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Abstract

Minimum-weight triangulation (MWT) is NP-hard.
It has a polynomial-time constant-factor approxima-
tion algorithm, and a variety of e↵ective polynomial-
time heuristics that, for many instances, can find the
exact MWT. Linear programs (LPs) for MWT are
well-studied, but previously no connection was known
between any LP and any approximation algorithm or
heuristic for MWT. Here we show the first such con-
nections: for an LP formulation due to Dantzig et
al. (1985): (i) the integrality gap is bounded by a con-
stant; (ii) given any instance, if the aforementioned
heuristics find the MWT, then so does the LP.

1 Introduction

In 1979, Garey and Johnson listed minimum-weight
triangulation (MWT) as one of a dozen important
problems not known to be in P nor NP-hard [15]. In
2006 the problem was finally shown to be NP-hard
[28]. The problem has a sub-exponential time exact
algorithm [32], as well as a polynomial-time approxi-
mation scheme (PTAS) for random inputs [18]. It is
still not known whether, for some � > 1, finding a
�-approximation is NP-hard, but this is unlikely as
a quasi-polynomial-time approximation scheme ex-
ists [31]. MWT has an O(log n)-approximation al-
gorithm [30], and, most important here, an O(1)-
approximation algorithm called QuasiGreedy [24].
The constant in the big-O upper bound from [24] is
large (we estimate 100,000 or more).

If restricted to simple polygons, MWT has a well-
known O(n3)-time dynamic-programming algorithm
[17, 22]. Polynomial-time algorithms also exist for
instances with a constant number of “shells” [2] and
for instances with only a constant number of vertices
in the interior of the convex hull of V [16, §2.5.1],
[19, 4, 33, 23].
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Linear program of Dantzig et al. for MWT.
LP methods are one of the primary emerging

paradigms for the design of approximation algo-
rithms. For many hard combinatorial optimization
problems, especially so-called packing and covering
problems, the polynomial-time approximation algo-
rithm with the best approximation ratio is based on
linear programming, either via randomized rounding
or the primal-dual method. The design of a good
approximation algorithm is often synonymous with
bounding the integrality gap of an underlying LP.

MWT has several straightforward linear pro-
gramming (LP) relaxations. Studying their inte-
grality gaps may lead to better approximation al-
gorithms, or may widen our understanding of gen-
eral methods and their limitations. (Standard
randomized-rounding and primal-dual approaches
may be insu�cient for MWT approximation algo-
rithms.)

Dantzig et al. (1985) introduce the following LP
(presented here as reformulated by [9]). Below 4

denotes the set of empty triangles.1 R denotes the
region to be triangulated minus the sides of triangles
in4. The LP asks to assign a non-negative weightXt

to each triangle t 2 4 so that, for each point in the
region, the triangles containing it have total weight
1:

minimize c(X) =
X

t24
c(t)Xt, subject to(1.1)

X 2 R4
�0 and (8p 2 R)

X

t3p

Xt = 1.

Above, the cost c(t) of triangle t is the sum over the
edges in t of the cost c(e) of the edge, where c(e) is
|e|/2 (the length of e), unless e is on the boundary
of R, in which case c(e) = |e|. (Internal edges are
discounted by 1/2 since any internal edge occurs in
either zero or two triangles in any triangulation.) R

1
That is, triangles lying in the region to be triangulated,

whose vertices are in the given set of points, but otherwise

contain none of the given points.
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as specified is infinite, but can easily be restricted to
a polynomial-size set of points without weakening the
LP. (E.g., let R contain, for each possible edge e, two
points p and q, one on each side of e, very near e.)

For the simple-polygon case, the above LP finds
the exact MWT (every extreme point has 0/1 coor-
dinates, and so corresponds to a triangulation). This
was shown by Dantzig et al. (1985) [7, Thm. 7], then
(apparently independently) by De Loera et al. (1996)
[9, Thm. 4.1(i)] and Kirsanov (2004) [21, Cor. 3.6.2].
For summaries of these results, see [10, Ch. 8] and
[35]. Kirsanov describes an instance (a 13-gon with
a point at the center) for which this LP has integral-
ity gap just above 1, as well as instances (50 random
points equidistant from a center point) that are solved
by the LP but not by the LMT-skeleton heuristic.

Other authors have considered edge-based LP’s,
mainly for use in branch-and-bound [25, 26, 29, 34, 3].
These edge-based LPs have unbounded integrality
gaps. LPs for maximal independent sets, which are
well studied, are closely related to all the above
LPs, as triangulations can be defined as maximal
independent sets of triangles (or of edges). The
above LPs enforce some, but not all, well-studied
inequalities for maximal independent sets.

It is known to be NP-hard to determine whether
there exists a triangulation that uses only edges in a
given subset S [27]. If we change the cost function
in the above LP to c(X) =

P
e2S

P
t3e Xt, the

LP will have a zero-cost integer solution i↵ there
is such a triangulation. Thus, the LP with that
cost function has unbounded integrality gap (unless
P=NP). Thus, any analysis of the LP for MWT must
rely intrinsically on the cost function. (This is also an
obstacle for many randomized-rounding methods.)

First new result. We show that LP (1.1) has
constant integrality gap.

This is the first non-trivial integrality-gap up-
per bound for any MWT LP. To show it, we re-
visit the analysis of QuasiGreedy [24], which shows
that QuasiGreedy produces a triangulation of cost
O(|mwt(G)|), where |mwt(G)| is the length of the
MWT of G (and also the cost of the optimal integer
solution to the LP). We generalize and strengthen
their arguments to show that there exists a triangu-
lation of cost at most O(c(X⇤)), where c(X⇤) is the
cost of the optimal fractional triangulation (i.e., so-
lution to the LP).

Our analysis reduces the approximation ratio
in their analysis by an order of magnitude, but it
remains a large constant.

