Online paging and caching (1985-2002, multiple authors)

Neal E. Young, University of California, Riverside www.cs.ucr.edu/~neal entry editor:

INDEX TERMS: paging, caching, weighted caching, weighted paging, file caching, least recently used (paging algorithm), first in first out (paging algorithm), flush when full (paging algorithm), the Marking algorithm (paging algorithm), Balance algorithm (weighted caching algorithm), Greedy Dual (weighted caching algorithm), Landlord (file caching algorithm), Squid (file caching software), k-server problem, primal-dual algorithms, randomized algorithms, online algorithms, competitive analysis, competitive ratio, loose competitiveness, access-graph model, Markov paging,

SYNONYMS: paging, caching, weighted caching, weighted paging, file caching

1 PROBLEM DEFINITION

A file-caching problem instance specifies a cache size k (a positive integer) and a sequence of requests to files, each with a size (a positive integer) and a retrieval cost (a non-negative number). The goal is to maintain the cache to satisfy the requests while minimizing the retrieval cost. Specifically, for each request, if the file is not in the cache, one must retrieve it into the cache (paying the retrieval cost) and remove other files to bring the total size of files in the cache to k or less. Weighted caching, or weighted paging is the special case when each file size is 1. Paging is the special case when each file size and each retrieval cost is 1. Then the goal is to minimize cache misses, or equivalently the fault rate.

An algorithm is *online* if its response to each request is independent of later requests. In practice this is generally necessary. Standard worst-case analysis is not meaningful for online algorithms — any algorithm will have some input sequence that forces a retrieval for every request. Yet worst-case analysis can be done meaningfully as follows. An algorithm is c(h,k)-competitive if on any sequence σ the total (expected) retrieval cost incurred by the algorithm using a cache of size k is at most c(h,k) times the minimum cost to handle σ with a cache of size h (plus a constant independent of σ). Then the algorithm has competitive ratio c(h,k). The study of competitive ratios is called competitive analysis. (In the larger context of approximation algorithms for combinatorial optimization, this ratio is commonly called the approximation ratio.)

Algorithms. Here are definitions of a number of caching algorithms; first is LANDLORD. LANDLORD gives each file "credit" (equal to its cost) when the file is requested and not in cache. When necessary, LANDLORD reduces all cached file's credits proportionally to file size, then evicts files as they run out of credit.

File-caching algorithm LANDLORD
Maintain real value credit $[f]$ with each file f (credit $[f] = 0$ if f is not in the cache).
When a file g is requested:
1. if g is not in the cache:
2. until the cache has room for g :
3. for each cached file f : decrease credit $[f]$ by $\Delta \cdot \text{size}[f]$,
4. where $\Delta = \min_{f \in \text{cache}} \operatorname{credit}[f]/\operatorname{size}[f]$.
5. Evict from the cache any subset of the zero-credit files f .
6. Retrieve g into the cache; set $\operatorname{credit}[g] \leftarrow \operatorname{cost}(g)$.
7. else Reset credit[g] anywhere between its current value and $cost(g)$.

For weighted caching, file sizes equal 1. GREEDY DUAL is LANDLORD for this special case. BALANCE is the further special case obtained by leaving credit unchanged in line 7.

For paging, files sizes and costs equal 1. FLUSH-WHEN-FULL is obtained by evicting *all* zero-credit files in line 5; FIRST-IN-FIRST-OUT is obtained by leaving credits unchanged in line 7 and evicting the file that entered the cache earliest in line 5; LEAST-RECENTLY-USED is obtained by raising credits to 1 in line 7 and evicting the least-recently requested file in line 5. The MARKING algorithm is obtained by raising credits to 1 in line 7 and evicting a *random* zero-credit file in line 5.

2 KEY RESULTS

This entry focuses on competitive analysis of paging and caching strategies as defined above. Competitive analysis has been applied to many problems other than paging and caching, and much is known about other methods of analysis (mainly empirical or average-case) of paging and caching strategies, but these are outside scope of this entry.

Paging. In a seminal paper, Sleator and Tarjan showed that LEAST-RECENTLY-USED, FIRST-IN-FIRST-OUT, and FLUSH-WHEN-FULL are $\frac{k}{k-h+1}$ -competitive [12]. Sleator and Tarjan also showed that this competitive ratio is the best possible for any deterministic online algorithm.

Fiat *et al.* showed that the MARKING algorithm is $2H_k$ -competitive and that no randomized online algorithm is better than H_k -competitive [6]. Here $H_k = 1 + 1/2 + \cdots + 1/k \approx$.58 + ln k. McGeoch and Sleator gave an optimal H_k -competitive randomized online paging algorithm [11].

Weighted caching. For weighted caching, Chrobak *et al.* showed that the deterministic online BALANCE algorithm is k-competitive [4]. Young showed that GREEDY DUAL is $\frac{k}{k-h+1}$ -competitive, and that GREEDY DUAL is a primal-dual algorithm — it generates a solution to the linear-programming dual which proves the near-optimality of the primal solution [13].

