
Algorithmica (1994) 11:525-541 Algorithmica
�9 1994 Springer-Verlag New York Inc.

The k-Server Dual and Loose Competitiveness for Paging 1

N. Y o u n g 2

Abstract. Weighted cachin# is a generalization of paging in which the cost to evict an item depends
on the item. We study both of these problems as restrictions of the well-known k-server problem, which
involves moving servers in a graph in response to requests so as to minimize the distance traveled.

We give a deterministic on-line strategy for weighted caching that, on any sequence of requests,
given a cache holding k items, incurs a cost within a factor of k/(k - h + 1) of the minimum cost
possible given a cache holding h items. The strategy generalizes "least recently used," one of the best
paging strategies in practice. The analysis is a primal-dual analysis, the first for an on-line problem,
exploiting the linear programming structure of the k-server problem.

We introduce loose competitiveness, motivated by Sleator and Tarjan's complaint [ST] that the
standard competitive ratios for paging strategies are too high. A k-server strategy is loosely c(k)-
competitive if, for any sequence, for almost all k, the cost incurred by the strategy with k servers either
is no more than c(k) times the minimum cost or is insignificant.

We show that certain paging strategies (including "least recently used," and "first in first out") that
are k-competitive in the standard model are loosely c(k)-competitive provided c(k)/ln k --* oo and both
k/c(k) and c(k) are nondecreasing. We show that the marking algorithm, a randomized paging strategy
that is | k)-competitive in the standard model, is loosely c(k)-competitive provided k - 2 In In k ---, oo
and both 2 In k - c(k) and c(k) are nondecreasing.

Key Words. On-line algorithms, k-Server problem, Linear programming, Approximation algorithms,
Paging, Caching, Competitive analysis.

T h e b o d y of this p a p e r cons is t s o f f o u r sect ions. I n Sec t ion 1, t he i n t r o d u c t i o n ,

we desc r ibe b a c k g r o u n d , o u r results , a n d re l a t ed work . I n Sec t i on 2 we give o u r

w e i g h t e d c a c h i n g s t ra tegy. I n Sec t i on 3 we s h o w loose c o m p e t i t i v e n e s s o f v a r i o u s

p a g i n g s t ra tegies . W e c o n c l u d e wi th c o m m e n t s a b o u t fu r the r r e sea rch in Sec t i on 4.

I . In t roduct ion . M a n y real p r o b l e m s m u s t be so lved on- l ine - - -dec i s ions t h a t

res t r ic t poss ib le so lu t i ons m u s t be m a d e be fo re the en t i re p r o b l e m is k n o w n .

Gene ra l l y , an o p t i m a l s o l u t i o n c a n n o t be g u a r a n t e e d if a p r o b l e m m u s t be so lved

t This paper is the journal version of "On-line Caching as Cache Size Varies," which appeared in the
Proceedin#s o f the 2nd Annual A C M - S I A M Symposium on Discrete Algorithms (1991). Details beyond
those in this paper may be found in "Competitive Paging and Dual-Guided Algorithms for Weighted
Caching and Matching," which is the author's thesis and is available as Technical Report CS-TR-348-91
from the Computer Science Department at Princeton University.
2 University of Maryland Institute for Advanced Computer Studies, College Park, MD 20742, USA.
young@umiacs.umd.edu. This research was performed while the author was at the Computer Science
Department, Princeton University, Princeton, NJ 08544, USA, and was supported by the Hertz
Foundation.

Received May 16, 1990; revised November 15, 1990, and January 5, 1992. Communicated by Prabhakar
Raghavan.

526 N. Young

on-line. Thus a natural question for such a problem is whether a strategy exists
that guarantees an approximately optimal solution.

In this paper we study the k-server problem [M], [MMS]. Various definitions
of the problem exist in the literature; we take the following definition, which is
technically convenient and essentially equivalent to the other definitions: A
complete directed graph with edge lengths d(u, v), a number, k, of identical, mobile
servers, and a sequence r of requests, each to some node, is given. In response to
the first request, all servers are placed on the requested node. In response to each
subsequent request v, if no server is on v, some server must be chosen to move
from its current node u to v at a cost of d(u, v). A strategy for solving the problem
is on-line if it chooses the server to move independently of later requests. The goal
is to minimize the total cost.

As many authors (e.g., Chrobak and Larmore [CL]) have pointed out, the
k-server problem is an abstraction of a number of practical on-line problems,
including linear search, paging, font caching, and motion planning for two-headed
disks.

We focus on two special cases of the k-server problem: the weighted caching
problem [MMS], in which d(u, v) = w(u) for u ~ v (the cost to move a server from
a node depends only on the node), and the paging problem [ST], in which the
cost to move a server is uniformly 1.

Traditionally, paging is described as the problem of managing a fast memory,
or cache, capable of holding k items: items are requested; if a requested item is
not in the fast memory, it must be placed in the fast memory, possibly evicting
some other item to make room. The goal is to minimize the fault rate--the number
of evictions per request. Weighted caching is similar, except that the cost to evict
an item depends on the item.

