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ABSTRACT
Time series shapelets are small, local patterns in a time series that
are highly predictive of a class and are thus very useful features for
building classifiers and for certain visualization and summarization
tasks. While shapelets were introduced only recently, they have
already seen significant adoption and extension in the community.

Despite their immense potential as a data mining primitive, there
are two important limitations of shapelets. First, their expressive-
ness is limited to simple binary presence/absence questions. Sec-
ond, even though shapelets are computed offline, the time taken to
compute them is significant.

In this work, we address the latter problem by introducing a
novel algorithm that finds shapelets in less time than current meth-
ods by an order of magnitude. Our algorithm is based on intelligent
caching and reuse of computations, and the admissible pruning of
the search space. Because our algorithm is so fast, it creates an
opportunity to consider more expressive shapelet queries. In par-
ticular, we show for the first time an augmented shapelet repre-
sentation that distinguishes the data based on conjunctions or dis-
junctions of shapelets. We call our novel representation Logical-
Shapelets. We demonstrate the efficiency of our approach on the
classic benchmark datasets used for these problems, and show sev-
eral case studies where logical shapelets significantly outperform
the original shapelet representation and other time series classific-
ation techniques. We demonstrate the utility of our ideas in do-
mains as diverse as gesture recognition, robotics, and biometrics.
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1. INTRODUCTION
Time series shapelets were introduced in 2009 as a primitive for

time series data mining [19]. Shapelets are small sequences that
separate the time series into two classes by asking the question
"Does this unknown object have a subsequence that is within T of
this shapelet?" Where there are three or more classes, repeated app-
lication of shapelets can be used (i.e. a decision tree-like structure)
to predict the class label. Figure 1 shows examples of shapelets
found in a dataset of accelerometer signals [11]. Every time series
in the dataset corresponds to one of two hand motions performed
by an actor tracing a circular or rectangular path through the air
with an input device. The shapelet denoted by P in the figure is
the one that maximally separates the two classes when used with
a suitable threshold. In essence, the shapelet P captures the sinu-
soidal acceleration pattern of the circular motion along the Z-axis.
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Figure 1: (a) Idealized motions performed with a Wii remote.
(b) The concatenated accelerometer signals from recordings of
actors performing the motions (c) Examples of Shapelets that
describe each of the motions.

Time series shapelets are generating increasing interest among
researchers [5] [13] [18] for at least two reasons. First, in many
cases time series shapelets can learn the inherent structure of the
data in a manner that allows intuitive interpretation. For exam-
ple, beyond classifying, say, normal/abnormal heartbeats, shapelets
could tell a cardiologist that the distinguishing feature is at the be-
ginning of the dicrotic pulse. Second, shapelets are usually much
shorter than the original time series, and unlike instance based meth-
ods that require comparison to the entire dataset, we only need one
shapelet at classification time. Therefore, shapelets create a very
compact representation of the class concept, and this compactness
means that the time and space required for classification can be sig-
nificantly reduced, often by at least two orders of magnitude. This
is a particularly desirable property in resource limited systems such
as sensor nodes, cell phones, mobile robots, smart toys, etc.

Despite the above promising features of time series shapelets, the
current algorithm [19] for discovering them is still relatively lethar-



gic and, therefore, does not scale up to use on real-world datasets,
which are often characterized by being noisy, long, and nonuni-
formly sampled. In addition, the current definition of shapelets is
not expressive enough to represent certain concepts that seem quite
common in the real world (examples appear later in this work). In
particular, the expressiveness of shapelets is limited to simple bi-
nary presence/absence questions. While recursive application of
these binary questions can form a decision tree-like structure, it is
important to recognize that the full expressive power of a classic,
machine-learning decision tree is not achieved (recall a decision
tree represents the concept space of disjunction of conjunctions).
For example, differentiating classes by using only binary questions
is not possible if, the classes differ only in the number of occur-
rences of a specific pattern rather than presence/absence of a pat-
tern.

