed
with a synthetic dataset designed to showcase the algorithms strength, and once again,
we easily beat the proposed algorithm.

Furthermore, the original authors solved the problem of supervised learning by
using prototypes or subsequences of the data, which they learned from the training
data. In contrast, we are clustering time series using u-shapelets or without any prior
knowledge about the dataset.

This experiment provides us with the perfect opportunity to clarify an important
point. There is no strict relationship between the number of clusters k and the number
of u-shapelets required to create k clusters. In particular, our algorithm requires four
u-shapelets to cluster class-2 and class-3 into the correct two clusters. To illustrate,
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Fig. 21 All the u-shapelets from class-2 versus class-3 version of Hartmann et al. (2010). (bottom right)
The blue curve shows Rand index relative to the ground truth, as we add u-shapelets. The red line shows
the Rand index if the whole time series is used for clustering. The green curve shows the change in Rand
index with the addition of u-shapelets. This curve correctly predicts that four u-shapelets is best for this
problem (Color figure online)

we show all the u-shapelets extracted by our method in Fig. 21 and show the change
in the Rand index as we add seven u-shapelets one by one. The last two u-shapelets
are just random noise because by that stage of the extraction, all meaningful patterns
have been discovered by our algorithm. Note that even though essentially random
u-shapelets are extracted in the late stages of our algorithms run, they do not affect
the clustering result, as shown by the blue curve in Fig. 21.

6.6 Clustering household devices

In order to reduce carbon emissions, the UK government has planned to equip 27 mil-
lion households with an intelligent metering system (cf. Fig. 22) at a cost of approxi-
mately £10 billion. As a useful by-product, these devices allow individuals to observe
their electricity consumption and decrease their carbon footprint. This project is sup-
ported by a Cambridge-based company, Green Energy Options (GEO), which has
installed the monitoring devices in 187 homes across East Anglia and recorded the
usage of individual devices (cf. Fig. 22 (left)) at 15min intervals for approximately a
year.

The clustering problem here is difficult because of the high intra-class variability.
Different houses use different devices during different times of the day. Moreover,
there is also variability among the power consumption of the devices depending on
the brand, etc.

Lines et al. (2011), classifies household appliances using these electricity usage
profiles. They derived a set of features (min, max, mean, skewness, etc.) to classify
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Fig. 22 (left) Examples of electricity usage profiles of a single day for the seven devices considered (screen
shot from Lines et al. (2011)), (right) smart energy management display system
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Fig. 23 Sample u-shapelets used for clustering (Color figure online)

the data. We used a subset of the dataset that contains 2,073 time series to test our
clustering method. Each time series corresponds to the electric usage profile of a
household item over 24h. If we use whole time series to cluster the dataset, the Rand
index is 0.56, whereas by using the u-shapelets, we can achieve a Rand index of 0.86.

In Fig. 23, we have shown some of the u-shapelets that also provide insight about the
data. For example, domain experts tell us that the two spikes shown in the dishwasher
class correspond to the rinse and clean cycles.

6.7 Clustering non-invasive fetal ECG

Automatic analysis of ECG signals is needed to improve diagnostic systems. For this
experiment, we have collected non-invasive fetal electrocardiograms (ECGs) signals
from PhysioNet (Goldberger et al. 1997), an online medical archive containing digital
recordings of physiological signals. As we have mentioned before, most classification
and clustering algorithms consider only single heartbeats. We have extracted signals
which are 3,000 points long. Each signal contains multiple heartbeats. The signals are
taken from a single subject during the 22nd and 38th weeks of pregnancy. The dataset
contains 948 such signals. As the reader can see from Fig. 24, the signals are not
aligned perfectly. As a result, when we use entire time series for clustering, the Rand
index is 0.63, which is close to random. However, using the u-shapelets, we achieve a
Rand index of 0.99.

Figure 25 presents the first u-shapelet and the corresponding orderline. Note that
for visual clarity, we plotted subsequence distances for ECG signals of week 22 and
week 38 in two different lines with two different colors. When we asked cardiologist
Dr. Helga Van Herle about the u-shapelets, she suggested that it corresponds to the
p-wave of the ECG signal, known to change as a function of the developing fetus’
changing heart morphology.
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Fig. 24 The misalignment between ECG signals (indcated by the gray hatch lines) recorded during (left)
22nd week and (right) 38th week of pregnancy (Color figure online)
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Fig. 25 (left) The 1st u-shapelet (red/bold) and (right) its corresponding orderline (Color figure online)

6.8 Comparison of exhaustive search with subset search

The experimental results that we have presented in Sects. 6.2–6.8 are based on search-
ing just a subset of the candidate u-shapelets. In particular, we only searched the first
time series in the dataset. As we have shown, the u-shapelets that we get from the
subset search can cluster the datasets very well, equaling or beating the obvious rival
methods. However, the u-shapelet that we get from a subset search is not guaranteed
to give us the best clustering result. There may exist datasets where the u-shapelet,
which we obtain from exhaustive search, gives us a better clustering result. In Fig. 26,
we have presented one such dataset where exhaustive search is better than the subset
search. We have used the Starlight-curve dataset from Keogh et al. (2011). There are
120 time series in the dataset, and each time series has 1024 points in it. The exhaustive
search gives us the red/bold marked u-shapelet that also has highest shapelet-score, as
measured by the Rand index. In contrast, we also ran subset search 120 times, each
time putting a different time series as the first one in the dataset. As we can see by the
blue/light marks in Fig. 26, searching a subset of the data generally produces inferior
results. Here, exhaustive search took about 34min, whereas each subset search took
5.3min. However, the extra time for the exhaustive search clearly pays dividends.