For these two problems, for technical reasons and without loss of generality,
we replace the assumption that all servers begin on the first requested node with
the assumption that initially no servers reside on nodes, and, in response to any
request, any server that has not yet served a request may be placed on the requested
node at no cost.

Following a number of authors [ST], [BLS], [MMS], we are interested in
strategies that are competitive, that is, strategies that on any sequence incur a cost
bounded by some constant times the minimum cost possible for that sequence.
Formally,

�9 r denotes an arbitrary sequence of requests.
�9 X denotes some on-line k-server strategy.
�9 k denotes the number of servers given to the on-line strategy.
�9 OPT denotes the (off-line) strategy producing a minimum cost solution.
�9 h denotes the number of servers given to OPT.
�9 cgr(X, k) denotes the (expected) cost incurred by the (randomized a) strategy X

with k servers on request sequence r.

3 We implicitly assume that the input requests are independent of the random choices made by the
strategy; for other models see [BDB§

The k-Server Dual and Loose Competitiveness for Paging 527

�9 A strategy X is c-competitive for a given r, h, and k, when

(6~r(X, k) ~ C " (~r(OPT, h) + b,

where b depends on the initial positions of the optimal and on-line servers, but
is otherwise independent of r.

�9 A strategy X is c(h, k)-competitive when X is c(h, k)-competitive for all r, h, and
k. C(h, k) is then called a competitive ratio of X.

Note that the competitiveness of a strategy is unrelated to its computational
complexity.

Before we describe our results, here is a summary of the strategies relevant to
our work.

�9 LRU, FIFO, and FWF are, respectively, the "least recently used," "first in first
out," and "flush when full" paging strategies. LRU moves the server from the
least recently requested, served node. FIFO, which can be obtained from LRU
by ignoring served requests, moves the least recently moved server. FWF evicts
all items from the fast memory (removes all servers from the graph at a cost of
k) when the fast memory is full and the requested item is not in the fast memory.

�9 MARK is the marking algorithm, a randomized paging strategy. MARK may be
described as follows: If the requested node has no server, mark all servers if
none are marked, and then move and unmark a marked server chosen uniformly
at random; if the requested node has a server, unmark that server.

�9 BALANCE is the balance algorithm, a k-server strategy. In response to request r,
BALANCE moves the server from served node u minimizing d(u, r) + W(u), where
W(u) denotes the net distance traveled so far by the server on u. BALANCE
generalizes FIFO.

1.1. A Primal-Dual Strategy for Weighted Caching. In Section 2 we introduce
and analyze GREEDYDUAL, a new, primal-dual, deterministic, on-line weighted-
caching strategy that is (optimally) k/(k - h + 1)-competitive. Figure 1 contains
a direct description of GREEDYDUAL.

GREEDYDUAL is of practical interest because it generalizes Lgu, one of the
best paging strategies, to weighted caching. GREEDYDUAL also generalizes BALANCE
for weighted caching, and thus FiFo. 4

GREEDYDUAL is of theoretical interest because its analysis is the first primal-
dual analysis 5 of an on-line algorithm and because the analysis, which shows an
(optimal) competitive ratio of k/(k - h + 1), is the first to show a ratio less than

4 The natural generalization of LRU for weighted caching can be obtained by ignoring the L[.]
values and lowering as much as possible in the RELABEL step. BALANCE, as it specializes for weighted
caching, can be obtained by ignoring the H[.] values and lowering as little as possible in the
RELABEL step.
5 We assume familiarity with linear programming primal-dual techniques. For an introduction, see
[PSI.

528 N. Young

GREEDYDUAL
Maintain a pair of real Values L[s] < H[s] with each server s.
In response to each request, let v be the requested node;

if some server s is on v then
let n [s] ~ w(v)

else if some server s has yet to serve a request then
let L[s] ,-- H[s] ~ w(v)
Place s on v.

else
RELABEL: Uniformly lower L[s] and His] for all s so that

min L[s] < 0 < min His].
s s

Move any server s such that L[s] < 0 to v.
let L[s] ~ n [s] ~- w(v)

Fig. 1. The weighted caching algorithm GREEDYDUAL.

k when h < k for any k-server problem more general than paging. A consequence
of this reduced ratio is that GREEDYDUAL has a constant competitive ratio
provided h is any fraction of k.

We feel that the primal-dual approach, well developed for exact optimization
problems, is also important for approximation problems, including on-line prob-
lems, because primal-dual considerations help reveal combinatoric structure,
especially how to bound optimal costs. The primal-dual approach also has the
potential to unify the arguably ad hoc existing on-line analyses. For instance, the
analyses of LRU and FIFO [ST], of BALANCE for weighted caching [CKPV], and
of MARK [FKL +] can all be cast as closely related primal-dual analyses. The
primal-dual approach can also reveal connections to existing optimization theory.
For these reasons, we take pains to make explicit the primal-dual framework
behind our analysis.