File caching. When each cost equals 1 (the goal is to minimize the *number* of retrievals), or when each file's cost equals the file's size (the goal is to minimize the total number of *bytes* retrieved), Irani gave $O(\log^2 k)$ -competitive randomized online algorithms [7].

For general file caching, Irani and Cao showed that a restriction of LANDLORD is k-competitive [3]. Independently, Young showed that LANDLORD is $\frac{k}{k-h+1}$ -competitive [14].

Other theoretical models. Practical performance can be better than the worst case studied in competitive analysis. Refinements of the model have been proposed to increase realism. Borodin *et al.* [2], to model locality of reference, proposed the *access-graph* model (see also [8, 9]). Koutsoupias and Papadimitriou proposed the *comparative ratio* (for comparing classes of online algorithms directly) and the *diffuse-adversary model* (where the adversary chooses requests probabilistically subject to restrictions) [10]. Young showed that any $\frac{k}{k-h+1}$ -competitive algorithm is also *loosely* O(1)-competitive: for any fixed $\varepsilon, \delta > 0$, on any sequence, for all but a δ -fraction of cache sizes k, the algorithm either is O(1)-competitive or pays at most ε times the sum of the retrieval costs [14].

Analyses of deterministic algorithms. Here is a competitive analysis of GREEDY DUAL for weighted caching.

Theorem 1. GREEDY DUAL is $\frac{k}{k-h+1}$ -competitive for weighted caching.

Proof. Here is an amortized analysis (in the spirit of Sleator and Tarjan, Chrobak *et al.*, and Young; see [13] for a different primal-dual analysis). Define potential

$$\Phi = (h-1) \cdot \sum_{f \in \text{GD}} \operatorname{credit}[f] + k \cdot \sum_{f \in \text{OPT}} \left(\operatorname{cost}(f) - \operatorname{credit}[f] \right),$$

where GD and OPT denote the current caches of GREEDY DUAL and OPT (the optimal off-line algorithm that manages the cache to minimize the total retrieval cost), respectively. After each request, GREEDY DUAL and OPT take (some subset of) the following steps in order.

OPT evicts a file f: Since credit $[f] \leq cost(f)$, Φ cannot increase.

OPT retrieves requested file g: OPT pays cost(g); Φ increases by at most k cost(g).

GREEDY DUAL decreases credit [f] for all $f \in \text{GD}$: The cache is full and the requested file is in OPT but not yet in GD. So |GD| = k and $|\text{OPT} \cap \text{GD}| \leq h - 1$. Thus, the total decrease in Φ is $\Delta[(h-1)|\text{GD}| - k |\text{OPT} \cap \text{GD}|] \geq \Delta[(h-1)k - k(h-1)] = 0$.

GREEDY DUAL evicts a file f: Since credit[f] = 0, Φ is unchanged.

GREEDY DUAL retrieves requested file g and sets $\operatorname{credit}[g]$ to $\operatorname{cost}(g)$: GREEDY DUAL pays $c = \operatorname{cost}(g)$. Since g was not in GD but is in OPT, $\operatorname{credit}[g] = 0$ and Φ decreases by -(h-1)c + kc = (k-h+1)c.

GREEDY DUAL resets credit[g] between its current value and cost(g): Since $g \in OPT$ and credit[g] only increases, Φ decreases.

So, with each request: (1) when OPT retrieves a file of cost c, Φ increases by at most kc; (2) at no other time does Φ increase; and (3) when GREEDY DUAL retrieves a file of cost c, Φ decreases by at least (k - h + 1)c. Since initially $\Phi = 0$ and finally $\Phi \ge 0$, it follows that GREEDY DUAL's total cost times k - h + 1 is at most OPT's cost times k. \Box **Extension to file caching.** Although the proof above easily extends to LANDLORD, it is more informative to analyze LANDLORD via a *general reduction* from file caching to weighted caching:

Corollary 1. LANDLORD is $\frac{k}{k-h+1}$ -competitive for file caching.

Proof. Let W be any deterministic c-competitive weighted-caching algorithm. Define filecaching algorithm F_W as follows. Given request sequence σ , F_W simulates W on weightedcaching sequence σ' as follows. For each file f, break f into size(f) "pieces" $\{f_i\}$ each of size 1 and cost $\cos(f)/\operatorname{size}(f)$. When f is requested, give a batch $(f_1, f_2, \ldots, f_s)^{N+1}$ of requests for pieces to W. Take N large enough so W has all pieces $\{f_i\}$ cached after the first sNrequests of the batch.

Assume that W respects equivalence: after each batch, for every file f, all or none of f's pieces are in W's cache. After each batch, make F_W update its cache correspondingly to $\{f : f_i \in \text{cache}(W)\}$. F_W 's retrieval cost for σ is at most W's retrieval cost for σ' , which is at most $c \text{ OPT}(\sigma')$, which is at most $c \text{ OPT}(\sigma)$. Thus, F_W is c-competitive for file caching.