In this work, we address the problem of scalability and show how
this allows us to define a more expressive shapelet representation.
We introduce two novel techniques to speedup search for shapelets.
First, we precompute sufficient statistics [16] to compute the dis-
tance (i.e. similarity) between a shapelet and a subsequence of a
time series in amortized constant time. In essence, we trade time
for space, finding that a relativity small increase in the space re-
quired can help us greatly decrease the time required. Second, we
use a novel admissible pruning technique to skip the costly com-
putation of entropy (i.e. the goodness measure) for the vast major-
ity of candidate shapelets. We have achieved up to 27× speedup
over the current algorithm experimentally. We further show that
we can combine multiple shapelets in logic expressions such that
complex concepts can be described. For example, in the dataset
shown in figure 1, there are discontinuities in the rectangular mo-
tion. It will not be possible to describe the rectangular class using
one shapelet if there are variable pause times at the corners in diffe-
rent instances. In such cases, we can express the rectangular class
by the logical shapelet “α and β and γ and δ.” Here, each literal
corresponds to one of the straight line motions as shown in figure
1(c). In addition, our algorithm is able to increase the gap/margin
between classes even if they are already separated. This allows for
more robust generalization from the training to test data. We have
successfully used our algorithm to find interesting combinations of
shapelets in accelerometer signals, pen-based biometrics, and ac-
celerometer signals from a mobile robot.

It is important to note that there is essentially zero-cost for the
expressiveness of logical shapelets. If we apply them to a dataset
that does not need their increased representational power, they sim-
ply degenerate to classic shapelets, which are a special case. Thus,
our work complements and further enables the growing interest in
shapelets as a data mining tool. For example, [18] uses shapelets
on streaming data as “early predictors” of a class, [13] uses an ex-
tension of shapelets in an application in severe weather prediction,
[6] uses shapelets to find representative prototypes in a dataset, and
[5] use shapelets to do gesture recognition from accelerometer data.
However, none of these works have considered the logical combi-
nations of shapelets we consider here or have obtained an signifi-
cant speedup over the original algorithm.

2. DEFINITION AND BACKGROUND
In this section, we define shapelets and the other notations used

in the paper.

Definition 1. A Time Series T is a sequence of real numbers
t1, t2, . . . , tm. A time series subsequence Si,l = ti, ti+1, . . . , ti+l−1

is a continuous subsequence of T starting at position i and length l.

A time series of length m can have m(m+1)
2

subsequences of all
possible lengths from one to m.

If we are given two time series X and Y of same length m, we
can use the euclidean norm of their difference (i.e. X−Y ) as a dis-
tance measure. To achieve scale and offset invariance, we must nor-
malize the individual time series using z-normalization before the
actual distance is computed. This is a critical step; even tiny differ-
ences in scale and offset rapidly swamp any similarity in shape [8].
In addition, we normalize the distances by dividing with the length
of the time series. This allows comparability of distances for pairs
of time series of various lengths. We call this length-normalization.

The normalized euclidean distance is generally computed by the

formula
√

1
m

∑m
i=1(xi − yi)2. Thus, computing a distance value

requires time linear on the length of the time series. In contrast,
we compute the normalized eucledian distance between X and Y
using five numbers derived from X and Y . These numbers are de-
noted as sufficient statistics in [16]. The numbers are

∑
x,
∑
y ,∑

x2 ,
∑
y2 and

∑
xy. It may appear that we are doing more work

than necessary; however, as we make clear in section 3.1, comput-
ing the distance in this manner enables us to reuse computations
and reduce the amortized time complexity from linear to constant.

The sample mean and standard deviation can be computed from
these statistics as µx = 1

m

∑
x and σ2

x = 1
m

∑
x2 − µ2

x, re-
spectively. The positive correlation and the normalized euclidean
distance between X and Y can then be expressed as below [14].