MWT heuristics. Much of the MWT litera-
ture concerns polynomial-time heuristics that, given
an instance, find edges that must be in (or out of) any
MWT. Here is a summary. Gilbert observe that the
shortest potential edge is in every MWT [17]. Yang
et al. extend this result by proving that an edge xy
is in every MWT if, for any edge pq that intersects
xy, |xy|  min{|px|, |py|, |qx|, |qy|} [37]. (We refer to
the edges satisfying this property as the Y XY sub-
graph.) This subgraph includes every edge connect-
ing two mutual nearest neighbors. Keil et al. show
(for some � > 1) that, if, for an edge pq, the two cir-
cles of diameter � · |pq| passing through p and q are
empty (of other vertices), then pq is in every MWT
[20]. Cheng et al. strengthen this to � ⇡ 1.17682 [6].
The set of such edges is called the �-skeleton. Das
and Joseph show that an edge e cannot be in any
MWT if both of the two triangles with base e and
base angle ⇡/8 contain other vertices [8]. Drysdale
et al. strengthen this to angle ⇡/4.6 [14]. This prop-
erty of e is called the diamond property. Dickerson et
al. describe a simple local-minimality property such
that, if an edge e lacks the property, the edge can-
not be in any MWT. Using this, they show that the
so-called LMT skeleton must be in the MWT [11].

A primary use of the heuristics is to solve some
instances of MWT exactly in polynomial time, as
follows: Given an instance, use the heuristics to
identify edges that are in the MWT. If the regions
left untriangulated by these edges are simple polygons
(equivalently, if the edges connect the given points)
then find the MWT of each region independently
using the standard dynamic programming algorithm.
(The MWT will be the union of the MWT’s of the
regions.) According to [11] (1997), most random
instances with 40,000 points are solvable in this way.

Second new result. We show that LP (1.1)
generalizes these heuristics in that if the heuristics
solve a given instance as described above, then so
does the LP (that is, the extreme points of the LP
are incidence vectors of optimal triangulations).

In fact the LP appears to be stronger than the
heuristics, in that some natural instances are solved
by the LP, but not by the heuristics [21, §3.5].2 In
this sense, the LP, whose formulation requires little
explicit geometry, generalizes all of these varied and
generally incomparable heuristics. This is the first
connection we know of between the heuristics and
any MWT LP.

2
Where C contains the center of a unit circle and n � 1

random points on the circle.
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Roughly, the heuristics are based on a combina-
tion of (i) local-improvement arguments about the
MWT and (ii) logical closure (once the heuristic de-
termines the status of one edge with respect to the
MWT, this in turn determines the status of other
edges, and so on). We extend these arguments to ap-
ply to the optimal fractional triangulation X⇤. This
is possible because (i) X⇤ looks “locally” like a MWT
and (ii) the LP enforces logical closure of linear con-
straints on X⇤.

After we finished the body of this work, we
became aware of and examined additional heuristics
by Wang et al. [36] and Aichholzer et al. [1]. We
conjecture that the LP generalizes them as well.

An equivalent formulation of the LP. The
following constraints are equivalent to the last con-
straints in LP (1.1) (see e.g. [9, Thm. 1.1(i),
Prop. 2.5], [35], or [21, Thm. 3.4.1]) and are useful
for reasoning about fractional triangulations. For any
fractional triangulation X and edge e,

(1.2)
X

t2S(e)

Xt �

X

t2T (e)

Xt = [e 2 boundary(R)].

Here S(e) contains the triangles that contain e and
lie on one side of e, while T (e) contains the triangles
that contain e and lie on the other side of e. (If e
is on the boundary, take T (e) = ;.) The notation
[x 2 S] denotes 1 if x 2 S and 0 otherwise.

Practical considerations. Using the O(n2)
constraints (1.2) instead of the constraints in (1.1)
gives an equivalent LP with total size (i.e., non-zeros
in the constraint matrix) proportional to the num-
ber of empty triangles. The empty triangles can be
identified, and the LP constructed, in time propor-
tional to their number [13]. Their number is always
O(n3), but often smaller (e.g. O(n2) in expectation
for randomly distributed points).

The time to construct and solve the LP can be
further reduced by a preprocessing step based on the
heuristics — remove any variable Xt if the heuristics
prove any edge of t to be out of every MWT, and
add a constraint

P
t2S(e) Xt =

P
t2T (e) Xt = 1

if they prove an interior edge e to be in every
MWT. For randomly distributed points, only O(n)
edges (in expectation) have the diamond property,
forming O(n2) possible empty triangles, from which
the modified LMT skeleton can be computed inO(n2)
time [11, 12]. On “typical” instances with 104 � 105

points, only a very small number of variables are
left undetermined by the heuristics. (For n random
points, the expected number is ⌦(n), but with an

apparently astronomically small leading constant [5].)
This allows standard LP software to quickly solve the
LP, and integer-LP solvers to quickly find the MWT.

Remarks. We do not give an algorithm per
se, and the integrality-gap bound, though constant,
is large. But both results suggest that the LP
of Dantzig et al. captures much of the structure
of MWT. This suggests a clear line of attack for
finding an approximation algorithm with reduced
approximation ratio: study the integrality gap of
the LP, trying systematic LP methods such as the
primal-dual method. If constantly many rounds of
lift-and-project (applied to the LP) yield an LP with
integrality gap 1 + ✏. Or, if randomized-rounding,
primal-dual, and similar approaches fail, this may
help us better understand their limitations.

2 Definitions

The interior of a segment pq is pq � {p, q}. The
interior of a polygon P consists of P minus its
boundary. Two sets properly intersect (or overlap,
or cross) if the intersection of their interiors is non-
empty. The (Euclidean) length of line segment pq is
|pq|. For any set E of segments, |E| is the total length
of segments in E.

A planar straight-line graph (PSLG) is an undi-
rected graph G = (V,E) along with a planar embed-
ding that identifies each vertex with a planar point
and each edge with the line segment connecting its
endpoints, so that each edge intersects other edges
(and V ) only at its endpoints. The length of G is
the sum of the Euclidean lengths of its edges. G
partitions the plane into polygonal faces.3 A face or
polygon is empty if its interior contains no vertex.