Now, observe that GREEDY DUAL can be made to respect equivalence. When GREEDY DUAL processes a batch of requests $(f_1, f_2, \ldots, f_s)^{N+1}$ resulting in retrievals, for the last s requests, make GREEDY DUAL set $\operatorname{credit}[f_i] = \operatorname{cost}(f_i) = \operatorname{cost}(f)/s$ in line 7. In general, restrict GREEDY DUAL to raise credits of equivalent pieces f_i equally in line 7. After each batch the credits on equivalent pieces f_i will be the same. When GREEDY DUAL evicts a piece f_i , make GREEDY DUAL evict all other equivalent pieces f_j (all will have zero credit).

With these restrictions, GREEDY DUAL respects equivalence. Finally, taking W to be GREEDY DUAL above, F_W is LANDLORD.

Analysis of the randomized MARKING algorithm. Here is a competitive analysis of the MARKING algorithm.

Theorem 2. The MARKING algorithm is $2H_k$ -competitive for paging.

Proof. Given a paging request sequence σ , partition σ into contiguous *phases* as follows. Each phase starts with the request after the end of the previous phase and continues as long as possible subject to the constraint that it should contain requests to at most k distinct pages. (Each phase starts when the algorithm runs out of zero-credit files and reduces all credits to zero.)

Say a request in the phase is *new* if the item requested was not requested in the previous phase. Let m_i denote the number of new requests in the *i*th phase. During phases i - 1 and $i, k + m_i$ distinct files are requested. OPT has at most k of these in cache at the start of the i - 1st phase, so it will retrieve at least m_i of them before the end of the *i*th phase. So OPT's total cost is at least max{ $\sum_i m_{2i}, \sum_i m_{2i+1}$ } $\geq \sum_i m_i/2$.

Say a non-new request is *redundant* if it is to a file with credit 1 and non-redundant otherwise. Each new request costs the MARKING algorithm 1. The *j*th non-redundant request costs the MARKING algorithm at most $m_i/(k-j+1)$ in expectation because, of the k-j+1 files that if requested would be non-redundant, at most m_i are not in the cache (and each is equally likely to be in the cache). Thus, in expectation MARKING pays at most $m_i + \sum_{j=1}^{k-m_i} m_i/(k-j+1) \leq m_i H_k$ for the phase, and at most $H_k \sum_i m_i$ total.

3 APPLICATIONS

Variants of GREEDY DUAL and LANDLORD have been incorporated into file-caching software such as Squid [5].

4 OPEN PROBLEMS [optional]

None to report.

5 EXPERIMENTAL RESULTS

For a study of competitive ratios on practical inputs, see for example [13, 3, 5].

6 CROSS REFERENCES

EDITOR PLEASE FORMAT

Algorithm DC-Tree for k-Servers on Tree (Entry 00212) Online List Update (Entry 00041) Performance Measures in Online Algorithms (Entry 00325) Price of Anarchy (Entry 00368) Work-Function Algorithm for K-servers (Entry 00219)

7 RECOMMENDED READING

- [1] Alan Borodin and Ran El-Yaniv, *Online computation and competitive analysis*. Cambridge University Press, New York, NY, USA.
- [2] Allan Borodin, Sandy Irani, Prabhakar Raghavan, and Baruch Schieber. Competitive paging with locality of reference. *Journal of Computer and System Sciences*, 50(2):244– 258, 1995.
- [3] Pei Cao and Sandy Irani. Cost-aware WWW proxy caching algorithms. In USENIX Symposium on Internet Technologies and Systems, December 1997.
- [4] Marek Chrobak, Howard Karloff, Thomas H. Payne, and Sundar Vishwanathan. New results on server problems. SIAM Journal on Discrete Mathematics, 4(2):172–181, 1991.
- [5] John Dilley, Martin Arlitt, and Stephane Perret. Enhancement and validation of Squid's cache replacement policy. *Hewlett-Packard Laboratories Technical Report HPL-1999-69*, May 1999.
- [6] Amos Fiat, Richard M. Karp, Michael Luby, Lyle A. McGeoch, Daniel D. Sleator, and Neal E. Young. Competitive paging algorithms. *Journal of Algorithms*, 12(4):685–699, 1991.

- [7] Sandy Irani. Page replacement with multi-size pages and applications to Web caching. *Algorithmica*, 33(3):384–409, 2002.
- [8] Sandy Irani, Anna R. Karlin, and Steven Phillips. Strongly competitive algorithms for paging with locality of reference. *SIAM Journal on Computing*, 25(3):477–497, 1996.
- [9] Anna R. Karlin, Steven J. Phillips, and Prabhakar Raghavan. Markov paging. SIAM Journal on Computing, 30(3):906–922, 2000.
- [10] Elias Koutsoupias and Christos H. Papadimitriou. Beyond competitive analysis. SIAM Journal on Computing, 30(1):300–317, 2000.
- [11] Lyle A. McGeoch and Daniel D. Sleator. A strongly competitive randomized paging algorithm. Algorithmica, 6:816–825, 1991.
- [12] Daniel D. Sleator and Robert E. Tarjan. Amortized efficiency of list update and paging rules. Comm. ACM, 28(2):202–208, 1985.
- [13] Neal E. Young. The k-server dual and loose competitiveness for paging. Algorithmica, 11(6):525–541, 1994.
- [14] Neal E. Young. On-line file caching. *Algorithmica*, 33(3):371–383, 2002.