C(x, y) =

∑
xy −mµxµy

mσxσy
(1)

dist(x, y) =
√

2(1− C(x, y)) (2)

Many time series data mining algorithms (1-NN classification, clus-
tering, density estimation, etc.) require only the comparison of time
series that are of equal lengths. In contrast, time series shapelets
require us to test if a short time series (the shapelet) is contained
within a certain threshold somewhere inside a much longer time
series. To achieve this, the shorter time series is slid against the
longer one to find the best possible alignment between them. We
call this distance measurement the subsequence distance and define
it as sdist(x, y) =

√
2(1− Cs(x, y)) where x and y are the two

time series with lengths m and n, respectively, and for m ≤ n

Cs(x, y) = min
0≤l≤n−m

∑m
i=1 xiyi+l −mµxµy

mσxσy
(3)

In the above definition µy and σy denote the mean and standard
deviation of m consecutive values from y starting at position l+ 1.
Note that, sdist is not symmetric.

Assume that we have a dataset D of N time series from C dif-
ferent classes. Let us also assume, every class i (i = 1, 2, . . . , C)
has ni (

∑
i ni = N ) labeled instances in the dataset. An instance

time series in D is also denoted by Di for i = 1, 2, . . . , N .

Definition 2. The entropy of a dataset D is defined as E(D) =

−
∑C

i=1
ni
N
log(ni

N
).

If the smallest time series in D is of length m, there are at least
N m(m+1)

2
subsequences in D that are shorter than every time se-

ries in D. We define a split as a tuple (s, τ) where s is a subse-
quence and τ is a distance threshold. A split divides the dataset D
into two disjoint subsets or partitionsDleft = {x : x ∈ D, sdist(s, x) ≤
τ} and Dright = {x : x ∈ D, sdist(s, x) > τ}. We define the
cardinality of each partition by N1 = |Dleft| and N2 = |Dright|.



Algorithm 1 Shapelet_Discovery(D)

Require: A dataset D of time series
Ensure: Return the shapelet
1: m← minimum length of a time series in D
2: maxGain← 0,maxGap← 0
3: for j ← 1 to |D| do {every time series in D}
4: S ← Dj

5: for l← 1 to m do {every possible length}
6: for i← 1 to |S| − l + 1 do {every start position}
7: for k ← 1 to |D| do {compute distances of every time

series to the candidate shapelet Si,l}
8: Lk ← sdist(Si,l, Dk)
9: sort(L)

10: (τ, updated)← bestIG(L,maxGain,maxGap)
11: if updated then {gain and/or gap are changed}
12: bestS ← Si,l,bestτ ← τ ,bestL← L
13: return (bestS, bestτ, bestL,maxGain,maxGap)

Algorithm 2 sdist(x, y)

Require: Two time series x and y. Assume |x| ≤ |y|.
Ensure: Return the normalized distance between x and y
1: minSum←∞
2: x← zNorm(x)
3: for j ← 1 to |y| − |x|+ 1 do {every start position on y}
4: sum← 0
5: z ← zNorm(yj,|x|)
6: for i← 1 to |x| do {compute the eucledian distance}
7: sum← sum+ (zi − xi)2
8: minSum← min(minSum, sum)

9: return
√
minSum/|x|

We use two quantities to measure the goodness of a split: informa-
tion gain and separation gap.

Definition 3. The information gain of a split is I(s, τ) = E(D)−
N1
N
E(Dleft)− N2

N
E(Dright).

Definition 4. The separation gap of a split is G(s, τ) =
1

N2

∑
x∈Dright

sdist(s, x) − 1
N1

∑
x∈Dleft

sdist(s, x).

Now we are in position to define time series shapelets.

Definition 5. The shapelet for a dataset D is a tuple of a sub-
sequence of an instance within D and a distance threshold (i.e. a
split) that has the maximum information gain while breaking ties
by maximizing the separation gap.

2.1 Brute-force Algorithm
In order to properly frame our contributions, we begin by ex-

plaining the brute-force algorithm for finding shapelets in a dataset
D (algorithm 1). Dataset D contains multiple time series of two or
more classes and possibly of different lengths.