A diagonal, or potential edge, of G is any seg-
ment pq 62 E connecting two vertices of a face, and
contained in that face, so that G0 = (V,E [ {pq}) is
still a PSLG. A partition of G is a PSLG that ex-
tends G by adding (non-crossing) diagonals; equiv-
alently, the faces of the partition refine the faces of
G. A convex partition of G is a partition whose faces
are empty and strictly convex. The minimum-length
convex partition of G is denoted mcp(G). A trian-
gulation of G is a partition whose faces are empty
triangles. A fractional triangulation X is a feasible
solution to the LP.

3
Where two points are in the same face if there is a path

between them that intersects no edge, with the caveat that the

term face excludes the single such unbounded region.
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Formally, an instance of MWT is specified by
a planar point set V , implicitly defining a PSLG
G = (V,E) where E contains the edges on the
boundary of the convex hull of V . A solution is a
minimum-length triangulation of G.

Throughout, we fix an instance G = (V,E) of
MWT specified by a given point set V . Unless stated
otherwise, every graph considered is a partition of G.
Since the vertex set V is the same for all such graphs,
we identify each graph with its edge set.

3 LP (1.1) has constant integrality gap

Proposition 3.1. Given any instance G = (V,E)
of MWT, for any fractional triangulation X, there
exists an integer solution of value O(c(X)). Thus,
LP (1.1) has constant integrality gap.

The rest of this section proves the proposition.

Fix the mwt instance G and an arbitrary frac-
tional triangulation X. For now, also fix an arbitrary
convex partition C. (Later, we will specify how to
choose C.)

Summary of proof. The idea is to define a
sort of “rounding” procedure that converts X into
the desired integer solution. The main step of
the procedure converts X into a separate fractional
triangulation Xf for each face f of C (covering just
f). Next, independently within each face f of C, the
procedure replaces the fractional triangulation Xf

by the optimal integer triangulation of f . The final
“rounded” solution is then the union of these integer
triangulations (one for each face f of C), of total cost
at most

P
f2C c(Xf ) (and, hopefully, O(c(X))).

In the second step, since each f is a simple poly-
gon, it follows from known results (e.g. [7, Thm. 7];
see the introduction) that the cost of the integer tri-
angulation of f is at most the cost of Xf . Thus, the
integrality gap will be O(1) as long as the main step
triangulates the faces so that

P
f c(X

f ) = O(c(X)).

The proof divides into two parts: (1) defining the
rounding procedure and showing that it produces a
feasible fractional triangulation Xf of each face f ,
and (2) showing that

P
f c(X

f ) = c(X).

Proofs of the main theorems are postponed to
subsequent sections.

The rounding procedure. In addition to the
given G, X, and C, let f be an arbitrary face of the
convex partition C.

To convert X into a fractional triangulation Xf

of f , start by focusing on just the triangles that cross
f and have positive weight in X. We “break” each

such triangle t into a set btf of triangles within t.
Then, in Xf , we give each triangle in btf weight Xt.

To break each triangle t into a set btf of triangles
in f , we leverage the concept of edge transposals from
[24, (see e.g. Lemma 4.2)]. The reader may skim the
details of the definition on first reading.

Definition 3.1. (transposals of triangles)

Given a triangle t crossing face f , the triangulated
transposal btf of t (in f) is obtained as follows. First,
orient4 each edge e of t so that t lies to the right of
e. Next, for each edge e of t independently, obtain
its edge transposal in f , denoted ef , as follows:

1. Clip e to ẽ = e \ f .

2. Obtain ef by sliding each endpoint p of ẽ to an
“adjacent” vertex of f : if p is a vertex of f , leave
it there, otherwise p lies in one edge Y Z of f ,
slide it to Y or Z, choosing the destinations of
the endpoints to minimize |ef | (and breaking ties
consistently).

3. Let ef inherit e’s orientation in the natural way.

Now define the (non-triangulated) transposal tf

of triangle t to be the polygon containing those points
in f that, for every each edge e of t, lie to the right
of its transposal ef .

Define the triangulated transposal, btf , of t to be
a minimum-length triangulation of the transposal tf .
If tf has no area, then btf = ;.

The transposal tf has at most six sides. It might have
no area.

Below is a convex face f (with vertices
A,C,D, F,G) blanketed by a collection of triangles
(numbered 1-6, with thin edges). To the right of that
each triangle is clipped into the face. To the far right
are the transposals of the triangles. The only trian-
gles whose transposals have positive area are triangles
3 and 4; their respective transposals are the 4-gon la-
beled 3 and the 3-gon labeled 4 (shown to the far
right). (The dashed, gray arrow extending from each
edge points towards its edge transposal. The only
edge transposal that does not lie on the boundary of
f is (Ae)f = AD.)

A

1
2
3
4 5 6

1
2
3
4 5 6

3

4

b C
D

e
F

G

h

A C
D

F
G

A C
D

F
G

A C
D

F
G

3
4 5 6

1
2

4
I.e., order the two endpoints.
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The fractional triangulation Xf of face f is then
obtained (from X) simply by giving weight Xt to
each triangle s in the triangulated transposal btf of t:

Definition 3.2. (transposal Xf
of X in f)

The transposal of X in f , denoted Xf , assigns
to each potential triangle in s in f the weight
Xf

s =
P

t:s2btf Xt. (Here t ranges over triangles that
cross f . More than one t may contribute to Xf

s .)

That Xf is a fractional triangulation of f is not
immediate from the definition. This requires proof:

Theorem 3.1. The transposal Xf of X in f is a
fractional triangulation of f . That is, it covers the
points in f uniformly with weight 1.