Here is a sketch of our primal-dual approach. The k-server problem has a
natural formulation as an integer linear program (IP) that is essentially a
minimum-weight matching problem. Relaxing the integrality constraints of IP
yields a linear program (LP) (which, incidentally, has optimal integer solutions).
GREEDYDUAL implicitly generates a solution to the dual program (DP) of LP. The
dual solution serves two purposes: GREEDYDUAL uses the structural information
that the solution provides about the problem instance to guide its choices, and
GREEDYDUAL uses the cost of the dual solution as a lower bound o n C~r(OPT , h)
to certify competitiveness.

Related work includes the following. Sleator and Tarjan [ST] show that LRU
and FIFO are k/(k - h + 1)-competitive, and that this ratio is optimal for determi-
nistic, on-line paging strategies. A similar analysis shows that FWF is also
k/(k - h + 1)-competitive.

Fiat et al. [FKL+] , [Y1] introduce and analyze MARX, showing that it is
2Hk-competitive (H k ~ In k), and showing that no randomized paging strategy is

The k-Server Dual and Loose Competitiveness for Paging 529

better than Hk-competitive when h = k. McGeoch and Sleator [MS] subsequently
give an Hk-competitive randomized paging strategy. Young [Y2] shows that MARK
is roughly 2 In k/(k - h)-competitive when h < k and that no randomized strategy
is better than roughly In k/(k - h)-competitive.

Manasse et al. [MMS] show that BALANCE is k-competitive for the general
problem provided only k + 1 distinct nodes are requested, and that no determinis-
tic algorithm is better than k/(k - h + 1)-competitive in any graph with at least
k + 1 distinct nodes.

Chrobak et al. [CKPV] show that BALANCE is k-competitive for weighted
caching. Independently of their analysis of BALANCE, Chrobak et al. [-CKPV]
formulate the k-server problem as an integral-capacity, minimum-cost, maximum-
flow problem and use this formulation to give a polynomial-time algorithm to
find a minimum-cost solution.

The primal-dual approach has been used extensively for exact optimization
problems [PSI, and is used implicitly in a number of recent analyses of approxima-
tion algorithms. Goemans and Williamson [GW] explicitly use the approach for
finding approximate solutions to NP-hard connectivity problems.

1.2. A More Realistic k-Server Model. In Section 3 we give the second contribu-
tion of this paper: loose competitiveness. Loose competitiveness is motivated by
Sleator and Tarjan's [ST] complaint that (when h = k) the competitive ratios of
paging strategies are too high to be of practical interest. We have done simulations
that suggest that, in practice, good paging strategies usually incur a cost within a
small constant factor of minimum. The graph in Figure 2 plots competitive ratio
~r(X, k)/C~(OvT, k) versus k for a number of paging strategies on a typical
sequence. 6

We would like to keep the worst-case character of competitive analysis but
somehow show more realistic competitive ratios.

�9 A strategy X is loosely c(k)-competitive when, for all d > O, for all n e ~A/', for any
request sequence r, only o(n) values of k in {1 , n} satisfy

cg~(X, k) >_ max{c(k) �9 c~r(OPT, k), (~r(OPT, 1)/n a} + b,

where b depends only on the starting configurations of X and OPT, and the o(n)
is independent of r.

That is, X is loosely c(k)-competitive when, for any sequence, at all but a vanishing
fraction of the values of k in any range {1 n}, either X is c(k)-competitive in
the usual sense, or the cost to X with k servers is insignificant (or both). For
instance, if a paging strategy is loosely 3 In In k-competitive, then, for any fixed

6 The input sequence, trficed by Sites and Agarwal [SA], consists of 692,057 requests to 642 distinct
pages of 1024 bytes each. The sequence was generated by two X-windows network processes, a "make"
(program compilation), and a disk copy running concurrently. The requests include data reads and
writes and instruction fetches.

530 N. Young

Competitiveness

. . . .

opt"

I
0

I I I |
1oo 20o ~oo 4o0 soo

Fig. 2. Competitiveness (~,(.,k)/~,(OPT, k)) versus k for typical r.

Cache Size

d > 0, on any sequence, for almost any choice of k in any range { 1, 2 , . . . , n}, the
fault rate will be either at most 1/n d or at most 3 In In k times the minimum possible
using a cache of size k (Figure 3).

This model is realistic provided input sequences are not critically correlated
with k and provided we are only concerned about being near-optimal when
the cost is significant. Both criteria are arguably true for most paging applications.

�9 A paging strategy is conservat ive if it moves no server from a node until all
servers have been placed on the graph, and it moves servers at most k times
during any consecutive subsequence requesting k or fewer distinct items.

LRU, FIFO, MARK, and even FWF are conservative. Any conservative paging
strategy is k/ (k - h + 1)-competitive [YI].

The results we obtain are as follows: Any conservative paging strategy is
loosely c(k)-competitive provided c(k)/ ln k ~ ~ and both c(k) and k/c(k) are
nondecreasing; MARK is loosely c(k)-competitive provided c (k) - 2 In In k ~
and both c(k) and 2 In k - c(k) are nondecreasing.

Loose competitive ratios are thus shown to be exponentially lower than
standard competitive ratios.