Since time series can be considered to be points in high dimen-
sional space, we will denote D as a database of points. The algo-
rithm generates a candidate subsequence Si,l in the three loops in
lines 3, 5, and 6 of algorithm 1, which essentially generates all pos-
sible subsequences of all possible lengths from D. In lines 7-9, an
array L is created which holds the points in D in the sorted order
of their distance from the shapelet candidate. A schematic view of
this array is illustrated in figure 2. We call this schematic line an
orderline. Intuitively, the ideal shapelet is the one that orders the

Algorithm 3 bestIG(L,magGain,maxGap)

Require: An order line L and current best gain and gap.
Ensure: Update the best information gain and separation gap and

return the split point τ
1: for k ← 1 to |D| − 1 do
2: τ ← (Lk + Lk+1)/2
3: Count n1,i and n2,i for i = 1, 2, . . . , C.
4: Count N1 and N2 for both the partitions.
5: I ← Information gain computed by definition 3
6: G← Separation gap computed by definition 4
7: if (I > maxGain or (I = maxGain

∧
G > maxGap))

then
8: maxGain← I , maxGap← G, maxτ ← τ
9: updated← true

10: return (maxτ, updated)

data as such all instances of one class are near the origin, and all in-
stances of the other classes are to the far right, with no interleaving
of the classes.

P Orderline
0



Figure 2: Orderline for the shapelet P. Each time series is
placed on the orderline based on the sdist from P. Note that, the
time series that carries P is placed at position 0 on the order-
line. Also note that, P aligns at different positions on different
time series.

Distance values are computed by algorithm 2. Both of the nor-
malizations – z-normalization and length-normalization (before and
after the computation of euclidean distance, respectively) – are per-
formed here. Note that repeatedly performing normalization before
computing distances is expensive because the same sequences are
normalized multiple times. Our novel caching mechanism in sec-
tion 3.1 will remove this difficulty.

Given the orderline, the computation of information gain is linear
in the dataset size. Algorithm 3 describes the method of finding the
best split point paired with the current candidate sequence. At line
2, we selected the mid points between two consecutive points on
the orderline as split (τ ) points. Although there are infinite possible
split points, there are at most |D| − 1 distinct splits that can result
in different information gains. Therefore, it is sufficient to try only
these |D| − 1 splits. Computing the information gain from the
orderline requires O(N) time, which includes counting statistics
per class for the three sets (i.e. D,Dleft, Dright) in line 3 and 4.
The rest of the computation can be done inO(C) time in line 5 and
6. Finally, the current best gain and gap are updated if appropriate.

The time complexity of the algorithm, assuming no additional
memory usage (i.e. linear space cost), is clearly untenable. There
are at leastN m(m+1)

2
shapelet candidates (i.e. the number of itera-

tions through loops in line 3, 5, and 6). For each of the candidates,
we need to compute distances to each of the N time series in D
(i.e. line 8). Every distance computation takes O(m2) time. In
total, we need O(N2m4) arithmetic operations. Such a huge com-



putational cost makes the brute-force algorithm infeasible for real
applications. Since N is usually small as being the size of a la-
beled dataset, and m is large to make the search for local features
meaningful, we focus on reducing factors of m from the cost.

3. SPEEDUP TECHNIQUES
The original shapelet work introduced by Ye, et al. [19] showed

an admissible technique for abandoning some unfruitful entropy
computations early. However, this does not improve the worst case
complexity. In this work, we reduce the worst case complexity
by caching distance computations for future use. In addition, we
describe a very efficient pruning strategy resulting in an order of
magnitude speedup over the method of Ye et al..

3.1 Efficient Distance Computation
In algorithm 1, any subsequence ofDj with any length and start-

ing at any position is a potential shapelet candidate. Such a candi-
date needs to be compared against every subsequence of Dk with
the same length, starting at any position. The visual intuition of
the situation is illustrated by figure 3. For any two instances Dj

and Dk in D, we need to consider all possible parallelograms like
the ones shown in the figure. For each parallelogram, we need to
scan the subsequences to sum up the squared errors while comput-
ing the distance. Clearly there is a huge redundancy of calculations
between successive and overlapping parallelograms.

1 lv

1 lu

u

v(a) (b)

Dj

Dk

l

u

v

Figure 3: (a) Illustration of a distance computation required
between a pair of subsequences starting at positions u and v,
respectively, and of length l. Dashed lines show other possible
distance computations. (b) The matrix M for computing the
sum of products of the subsequences in (a).