Section 3.1 gives the proof. The proof uses two
observations — (1) for any given f , the fractional
triangulation X, restricted to triangles that cross f ,
can be decomposed into layers, each of which looks
like an actual triangulation (but possibly extending
outside of f), and (2) within each layer, the triangles
can be collectively “morphed” into their triangulated
transposals, while maintaining uniform coverage of f .

Bounding the cost. Having defined the frac-
tional triangulation Xf of each face f , it remains to
bound their total cost

P
f c(X

f ) (over all faces of C).

The bound will depend on the sensitivity of the
edges of C, defined as follows:

Definition 3.3. (sensitivity) An edge e is r-
sensitive if, for any potential edge d that crosses e,
for each endpoint x of d, the distance from x to its
closest endpoint of e is at most r|d|.

The core of the cost bound is this theorem:

Theorem 3.2. If every edge in the convex partition
C is r-sensitive, then

P
f c(X

f ) is at most 3|C| +
12r c(X).

Section 3.2 gives the proof, which is based on several
observations. (1) Although a given triangle t can
cross arbitrarily many faces, and has a transposal tf

in each of those faces, t crosses at most two faces in
which its transposal has positive area. Thus, t can
contribute to the cost of at most two faces. (2) the
cost of any transposal tf of t (not counting the edges
in C) cannot exceed the cost of t by much. This
follows from the definition of edge transposals and
the sensitivity of C’s edges, which imply that, for
each edge e of t, the transposal of e cannot be much

longer than e. (3) Each transposal tf has at most six
sides, so triangulating it to obtain the triangulated
transposal btf increases the cost by a constant factor.

Thm. 3.2 gives an upper bound of 3|C|+12r c(X).

To use this bound we need C to have |C| =
O(c(X)) and r = O(1). Existing results by Levcopou-
los and Krznaric’s get us most of the way there:

Theorem 3.3. ([24]) For some constant � > 0, and
any MWT instance G, there exists a convex partition
lk of G, whose edges are 4.45-sensitive, having total
length |lk|  � |mcp(G)|. (Recall that mcp(G) is the
minimum-length convex partition of G.)

Proof. Levcopoulos and Krznaric show that what
they call the quasi-greedy convex partition has these
properties: for Property (1), see their Lemma 5.4 and
the discussion before it; for Property (2), see their
Corollary 5.3 [24]. ⇤

We now fix the (previously arbitrary) convex
partition C to be the partition lk from Thm. 3.3.
To use the bound in Thm. 3.3, we need to show that
|mcp(G)| is O(c(X)).

This is relatively easy. Using the constraints on
X and a previous analysis of mcp(G) due to Plaisted
and Hong [30, Lemma 10], we show the following
bound:

Lemma 3.1. |mcp(G)|  18 c(X)

The proof is in Section 3.3.

Finally, combining the two theorems and the
lemma, the cost of the final integer triangulation is
at most

P
f c(X

f ) As each f is simple.

 3|lk|+ 12 r c(X) By Thm. 3.2.

 3�|mcp(G)|+ 54 c(X) By Thm. 3.3.

 3� · 18 c(x) + 54 c(X) By Lemma 3.1.

= 54(�+ 1) c(X)

Above � is the constant from Thm. 3.3. (Although
� is large, the bound above is still substantially
smaller than the approximation ratio proven for
QuasiGreedy in [24].)

This (with the proofs of Thm. 3.1, Thm. 3.2, and
Lemma 3.1 below), proves Proposition 3.1.
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3.1 Proof of Thm. 3.1. Let G, X, C, and f be
as above. We start with the observation that the
fractional triangulationX, restricted to triangles that
cross f , can be decomposed into a weighted sum of
incidence vectors of what that we call blankets:

Definition 3.4. (blanket) A set B of empty poly-
gons with endpoints in V blankets the face f if the
union of the polygons contains f and no two of the
polygons overlap within f (they may overlap outside
f).

If the polygons in B are triangles, the transposal
of B (in f), denoted Bf , is the set containing, for
each triangle t 2 B, the transposal tf of t. That is,
Bf = {tf | t 2 B}. The triangulated transposal,
denoted bBf , of B (in f) is just the (multiset) union,
over all triangles t 2 B, of the triangulated transposal
of t. That is, bBf =

S
t2B

btf .

The next lemma says that, over f , X can be
decomposed into a weighted sum of blankets.

Lemma 3.2. There exists a set B of blankets, with
a weight ✏B > 0 for each B 2 B, such thatP

B2B ✏B = 1 and, for every triangle t crossing f ,
Xt =

P
B2B [t 2 B] ✏B .

(Recall “[t 2 B]” is 1 if t 2 B, else 0.)

Proof. Recall that, for instances consisting of a sim-
ple polygon, the LP gives optimal 0/1 solutions
(e.g., [7, Thm. 7]). We adapt a proof of that property.

Choose any triangle t that crosses f and has
Xt > 0. If any edge e of this triangle crosses (the
interior of) f , since e has positive weight, there must
be a positive-weight triangle s that has e as an edge
and lies on e’s opposite side (see Constraint (1.2)).
Glue t and s together to form a polygonal region.
Continue in this way, growing the polygonal region
by repeatedly gluing a new triangle to any boundary
edge e that crosses f . Stop when the region has no
such boundary edges. The triangles glued together in
this way must form a blanket B of f .

Let ✏B be the minimum weight of any triangle in
B. This gives the first blanket B and its weight ✏B .
Subtract ✏B from each Xt for t 2 B. This reduces
X’s coverage of f uniformly by ✏B . To generate the
remaining blankets in B (and their weights), iterate
this process as long as X still covers f with positive
(and necessarily uniform) weight.

(The process does terminate, as each iteration
brings some Xt to zero.) ⇤

We will also use the following lemma, whose
(long) proof we delay.

Let f 0 denote f minus points on potential edges.

Lemma 3.3. For any blanket B 2 B, the triangulated
transposal bBf of B also blankets f .

(The lemma is essentially the theorem we are proving,
restricted to the special case when the triangles t
crossing f have integer weight Xt 2 {0, 1}, i.e., those
with Xt = 1 blanket f .)