6.9 Scalability experiment

In this section, we present experimental results that test the scalability of our u-shapelet
discovery algorithm in Table 6. The dataset we consider contains 600 time series of
length 1,024 from the Mallat dataset [18]. We consider only a u-shapelet length of
100, and thus, there are 555,000 candidate u-shapelets for which we need to compute
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Fig. 26 Comparing exhaustive search with 120 invocations of subset search on randomly shuffled data.
Using exhaustive search, we found the u-shapelet denoted by the red/bold mark has the highest shapelet-
score and (tied) highest Rand index (Color figure online)
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Fig. 27 A test case where outer loop ordering with inner loop optimization takes 42.4h to complete
searching all the candidate u-shapelets, while brute-force search completes searching only 18.2% of the
candidate u-shapelets (Color figure online)

the shapelet-score. In order to compare the performance of our algorithm (OLLO) to
the brute-force algorithm, we tested OLLO and the algorithm in Table 6 on the same
dataset. As shown in Fig. 27, OLLO (green or thin curve) completes searching all
the candidate u-shapelets around five times faster than the brute-force search (blue or
thick curve).
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6.10 A discussion of absolute time requirements

In the experiments in the previous sections we have confined our timing evaluations to
the relative improvements over the original version of our algorithms, and measured
progress mostly in terms of number of candidates the algorithm must consider. Here
we address the questions of the scalability of rival methods, and the absolute times.

Themost obvious rival methods are clustering on extracted features with an off-the-
shelf clustering algorithm such as K-means. In Sect. 6.2 we choose clustering method
proposed in Zhang et al. (2005) as a representative example, however the literature
is replete with examples. Another obvious strawman is simply to feed the raw data
(not extracted features) into an off-the-shelf clustering algorithm. As we showed in
Table 10, these methods are always inferior to u-shapelets in terms of accuracy. This
is not surprising, these methods are explicitly required to consider all the data when
clustering, whereas u-shapelets are able, and almost always do, ignore most of the
data. The poor quality of their clusterings is not accompanied with bad news about
scalability, these methods are extremely fast. The slowest experiment using one of
these rival methods was the few seconds extracted features (Zhang et al. 2005) took
to cluster the ECG data. In contrast our method took around 2.5h on the same dataset.

Such lethargy is naturally undesirable, but consider the following; the Population
dataset took ten years to record, the Temperature dataset took one year to record, the
ECG dataset would cost about $22,000 USD to record (according to USC cardiologist,
Dr Helga Van Herle), the Household Device data took one year to record, and some
of the rock data considered in Sect. 6.3 required a trip to the Moon. Thus, given the
enormous cost in money and/or time require obtaining certain datasets, we feel that
few people will baulk at a day or two of CPU time.

7 Conclusion and future work

We have illustrated the importance of ignoring some data in order to cluster time
series in real world applications under realistic settings. We have further introduced
unsupervised shapelets and showed their utility. Additionally, we have proposed novel
methods that can speed up the u-shapelet discovery process significantly. Our method
can select representative u-shapelets from a time series without any human interven-
tion. We have shown the utility of our algorithm in very diverse real world settings,
including rock categorization, clustering household devices based on their electricity
usage profiles, and clustering ECG signals. Our very general method is highly com-
petitive, even when tested on datasets generated by other authors to explain their own
proposed algorithms. We have also tested our method with statistical based clustering,
the most obvious strawman.

Future work includes attempts to further exploit the complexity-based lower bound
introduced in this work, as it may have unity for speeding up the discovery of shapelets,
time series motifs, and time series discords.

Acknowledgments Thanks to all the donors of the datasets. This work was funded by NSF IIS—1161997
and a gift from Siemens.
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Appendix: Proof of Theorem 1

Theorem 1
√∑n−1

i=1
(Ai − Ai+1)

2 −
√∑n−1

i=1
(Bi − Bi+1)

2 ≤ 2

√∑n

i=1
(Ai − Bi )2 (10)

We will prove (10).

Proof Without loss of generality, assume

(A1 − B1)
2 ≤ (An − Bn)

2 (11)

(If not, reverse both A and B. That is, replace Awith (An, An−1, . . ., A1), and likewise
for B. Note that (10) holds for A and B iff it holds for A and B reversed.)

Note that the inequality (10) is equivalent to

d
(
A,A′) − d(B,B′) ≤ 2d(A,B) (12)

where d(X,Y ) is Euclidean distance, i.e., d (X,Y ) =
√∑n

i (Xi − Yi )2, and

A′ = (A1, A1, A2, A3, . . . An−1) ,

B ′ = (B1, B1, B2, B3, . . . Bn−1) .

So, to prove (10), it suffices to prove (12). Here is a proof of (10).
The triangle inequality holds for Euclidean distance. Applying it twice shows

d
(
A,A′) ≤ d (A,B) + d

(
B,A′) ≤ d (A,B) + d

(
B,B′) + d(B′,A′).

Rearranging gives

d
(
A,A′) − d

(
B,B′) ≤ d (A,B) + d(A′,B′) (13)

By inspection, d(A′, B ′)2 = d(A, B)2 − (An − Bn)
2 + (A1 − B1)

2, so

d
(
A′,B′) =

√
d(A,B)2 − (An − Bn)

2 + (A1 − B1)
2 (14)

Together with (11), this gives

d
(
A′,B′) ≤

√
d (A,B)2 = d(A,B) (15)

Substituting this into (13) gives,

d
(
A,A′) − d

(
B,B′) ≤ d (A,B) + d (A,B) = 2d(A,B) (16)

proving (12) which proves (10). ��
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