Borodin et al. [-BIRS] give a related work, in which the possible request
sequences are quantified by the degree to which they exhibit a certain kind of
locality of reference, and competitive ratios are considered as a function of this

The k-Server Dual and Loose Competitiveness for Paging

Paulg ia~e

Q.02' i
0.015

!

0.01

0.005 ~ ~

531

0 ~QO 200 300 4QO $QO 600
Fig. 3. Faul t rate (~d~(', k)/)r~) versx~s k for typical r.

parameter. The work is extended by Irani et al. [IKP]. The ratios shown in their
model are, in most cases, much higher than the loose competitive ratios established
in this paper.

2. GREEDYDUAL. In this section we develop and analyze GREEDYDUAL We first
develop a linear programming framework for the general k-server problem, and
thet~ we present and analyze GR~D'tDu~,L as a primal-dual algorithm within this
framework,

2.I. The k-Server D u a l Fix a request sequence to, r~ r~v, so that request i is
to node r i.

We next define IP, an integer linear program whose feasible solutions corre-
spond to solutions of the k-server problem given by r. The variables of]P are
(x~j: 0 <_ i < j < N), where x#~ {0, 1} is 1 if and only if the request served by the
server of request j before serving request j is request i.

After defining IP, we construct its fractional relaxation LP, and the dual DP
of LP.

532 N. Young

�9 IP(k) (or just IP, if k is determined by context) denotes the integer linear p rogram

minimize ~ d(rl, r j)xij
O<_i<j<_N

(x(out(0)) < k,

,) x(out(i)) < 1 (1 < i < N - 1),
subject to

i x(in(i)) = 1 (1 _< i _ N),

'[x i j~{O, 1} (O < _ i < j < _ N) ,

where out(i) denotes the set {(i , j) : i < j <_ N} , in(i) denotes the set {(j, i): 0 _<
j < i}, and x(S) = ~,(i,j)~s xij.

For the weighted caching and paging problems (where initially no servers
reside on the graph, and each server is allowed to serve its first request by being
placed on the requested node at no cost), IP is defined as above, but we stipulate
that request 0 is to an artificial node that is never requested again and that is
at distance 0 to all later requests. With this stipulation the initial conditions for
the general problem reduce to the initial conditions for weighted caching and
paging.

�9 LP(k) (or just LP) denotes the relaxation of IP (obtained by replacing each
constraint xij ~ {0, 1} with the constraint 0 _< xij <- 1).

�9 DP(h) (or just DP) denotes the dual of LP(h):

maximize - ha o -
l < i < N - 1

subject to

�9 I[(a, b)llh denotes the cost,
DP(h).

ai + ~ bi
l < i < N

bj - a, < d(i,j) (0 < i < j < N),

a i >_ 0 (0 <_ i <_ N).

- h a o - ~i>_1 ai + ~ i bi, of a feasible solution to

Note that the dual constraints are independent of h, so that a dual solution is
feasible independently of h.

By duality, for any feasible dual solution (a, b),

(~r(OPT, h) ~ II(a, b)llh.

Incidentally, a s tandard t ransformat ion shows that IP is equivalent to a
minimum-weight , bipartite, perfect matching problem, 7 and thus that L P has

7 It may be useful for the reader, in understanding LP, to study the equivalent minimum-weight perfect
matching problem, so we briefly outline it here. Construct a weighted bipartite graph G = (U, W, E),
with U = {Ao, A1 AN-l}, W = {B: Bs}, E = {(Ai, Bj)e U x W: i <j}, and w(A,, Bj) = d(r,, rj).
Each solution x to IP corresponds to the subset {e: x e = 1} of E. The cost of x equals the net weight
of edges in the subset. Such subsets are exactly those such that every vertex in W touches one edge
in the subset, every vertex in U except A 0 touches at most one edge, and A o touches at most k edges.
We can leave the problem in this form, or we can convert it into a true perfect matching problem by
duplicating A 0 with its edges k times and adding k copies of a new node Boo with zero-cost edges from
every Ai.

The k-Server Dual and Loose Competitiveness for Paging 533

opt imal integer solutions, so that, for given r and h, the above bound is tight for
some (a, b).

2.2. The Algor i thm. Here are the definitions and notat ions specific to GREEDY-
DUAL:
�9 A request has a server if the request has been served and the server has not

subsequently served any other request.
�9 The nota t ion i - denotes the most recent request (up to and including request

i) that resulted in the server of request i moving. We define 0 - = 0.
�9 S denotes the set {i: request i has a server}. (More correctly, S is a multiset,

as 0 occurs in S once for each server on node r o. Any i > 0 can occur only
once.)

�9 (a, b) denotes a feasible dual solution mainta ined by GREEDYDUAL.

GREEDYDUAL responds to each request as follows. If the requested node has a
server, it does nothing. Otherwise, it uniformly raises a subset of the dual variables
enough to account for the cost of moving some server, but not so much that
feasibility is violated. It then moves a server whose movement cost can be
accounted for. The full a lgor i thm is given in Figure 4.