Fix any point p 2 f 0. We will use the lemmas
above to show that Xf covers p with weight 1.

Restrict attention to triangles t that cross f .
Recall that Xf is obtained from X by “transfer-
ring” weight Xt from each triangle t to the trian-
gulated transposal of t. So Xf covers p with weightP

t

P
s2btf [p 2 s]Xt.

By Lemma 3.2, each weight Xt can be split into
the sum of the weights of the blankets B containing
t. That is, Xt =

P
B2B[t 2 B]✏B .

Combining these two observations, Xf covers p
with weight

X

t

X

s2btf
[p 2 s]

X

B2B
[t 2 B]✏B

=
X

B2B
✏B

X

t2B

X

s2btf
[p 2 s]

=
X

B2B
✏B

X

s2 bBf

[p 2 s].

The final sum on the right,
P

s2 bBf [p 2 s], is the
number of triangles that cover p in the triangulated
transposal of B. By Lemma 3.3, this number is 1.
Thus, each blanket B contributes ✏B to the coverage
of p by Xf . Thus, Xf covers p with weight

P
B2B ✏B ,

which equals 1.

To finish proving Thm. 3.1, we prove Lemma 3.3.

The idea is to morph B continuously into its
(non-triangulated) transposal Bf = {tf | t 2 B}.
Specifically, morph the edges of triangles in B as
follows: First, for every triangle edge e, clip e to the
chord e\f of f , giving a set of chords. Next, for every
side Y Z of face f (in any order), do the following
step: simultaneously, for every chord za having an
endpoint z 2 Y Z, slide the endpoint z continuously
along Y Z at unit rate to the corresponding endpoint
(Y or Z) of za’s transposal zaf . As the endpoint z
moves, move the chord za as well (as shown below).

Below are the start, middle, and end of one step
of the morphing process for a single side Y Z of f . The
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moving chords are labeled 1-9. Chords not touching
Y Z don’t move and aren’t shown.

Y Z

1 2 3 4 5 67
8
9

Y Z

1
2 3 4 5 6

78
9

Y Z

1 2 3 4 5 6
78
9

z

a

z

a

z

a

This morphing process morphs each edge e of
each triangle t 2 B to the chord e \ f , and then
morphs that chord continuously until it arrives at its
transposal, ef . We will show below that as the chords
move no crossings are introduced. Thus, the following
invariant is maintained: the regions (each one coming
from a triangle t 2 B) collectively blanket f .

Clearly each triangle t 2 B (after being clipped
to t \ f) is morphed into its transposal tf . Thus,
the final set of regions is exactly Bf , which (by the
invariant) must blanket f .

Since the triangulated transposal bBf of B is ob-
tained from B simply by triangulating each polygon
in bBf (preserving the exact covering of f 0), the lemma
follows.

To complete the proof, we show that during
morphing no chords cross. Consider the step for any
side Y Z of f .

Observation: As the endpoint y of a chord ya slides
along Y Z, the transposal of ya is invariant.

Proof. By the definition of transposal, yaf = yaf for
any z that is (with y) in the interior of Y Z. Thus,
the transposal doesn’t change while y stays in the
interior of Y Z. And, if (e.g.) y is moving towards
Y , then Y A is the transposal of ya, so Y must be a
closest point in {Y, Z} to A. This implies that the
transposal of Y a is also Y A. Thus, when the chord’s
endpoint y arrives at Y , the transposal of the chord
does not change. ⇤

The observation implies that the morphing pro-
cess indeed maps each edge e of each triangle t 2 B
to its transposal ef .

For any two points y, z 2 Y Z,
let y � z denote that y comes before
z when traveling from Y along Y Z.
Overloading notation, for any two
points a and b on the boundary of
f , minus Y Z, let a � b denote that

Y Z

a

y z

b

a comes before b when traveling from Y to Z along
the boundary minus Y Z. (In the diagram, y � z and
a � b.)

Now let ya be an arbitrary chord such that the
step slides y towards Y . Let zb be an arbitrary
chord such that the step slides z towards Z. To
finish the proof, we will show that y � z. Thus,
the morphing process does not cause chords to cross.
(On consideration, this implies that each triangle
t, after being clipped to t \ f , gets morphed to a
corresponding region tf with the claimed properties.)

Fix A and B such that the transposals of ya and
zb are Y A and ZB, respectively.

Observation: If b � a, then B � A. (Transposing
preserves the order of the non-Y Z endpoints.)

Proof. In the case that a and b both lie in the interior
of a single side of f , it must be that the transposals of
ya and zb are the same (because y and z are also both
in the interior of a single side, Y Z), so A equals B
(so B � A). In the remaining case (by the definition
of transposal), there exist two distinct sides PQ and
RS (other than Y Z) of f such that a,A 2 PQ and
b, B 2 RS. Since b � a, this implies B � A. ⇤
Observation: A � B.
Proof. Since Y A is the transposal of
ya, point Y must be a closest point
in {Y, Z} to A; that is, A must lie
on the Y -side of the bisector of Y Z.
Likewise B must lie on the Z-side of

Y Z

A B
the bisector. It follows from the convexity of f that
A � B. And, since ties are broken consistently in
choosing transposals, it cannot be that A = B. ⇤

The last two observations imply that a � b.
Assuming inductively that chords ya and zb are non-
crossing at the start of the step, this implies that y �

z. Thus, as y slides towards Y and z slides towards Z,
the chords remain non-crossing throughout the step.

This concludes the proof of Thm. 3.1.

3.2 Proof of Thm. 3.2. We want to bound the
total cost of the fractional triangulations that X
induces in all faces f of C, that is,

P
f c(X

f ).

In this section, for convenience, we define c(btf ) =
c(tf ) = 0 if t does not cross f or if tf has area zero.
We will prove the following lemmas:
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Lemma 3.4: Any given triangle t crosses at most
two faces f in which its transposal tf has positive
area. Thus, for a given t, only two faces f have
c(tf ) > 0.

Lemma 3.5: For any triangle t and face f , the cost
of tf minus the edges in C is at most 2r times
the cost of t. (Recall that r is the sensitivity of
C’s edges.)

Lemma 3.6: The cost of the triangulated transposal
btf is at most three times the cost of the (non-
triangulated) transposal tf .

Before we prove the lemmas, we note that they
imply the theorem as follows. The total cost is

P
f c(X

f ) =
P

f,t Xt c(btf ) by def’n of Xf

 3
P

f,t Xt c(tf ) by Lemma 3.6

 3|C|+ 6r
P

t,f Xt c(t) [c(tf ) > 0] by Lemma 3.5

 3|C|+ 12r
P

t Xt c(t) by Lemma 3.4

= 3|C|+ 12r c(X).

Lemma 3.4. Given any triangle t, there are at most
two faces f of C in which t’s transposal tf has positive
area.

Proof. Fix a triangle t = �ABD and consider how
the faces of C can overlap t. Say that a face is
accommodating if t’s transposal tf in f has positive
area.

We start with two examples.

3

4

5

2

1

1

3

4
6

5

7

8

2

B B
A A

D D

Above, each dashed edge is the edge transposal
of an edge of t. Within each accommodating face, the
(positive-area) transposal of t is dark.

We claim that every accommodating face touches
all three edges of t (where touching an endpoint of
an edge counts as touching the edge). (For example,
the accommodating faces 2 on the left, and 2 and 5
on the right, touch all three edges of t. Each other
face is non-accommodating and, except for 3 and 4
on the right, touches only two edges of t.) The claim
holds because, if a face f touches only two edges of t,

then f \ t lies within a “corner” of t. Then two of t’s
edges must cross the same two sides (or vertices) of
f in the same way, and those two edges will have the
same transposals (directed oppositely), forcing tf to
have no area.

Now consider the case that t has a face f that
touches the interior of all three edges of t (as in the
figure to the left, above). Since no other face f 0 can
cross f , no face other than f can touch all three
edges of t. By the claim, then, only face f might
be accommodating, so the lemma holds.

So assume that no face touches the interior of all
three edges of t.

By the claim, any accommodating face f still has
to touch all three edges of t, but now there is at
least one edge, say AB, of t whose interior f avoids.
Thus, f must touch AB at an endpoint, say, B. (For
example, consider the figure on the right above. Faces
2, 3, 4, and 5 touch all three edges of t, but not all
three interiors.) Since f touches AB at B, but does
not touch the interior of AB, there must be an edge
Bx of f that extends through the interior of t. Since
x is not inside t, Bx must cut across t to the interior
of the edge AD. Thus, any accommodating face f
must share some vertex v with t, and an edge of the
face must extend from v across the interior of t.

If there are two accommodating faces, they must
extend an edge across t from the same vertex v, for
otherwise the extending edges would cross inside t.
Let this vertex be B.

Now consider all edges in C that extend from
B across the interior of t. Let these edges be
Bx1, Bx2, . . . , Bxk, rotating in order around B. (In
the picture above, k = 3.) C has k+1 corresponding
faces f0, f1, . . . , fk, also in order rotating around B,
where fi�1 and fi share edge Bxi. By the conclusion
of the paragraph before last, only these k + 1 faces
might be accommodating.

To finish, we observe that fi is not accommodat-
ing unless i 62 {0, k} (the first or last face). Indeed,
for i 62 {0, k} edges Bxi�1 and Bxi of fi extend from
B across t to AD. Since these edges touch at B, the
transposal of AD in fi is thus just the point B. Thus,
the transposal of t in fi has no area. ⇤

Lemma 3.5. Assume C’s edges are r-sensitive. For
any face f and triangle t, the total cost of the edges
that are t’s transposal in f but not in C is at most 2r
times the cost of t.

Proof. Let f be any face of C and e be any edge
that crosses f . We claim that the length of the edge
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transposal ef of e in f is at most 2r times the length
of e. This claim implies the lemma, because each
edge in the transposal of t, but not in C, is the edge
transposal ef of an edge e in t that is not on the
boundary of f . We prove the claim.

For an edge e that crosses a face f one of the
following cases holds: (1) e is incident to two vertices
of f , or (2) e is incident to one vertex of f and
properly intersects one s side of f (as in the figure on
the left below) or (3) e properly intersects two sides
s and s0 of f (as in the figure on the right below).

s

s0

f

B
A

B0

e

f

e

s

ef

ef

In case (1), the transposal ef of e is the same as e,
so the claim holds. In case (2), since s is r-sensitive,
and ef is the shortest segment from the endpoint of
e to an endpoint of s, |ef |  r|e|. In case (3), let A
be an endpoint of e and let B and B0 respectively be
the closest endpoints of s and s0 to A. Because ef

is the shortest segment from an endpoint of s to an
endpoint of s0, |ef |  |BB0

|.

By the triangle inequality, |BB0
|  |AB|+ |AB0

|.

Because s and s0 are r-sensitive, |AB| and |AB0
|

are each at most r |e|, proving the lemma. ⇤

Lemma 3.6. For any face f and any triangle t, the
cost c(btf ) of the triangulated transposal of t in f is at
most three times the cost c(tf ) of the transposal of t
in f .

Proof. As observed previously, tf is a convex polygon
with at most six sides. Let set B contain the edges in
tf . Let set D contain (up to three) diagonals of tf ,
connecting alternating vertices around the boundary
of tf such that B[D partition tf into a triangulation
T (a set of triangles).

Recall that c(e) = |e|/2 for each e 2 D, while
c(e) 2 {|e|/2, |e|} for e 2 B. By the choice of
diagonals, |D|  |tf |, so c(D) =

P
e2D c(e)  c(tf ).

Clearly c(B) =
P

e2B c(e) = c(tf ).