2.3. Ana ly s i s o f the A lgor i thm. A simple p roof by induct ion on n shows that
every b i > bi+ 1, that hi+ 1 < w(ri) for i t S (two facts that we use again later), and
that the RELABEL step can in fact be performed. All other steps can be seen to be
well defined by inspection, and, clearly, GREEDYDUAL produces an appropr ia te
sequence of server movements. This establishes the correctness of GREEDVDUAL.

GREEDYDUAL(r, k)
Comment: Moves servers in response to requests ro, r l , . . . , rs, maintaining

(a, b), a dual solution, and S, a multiset containing the currently served
requests, such that (a, b) is feasible and the distance traveled by servers is at
most k/(k - h + 1)ll(a, b)l[h -- ~i~s be-+1.

In response to request 0:
let ai_ 1 ~--bi+-O for i = 1, ..., N
let S ~ the multiset containing request 0 with multiplicity k

In response to each subsequent request n > 0:
if node rn has a server then

STAY" choose i e S such that r~ = rn
let S ~ S • {n) - {i}, satisfying request n

else
RELABEL: Uniformly raise the dual variables in the set

{ a , : 0 < i < _ n - l , i ~ S } w { b i : l < i < n }

so that (VieS) bi+l <- w(ri) but (3 ieS) b i +1 >- w(ri).
MovE: choose i e S such that b i +1 > w(ri)

let S ~ S w {n} - {i}, satisfying request n

Fig. 4. GREEDYDUAL as a primal~iual algorithm.

534 N. Young

To establish that GREEDYDUAL is k / (k - h + 1)-competitive, we show two
invariants: that the dual solution (a, b) is feasible, and that the distance traveled
by servers is bounded by k / (k - h + 1) l l (a , b) l J h - ~ i ~ s b i - + l . Since every b i is
nonnegative and II(a, b)llh is a lower bound on cAr(OFT, h), this gives the result.

LEMMA 2.1. GREEDYDUAL maintains the invariant that (a, b) is feasible .

PROOF. By induction on n. Clearly, (a, b) is initially feasible. The only step
that changes (a, b) is RELABEL. Clearly, RELABEL maintains that every a~ is
nonnegative. Thus the only dual constraint that RELABEL might violate is of the
form

bj - ai < d(ri, r j)

for some 0 _< i < j < N.
By inspection of the RELABEL step, such a constraint can only be violated if

i t S and j < n. In this case, ai = 0 and r i # rj because i has a server, so the con-
straint reduces to bj < w(r~). Since bi+l < w(ri) after the step, and bi+l >-bj
(since j > i and we have already established that every b i > b~+ 1), the constraint
is maintained. []

LEMMA 2.2. GREEDYDUAL maintains the invariant that the net dis tance traveled
by servers is bounded by

k
II(a, b)[Ih - ~ b,- + l.

k - h + 1 i~s

PROOF. By induction on n. Clearly, the invariant is initially true.
The STAY step leaves the net distance and the bound unchanged.
The RELABEL step also leaves the net distance and the bound unchanged. If

0 r S, that the bound remains unchanged can be seen by inspecting the definition
of I[(a, b)l]h, and noting that when the dual variables are raised, n - k of the a~'s,
including ao, and n of the b~'s increase. Consequently, II(a, b)llh is increased by
k - h + 1 times as much as any individual term, and, in the bound, the increase
in the minuend exactly counterbalances the increase in the subtrahend.

If 0 ~ S, the bound remains unchanged because the constraint bl < w(ro) = 0
ensures that the raise is degenerate--that the dual variables are in fact unchanged.

The MOVE step increases the distance traveled by w(r~), and increases the bound
by bi- + 1 -- b,-+ r Since n- = n, b,+l = O, and bi_+ 1 > w(rl), the bound is in-
creased by at least w(r~), and the invariant is maintained. []

COROLLARY 2.3. GREEDYDUAL is k / (k - h + 1)-competitive.

Note that in order to implement GREEDYDUAL, only the values L [s J =
w(r~) - b~+l and H[si] = w(ri) - bi-+l (for each server s~ of a request i t S) need

The k-Server Dual and Loose Competitiveness for Paging 535

to be maintained, and that the artificial first request may be dropped, instead
placing the servers on nodes when they first truly serve a request. We leave it to
the reader to verify that these modifications lead to the direct description of
GREEDYDUAL given in Figure 1.

3. Loose Competitiveness. In this section we give our analyses of loose competi-
tiveness of paging strategies. The theorems and lemmas in this section, except as
noted, first appeared in [Y2] and [Y1].

Recall that a k-server strategy is loosely c(k)-competitive if, for any d, for any n,
for any request sequence r, only o(n) values of k e {1,. . . , n} satisfy

c~r(X, k) _> max{c(k)C~r(OPT, k), C~r(OPT , 1)/n d} + b.

The following terminology is essentially from Fiat et al.'s [FKL+] , [Y1], [Y2]
analysis of the marking algorithm. Given a sequence r and a positive integer k:

�9 The k-phases of r are defined as follows. The first k-phase is the maximum prefix
of r containing requests to at most k distinct nodes. In general, the ith k-phase
is the maximum substring s of r beginning with the request, if any, following the
(i - 1)st k, phase and containing requests to at most k distinct nodes.

Thus the (i + 1)st k-phase begins with the (new) request that would cause
FWF to flush its fast memory for the ith time.

�9 ~,(k) denotes the number of k-phases, minus 1.
�9 A new request (for a given k) in a k-phase (other than the first) is a request to

a node that is not requested previously in the k-phase or in the previous k-phase.
Thus in two consecutive k-phases, the number of distinct nodes requested is k
plus the number of new requests in the second k-phase.

�9 ~ (k) denotes the average number of new requests per k-phase of r other than
the first.

Thus the total number of new requests in r for a given k is sff,(k)- ~(k).

Our analysis has two parts. In the first part (Theorem 3.2) we show that, for
any sequence, few values of k yield both a large number of k-phases and a low
average number of new requests per k-phase.

In the second part we show (Lemma 3.4) that, for the paging strategies that
interest us, for a given sequence and k, the cost incurred by the strategy is
proportional to the number of k-phases, and the competitiveness is inversely
related to the average number of new requests per k-phase. Consequently (Cor-
ollary 3.5), by the first part of the analysis, few values of k yield both a high cost
and a high competitiveness.

The key technical insight (Lemma 3.1) for the first part of the analysis is that
if, for a given k, the average number of new requests per k-phase is low, then, for
k' just slightly larger than k, the number of U-phases is a fraction of the number
of k-phases.

s By "substring" we mean a subsequence of consecutive items.

536

LEMMA 3.1. Fix a sequence r. For any k, and any k' > k + 2JV,(k),

~,(k') <_ �88

N. Young

From this we show that there are not too many values of k yielding both a low
average number of new requests per k-phase and a significant number of k-phases:

THEOREM 3.2. For any e > O, M > O, and any sequence r, the number of k satisfying

(1) X~(k) <_ M and ~ (k) > e~,(1)

is O(M In I/e).

PROOF. Let s be the number of k satisfying the condition. We can choose
l = [s/V2M-]-] such k so that each chosen k differs from every other by at least
2M. Then we have 1 _< k 1 _< k 2 _< "'" _ kt such that, for each i,

(2) JV,(ki) < M,

(3) k/+ 1 -- k~ > 2M,

and

(4) ~r(k,) > eNr(1).

Then, for any i, by (2) and (3), k,+l > k~ + 2Jffr(k~), so, by Lemma 3.1, ~(k ,+ t) <
3~r(k,). Inductively, ~,(k,) < (�88

PROOF. Let Po, . . . , P~',(k) denote the k-phase partitioning of r.
At least half (and thus at least [Nr(k)/27) of the Nr(k) k-phases Pl Pm,tk) have

a number of new requests not exceeding 2X,(k). Denote these by Pi P*r~k,/2n'
If we modify the k-phase partitioning of r by joining Pij-1 and p~j for odd

j, we obtain a coarser partitioning of r into at most ~r(k) - 7N,(k)/4-] pieces.
In the coarser partitioning, each piece resulting from a join references at most
k + 2X,(k) ___ k' distinct nodes, while each piece remaining unchanged from the
k-phase partioning references at most k _ k' distinct nodes.

If we now consider the k'-phase partitioning, we find that each k'-phase must
contain the final request of at least one of the pieces in the coarser partition,
because if a k'-phase begins at or after the beginning of a subsequence of requests
to at most k + 2~,(k) distinct nodes, it will continue at least through the end of
the subsequence.

Thus ~,(k') < N,(k) - F~,(k)/4] < �88 []

The k-Server Dual and Loose Competitiveness for Paging 537

This, and (4), imply (3)1-1 > e, so

s - 1 = 1 - 1 < l n , ~ / 3 e

This implies the bound on s. []

This establishes the first part of the analysis.
We begin the second part by showing that OPT'S cost per k-phase is at least

proportional to the average number of new requests per k-phase.

LEMMA 3.3. For arbitrary paging request sequence r, and arbitrary k, h > O,

C~r(OPT , h) k - h + JV,(k)
(5) ~r(k) > 2

(We use only the case k = h, but prove the general case.)

PROOF. Let m i (1 < i < ~r(k)) denote the number of new requests in the ith
k-phase, so that W,(k)~,(k) = ~ > 1 my During the (i - 1)st and ith k-phases, k + m i
distinct nodes are referenced. Consequently, any strategy for r with h servers makes
at least k + m~ - h server movements during the two phases. Thus the total cost
for the strategy is at least

m a x t ~ (k -- h + m2i+l),
Li> 1

(k - h + JV~(k))~,(k)
~, (k - h + m2i) >

i > l - - 2

[]

We next show that the strategies that interest us incur a cost proportional to
k times the number of k-phases, and (using the above lemma) that the strategies
have competitiveness inversely related to the average number of new requests per
k-phase.