Each edge in B occurs in one triangle in T ,
while each edge in D occurs in two. Thus, c(T ) =P

t2T c(t) = c(B) + 2 c(D)  3 c(tf ).

The lemma follows, as c(btf )  c(T ). ⇤

This concludes the proof of Thm. 3.2.

3.3 Proof of Lemma 3.1. For every vertex v in
the interior of V , define a star at v to be a subset
of edges incident to v such that no two successive
edges (around v) are separated by an angle of 180
degrees or more. For every vertex v on the boundary
of V , define the (only) star at v to consist of the two
boundary edges incident to v. Let Smin(v) denote the
minimum cost of any star at v. Plaisted and Hong
show |mcp(G)|  6

P
v Smin(v) [30, Lemma 10].

We claim
P

v Smin(v)  (3/2)
P

v

P
e3v Xe|e|.

As
P

v

P
e3v Xe|e| = 2

P
e Xe|e| = 2 c(X), this

implies the lemma.

We prove the claim.

It’s easy to see that, for any boundary vertex v,
Smin(v) =

P
e3v Xe|e|, so restrict attention to just an

interior vertex v and its edges.

Because X satisfies con-
straint (1.2), rotating around v,
there is a sequence e1, e2, . . . , ek
of edges such that each ei forms
a positive-weight triangle with
its “neighboring” edge ei+1 (e1
if i = k).

Call this sequence of edges a helix, h. Let w(h)
denote the number of times h wraps around v. Let
Nh

e be the multiplicity of e in h. By a standard
construction the Xe’s can be expressed as a linear
combination of incidence vectors of helices. (Similar
to Lemma 3.2’s proof, repeatedly find a helix h,
choose weight ✏h, and subtract ✏hN

h
t /wh from each

Xt, reducing coverage near v by ✏h.) This gives a
probability distribution ✏ on helices such that each
Xe =

P
h ✏h N

h
e /w(h).

Now choose a helix h at random from the prob-
ability distribution ✏. Break (partition) h greedily
into disjoint groups of contiguous edges such that
each group g is maximal subject to the constraint
that the neighboring edges’ angles in g’s total at most
360�. (In the figure, white triangles separate groups.)
Consideration shows that each group contains a star,
and (as neighboring groups are separated by at most
180�), there are at least d360w(h)/(360 + 180)e =
d2w(h)/3e groups.

From the randomly chosen h, choose a group g
uniformly at random from h’s first d2w(h)/3e groups.

For any given edge e, the probability that e is in
g is at most

P
h ✏h N

h
e /(2w(h)/3) = (3/2)Xe. Thus,

by linearity of expectation, the expected total length
E[|g|] of edges in g is at most (3/2)

P
e3v Xe|e|. On

the other hand, g contains a star, so E[|g|] � Smin(v).
This proves Lemma 3.1.
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4 LP (1.1) generalizes MWT heuristics

Fix any MWT instance G = (V,E). It is known that
any of the following conditions implies that a given
potential edge e of G is in every MWT of G.

�-skeleton: For � ⇡ 1.17682, the two disks of
diameter � |e| having e as a chord are empty
[20, 6].

Y XY -subgraph: Every potential edge pq that
crosses e = xy has |e|  min{|px|, |py|, |qx|, |qy|}
[37, 17].

maximality: Every potential edge that crosses e is
known to be out of every MWT (see e.g. [11]).

Similarly, any of the following conditions implies
that a given potential edge e of G (not on the
boundary of the region to be triangulated) is out of
every MWT of G.

independence: Some potential edge that crosses e
is known to be in every MWT e.g. [11].

diamond: Neither of the two triangles with base e
and base angle ⇡/4.6 are empty [8, 14].

LMT skeleton: For every two triangles t and t0 for
which e is locally minimal, one of the edges of t
or t0 is known to be out of every MWT [11].

In the LMT-skeleton condition, e is locally minimal
for two triangles t and t0 if t \ t0 = e and t and t0

together are a minimum-length triangulation of the
quadrilateral Q = t [ t0 — that is, either Q is non-
convex, or e is at least as short as the other diagonal
of Q.

Let E⇤ denote the set of edges that can be
deduced to be in every MWT by applying the logical
closure of the above six rules. (Logical closure
is necessary because the maximality, independence,
and LMT-skeleton conditions depend on the known
statuses of edges other than e. For example, if one
of the conditions implies that some edge e is out of
every MWT, then the LMT-skeleton condition may
then in turn imply that some new edge e0 is out of
every MWT, because e lies on one of two triangles t
or t0 for which e0 is locally minimal.)

Ideally, the set E⇤ gives a partition of G in
which every face is empty. If this happens, then
the remaining edges in the MWT can be found
by triangulating each remaining face independently
using the standard dynamic-programming algorithm,

and we say G is solvable via the heuristics. According
to [11] (1997), most random instances with as many
as 40,000 points are solvable via the heuristics.5

Next we show that if an instance is solvable via
the heuristics, then Linear Program (1.1) solves the
instance also.

Proposition 4.1. For any instance G of MWT, let
E⇤ be the partition of G defined above. If every face
of E⇤ is empty, then every optimal extreme point of
the LP (for G) is the incidence vector of a minimum-
length triangulation.

The remainder of the section gives the proof. The
first step is to show that each condition above that
ensures that an edge is in (or out of) every MWT also
ensures that the LP gives the edge weight 1 (or 0) in
any optimal fractional solution.

Say that LP (1.1) forces a potential edge e to
z (where z 2 {0, 1}) if, for every optimal fractional
triangulation X⇤ of G, the weight that X⇤ gives to e
is z.

Lemma 4.1. If any of the following conditions holds,
the LP forces potential edge e of G to 1.

1. The �-skeleton condition above holds for e.

2. The Y XY -subgraph condition above holds for e.

3. (maximality) The LP forces every potential edge
that crosses e to 0.

Proof idea. Part (3) is relatively straightforward: if
X⇤ gives weight 0 to every edge that crosses e, then
no triangle t that crosses e has positive X⇤

t , so the
only way X⇤ can cover points near e is with triangles
that have e as a side.