LEMMA 3.4. Let X denote any conservative paging strategy. Let MARK denote the
marking algorithm. Then

(6) ~,(k) > - -
%(x, k)

k ,

(7) JV,(k) _ 2k
C~r(OPT , k)

% (x , k) '

(8)
(1 cgr(MARK, _k)~

Jff~(k) _< k exp 1 2 c~r(OPT, k) J '

538 N. Young

PROOF. Bound (6) follows directly f rom the definition of conservativeness.
Bound (7) follows from bound (6) and bound (5) of Lemma 3.3, applied with

h = k .
Finally, we prove bound (8). Fix a request sequence r, and let mi (1 < i < ~r(k))

denote the number of new requests in the ith k-phase. Fiat et al. [F K L +] show 9
that ~r(MARK, k) <_ ~ mi(H k -- n m , + 1).

Since H a - H b --)-',~=a + 1(1/i) < Sb(1/x) dx = In(a/b), letting f (m) -- m(1 + ln(k/m)),
C6~r(MARK , k) <~ ~ i f(mi). Since f is convex, thOr(MARK , k) ~ ~,(k)f(Jff~(k)). Applying
bound (3.3), ~r(MARK, k)_~ 2(6~r(OPT, k)f(JV'~(k))/@(k), which is equivalent to
bound (8). []

We have established (Theorem 3.2) that for any sequence there are few
values of k yielding many k-phases and a low average number of new requests
per k-phase.

We have established (Lemma 3.4) that for the strategies we are interested in, the
cost they incur with k-servers on a sequence is propor t iona l to the number of
k-phases, while the competitiveness is inversely related to the average number of
new requests per k-phase.

Finally, we combine the two parts to show that, for any sequence, there are few
values of k for which our strategies incur high cost and high competitiveness. This
establishes loose competitiveness.

COROLLARY 3.5. Let X denote any conservative pagin9 strategy and let
c: J~ + ~ ~ + be a nondecreasin9 function. X is loosely c(k)-competitive provided
that k/c(k) is nondecreasin9 and

(9) c(k)
- - - - -~ 0 0 ~

In k

while MARK is loosely c(k)-competitive provided 2 In k - c(k) is nondecreasin9 and

(1o) c (k) - 2 In In k ~ o o .

PROOF. Let X denote either any conservative paging stragegy, in which case we
assume condit ion (9) and that k/c(k) is nondecreasing, or MARK, in which case we
instead assume condit ion (10) and that 2 In k - c(k) is nondecreasing.

We show that, for any d > 0, n > 0, and request sequence r, the number of

9 MARK moves a server chosen uniformly at random from those on nodes not yet requested in the
current k-phase. Briefly, the analysis of MARK classifies nonnew requests within a phase into repeat
requests (to nodes already requested this phase) and old requests (to nodes requested in the previous
phase but not yet in this phase); the expected cost for the ith old request is bounded by m/(k - i + 1)
because at least k - m - i + 1 of the k - i + 1 nodes requested in the previous phase but not in this
phase are served, each with equal probability.

The k-Server Dual and Loose Competitiveness for Paging 539

violators k ~ {1 n} is o(n), where a violator is a k such that

~'~(X, k) > max{c(k)rd,(OeT, k), (~,(OI'T, 1)}
- - r / d "

Let k be a violator. Then bound (6) implies

(11)
(~r(X, k) ~r(OPT, 1) 1

~,(k) > ~ > nd+l n,+l ~,(1).

Bound (7) and the monotonicity of k/c(k) imply

cG(OPT, k) 2k 2n
- - .

(12) ~ (k) <_ 2k cG(X, k~ <- c(k~) <- c(n)

Since each violator k satisfies (11) and (12), by Theorem 3.2, the number of violators
is O((ln n d+ 1)n/c(n)). This is o(n) by assumption (9).

If X = MARK, then bound (8) and the monotonicity of 2 In k - c(k) imply, for
each violator k, that

(13) jIr,(k) < k exp(1
1 C~r(MARK , k)~

so that by bounds (11) and (13) and Theorem 3.2 the number of violators is
O((ln n d+ 1)n exp(1 - c(n)/2)). This is o(n) by assumption (10). []

4. Concluding Remarks. We conclude in this section with comments about
further avenues of research.

Historically, the role of duality in solving optimization problems is well
explored: dual solutions are used to guide the construction of primal solutions
and to certify optimality. For on-line problems such as the k-server problem,
duality can serve a similar role; the differences are that the solutions we seek are
approximate, and that the problem we want to solve is on-line. For on-line
problems, it seems natural to seek a sequence of closely related dual solutions, one
for each prefix of the request sequence.

For those interested in extending our approach to the general k-server problem
we give the following brief hints. Solutions with monotonic b~'s are not sufficient

540 N. Young

to give good bounds: add constraints bi+l < b~ to the dual problem and re-
formulate the primal; in the new primal request sequences can be much cheaper
than in the old. Raising all of the b~'s is probably not a good idea: consider a
request sequence with requests from two infinitely separate metric spaces; a b i
should change only when a request is made to the metric space of r i. Finally, a
promising experimental approach: if r is a worst-case sequence for a k-competitive
algorithm X, and the bound c~r(X , k) < k[l(a, b)H k is sufficient to establish competi-
tiveness, then (a, b) must be optimal; thus by examining optimal dual solutions for
worst-case sequences, we may discover the special properties of the (generally
nonoptimal) dual solutions that we seek for such an analysis. A similar technique
has been tried for potential functions, but in that case each experiment is much
less informative: it reveals only a single number, not an entire dual solution.

There is a suggestive similarity between potential function and primal-dual
techniques [Y1]. Briefly, both can be viewed as transforming the costs associated
with operations so that a sum of local inequalities gives the necessary global bound.
This connection might yield some insight into the special nature of primal~lual
analyses for on-line problems.

Open questions remain concerning loose competitiveness for paging. Theorem
3.2 of [Y 1] is shown to be tight, and consequently the analysis of loose competitive-
ness for FwF is shown to be tight. No lower bounds on the loose competitive
ratios of LRU, FIFo, or MARK have been shown.

Finally, two challenges: Find a randomized algorithm for weighted caching that
is better than k-competitive, and show reduced loose competitiveness for a
weighted-caching algorithm. A possible hint: The concept of "new requests" used
in analyzing MARK and showing loose competitiveness of paging strategies may
be captured by an algorithm that mimics GREEDYDUAL, but increases each b~ at
only half the rate that GREEDYDUAL does, and increases each ai only as much as
necessary to maintain the dual constraints.

[BDB §

[BIRS]

[BLS]

[CKPVI

[c1]

[FKL +]

References

S. Ben-David, A. Borodin, R. Karp, G. Tardos, and A. Wigderson. On the power of
randomization in on-line algorithms. Proc. 22nd Annual ACM Symp. on Theory of
Computing, Baltimore, MD, May 1990, pages 379-386. Also in Algorithrnica, 11:2-14,
January 1994.
A. Borodin, S. Irani, P. Raghavan, and B. Schieber. Competitive paging with locality of
reference. Proc. 23rd Annual ACM Syrup. on Theory of Computing, New Orleans, LA, May
1991, pages 249-259.
A. Borodin, M. Linial, and M. Saks. An optimal online algorithm for metrical task systems.
Proc. 19th Annual ACM Syrup. on Theory of Computing, New York, May 1987, pages
373-382. Also to appear in J. Assoc. Comput. Mach.
M. Chrobak, H. Karloff, T. Payne, and S. Vishwanathan. new results on server problems.
SlAM J. Discrete Math., 4(2):172-181, May 1991.
M. Chrobak and L. Larmore. An optimal on-line algorithm for k-servers on trees. SlAM
J. Comput., 20(1): 144-148, February 1991.
A. Fiat, R. M. Karp, M. Luby, L. A. McGeoch, D. D. Sleator, and N. E. Young. Competitive
paging algorithms. Technical Report CMU-CS-88-196, Computer Science Department,
Carnegie Mellon University, 1988. J. Algorithms, to appear.

The k-Server Dual and Loose Competitiveness for Paging 541

[GWJ

[IKP3

[M]

[MMS]

[MS]

[PS]

[SA]

[ST3

[Y1]

EY23

M. X. Goemans and D. P. Williamson. A general approximation technique for constrained
forest problems. Proc. 3rd Annual A C M - S I A M Symp. on Discrete Algorithms, Orlando,
FL, January 1992, pages 317-324.
S. Irani, A. R. Karlin, and S. Phillips. Strongly competitive algorithms for paging with
locality of reference. Proc. 3rd Annual A C M - S I A M Syrup. on Discrete Algorithms, Orlando,
FL, January 1992, pages 228-236.
L. A. McGeoch. Algorithms for Two Graph Problems. Ph.D. Thesis, Carnegie Mellon
University, 1987.
M. S. Manasse, L. A. McGeoch, and D. D. Sleator. Competitive algorithms for server
problems. s Algorithms, 11:208-230, 1990.
L. A. McGeoch and D. D. Sleator. A strongly competitive randomized paging algorithm.
Algorithmica, 6:816-825, 1991.
C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms and Com-
plexity. Prentice-Hall, Englewood Cliffs, NJ, 1982.
R. L. Sites and A. Agarwal. Multiprocessor cache analysis using ATUM. Proc. 15th IEEE
Internat. Symp. on Computer Architecture, Honolulu, HI, 1988, pages 186-195.
D. D. Sleator and R. E. Tarjan. Amortized efficiency of list update and paging rules. Comm.
ACM, 28(2):202-208, February 1985.
N. Young. Competitive paging and dual-guided algorithms for weighted caching and
matching. (Thesis) Technical Report CS-TR-348-91, Computer Science Department, Prince-
ton University, October 1991.
N. Young. On-line caching as caches size varies. Proc. 2nd Annual A C M - S I A M Symp. on
Discrete Algorithms, San Francisco, CA, January 1991, pages 241-250.