The original �-skeleton and the Y XY -subgraph
heuristics are shown to be valid for MWT by local-
improvement arguments: if the condition holds for
an edge e that is not in the MWT, then a polygon P
covering e within the MWT can be retriangulated at
lesser cost, contradicting the optimality of the MWT
[20, 6, 37, 17]. Here we extend those arguments to any
optimal fractional triangulation X⇤: if the condition
holds and X⇤ does not give e fractional weight 1,
then a polygon P 0 covering e whose triangles have

5
[11] define the modified LMT-skeleton to be the set of

edges that can be deduced to be in every MWT via (the logical

closure of) just the diamond, LMT-skeleton, maximality, and

independence conditions above. The use of logical closure is

crucial to the e↵ectiveness of the LMT skeleton.
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positive weight in X⇤ can be retriangulated (lowering
the weight of those triangles by ✏ > 0 and raising the
weight of other triangles by ✏), giving a fractional
triangulation that costs less than X⇤.

The original arguments are intricate geometric
case analyses, typically taking several pages. The ar-
guments do not extend completely to this setting for
the following reason: in the MWT setting, the poly-
gon P identified for re-triangulation is the union of
non-crossing triangles, whereas here, in the fractional
setting, the polygon P 0 is the union of triangles that
can cross (much as in Lemma 3.2). If the triangles
in P 0 don’t cross, then the original arguments apply,
but in general additional analysis is needed. To illus-
trate, consider the �-skeleton. Suppose for contradic-
tion that the �-skeleton condition holds for an edge
e = ab but it does not occur in the MWT. [20, 6]
show that there must be a sequence t1, t2, . . . , tk of
empty triangles in the MWT whose union P covers
e as shown to the left, below. Using the �-skeleton
condition, they show that this union has a triangula-
tion that costs less than does t1, . . . , tk, contradicting
the optimality of the MWT.

t2
tkt1

t1

ba ba

tk

In the current context, if e has weight below 1
in X⇤, then there must (similarly) exist a sequence
t1, t2, . . . , tk of empty triangles with positive weight
in X⇤ covering e, but these triangles can cross
as shown to the right above. We extend their
arguments to show that, even if such crossing occurs,
a triangulation of lower cost can still be found. ���

(For the full proof, see the full version of the paper.)

Lemma 4.2. If any of the following conditions holds
for a potential edge e of G (not on the boundary of
the region to be triangulated), the LP forces e to 0.

1. (independence) The LP forces a potential edge
that crosses e to 1.

2. The diamond condition above holds for e.

3. (LMT skeleton) For every two triangles t and t0

for which e is locally minimal, the LP forces one
of the edges of t or t0 to 0.

Proof idea. Part (1) is straightforward: if potential
edges e and e0 cross, then the LP covering constraint
for a point near the intersection of e0 and e implies
that the total weight of potential triangles that have
e or e0 as sides is at most 1.

Part (3), the LMT skeleton, is straightforward.
If an optimal fractional triangulation X⇤ gives e
positive weight, then (by constraint (1.2) implied by
the LP) there must be two triangles t and t0 with
positive X⇤

t and X⇤
t0 whose intersection is e. Edge

e must be locally minimal for t and t0 (otherwise
X⇤ could be improved by reducing X⇤

t and X⇤
t0 and

raising the weights of the other two triangles that
triangulate t [ t0).

Part (2), the diamond condition, is handled as
the �-skeleton and Y XY -subgraph are handled in the
proof idea of Lemma 4.1. ���

(For the full proof, see the full version of the paper.)

Assume (as in the statement of Proposition 4.1)
that the set E⇤ of edges that can be deduced to be
in every MWT of G gives a partition of G in which
every face is empty. It follows from Lemmas 4.1 and
4.2 (by a simple inductive proof) that every edge that
can be deduced to be out of every MWT is forced to 0
by the LP, and every edge that can be deduced to be
in every MWT is forced to 1. Thus, in any optimal
fractional triangulation X⇤, no potential triangle t
that crosses an edge in E⇤ has positive weight X⇤

t .
Thus, the optimal fractional triangulations X⇤ are
exactly those that, for each face f of the partition,
induce an optimal fractional triangulation of the
simple polygon f . It is known (e.g. [7, Thm. 7], [9,
Thm. 4.1(i)], [21, Cor. 3.6.2]) that, for any simple
polygon f , each optimal fractional triangulation is
the incidence vector of an actual triangulation of f .
Thus, each optimal extreme point of the LP for G
is also the incidence vector of a triangulation of G,
proving Proposition 4.1.
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5 Remarks and open problems.

The constant factor proven here can be reduced in
several places, at the expense of complicating the
argument. The main challenge though is of course
reducing �.

Triangulations optimizing functions other than
the total edge length are of interest. MWT LPs
extend naturally to such problems, by modifying
the cost function or by restricting the set of empty
triangles. (For example, the integrality of the LP
for the simple-polygon case implies that the simple-
polygon result extends directly to such problems.)
Can results similar to those in this paper be obtained
for such problems?

The upper bound shown here on the integrality
gap of the LP is constant but quite large. The only
known lower bounds are barely above 1. We suspect
that much better upper bounds can be shown, and
that these should lead to an approximation algorithm
with a better approximation ratio. We suspect
that implicit in the analysis here is a primal-dual
argument; making the dual solution explicit might
be a step in this direction.

The LP studied here has an integrality gap above
1, so cannot be used directly to derive a PTAS.
Applying su�ciently many rounds of lift-and-project
to the LP will bring the integrality gap to 1 + ✏.
Are only O(1) rounds required? Does this lead to
a PTAS?

Does the LP generalize the heuristics in a
stronger sense? Is there some condition, based on
the optimal primal/dual pair, such that, if the condi-
tion holds for an edge e, then that edge must be, or
cannot be, in any MWT?
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