Euclidean distance computation for subsequences can be made
faster by reusing overlapping computation. However, reusing com-
putations of z-normalized distances for overlapping subsequences
needs at least quadratic space and, therefore, is not tenable for
most applications. When we need all possible pairwise distances
among the subsequences, as we do in finding shapelets, spending
the quadratic space saves a whole order of magnitude of computa-
tion time.

For every pair of points (Dj , Dk) we compute five arrays. We
represent these arrays as Statsx,y in the algorithms. Two of the
arrays (i.e. Sx and Sy) store the cumulative sum of the individual
time series x and y. Another two (i.e. Sx2 and Sy2 ) store the
cumulative sum of squared values. The final one (i.e. M) is a 2D
array that stores the sum of products for different subsequences of
x and y. The arrays are defined mathematically below. All of the
arrays have left margin of zero values indexed by 0. More precisely,
Sx[0], Sy[0], Sx2 [0], Sy2 [0], M[0, 0], M[u, 0] for u = 1, 2, . . . , |x|,
and M[0, v] for v = 1, 2, . . . , |y| are all zeros.

Sx[u] =
∑u

i=0 xi , Sy[v] =
∑v

i=0 yi,
Sx2 [u] =

∑u
i=0 x

2
i , Sy2 [v] =

∑v
i=0 y

2
i

M[u, v] =

{ ∑v
i=0 xi+tyi if u > v,∑u
i=0 xiyi+t if u ≤ v

Algorithm 4 sdist_new(u, l, Statsx,y)

Require: start position u and length l and the sufficient statistics
for x and y.

Ensure: Return the subsequence distance between xu,l and y
1: minSum←∞
2: {M, Sx, Sy, Sx2 , Sy2} ← Statsx,y
3: for v ← 1 to |y| − |x|+ 1 do
4: d← distance computed by (1) and (2) in constant time
5: if d < minSum then
6: minSum← d
7: return

√
minSum

where t = abs(u− v).
Given that we have computed these arrays, the mean, variance,

and the sum of products for any pair of subsequences of the same
length can be computed as below.

µx = Sx[u+l−1]−Sx[u−1]
l

, µy =
Sy [v+l−1]−Sy [v−1]

l

σx =
S
x2 [u+l−1]−S

x2 [u−1]

l
−µ2

x, σy =
S
y2 [v+l−1]−S

y2 [v−1]

l
−µ2

y∑l−1
i=0 xu+iyv+i = M[u+ l − 1, v + l − 1]−M[u− 1, v − 1].

This in turn means that the normalized euclidean distance (the
information we actually want) between any two subsequences xu,l
and yv,l of any length l can now be computed using equations 1
and 2 in constant time. The algorithm 4 describes the steps. The
algorithm takes as input the starting position u and the length l of
the subsequence of x. It also takes the precomputed Statsx,y car-
rying the sufficient statistics. The algorithm iterates for all possible
start positions v of y and returns the minimum distance. Thus we
can see that the procedure sdist_new saves at least anO(m) inner
loop computation from procedure sditst.

3.2 Candidate Pruning
The constant time approach for distance computation introduced

in the previous section helps reduce the total cost of shapelet dis-
covery by a factor of m. Our next goal is to reduce the number
of iterations that occur in the for loop at line 6 in the algorithm 1.
The core idea behind our attack on this problem is the following
observation: If we know (s, τ) is a poor shapelet (i.e. it has low
information gain) then any similar subsequence to s must also re-
sult in a low information gain and, therefore, a costly evaluation
(computing all the distances) can be safely skipped. Assume we
have observed a good best-so-far shapelet at some point in the al-
gorithm. Let us denote this shapelet (Sp, τp) and its information
gain Ip. Imagine we now test (Si,l, τ), and it has very poor in-
formation gain Ii,l < Ip. Let us consider the next subsequence
Si+1,l. Here is our fundamental question. Is it possible to use the
relationship (the Euclidean distance) between Si,l and Si+1,l, to
prune Si+1,l?

To develop our intuition, let us first imagine a pathological case.
Suppose that dist(Si,l, Si+1,l) = 0; in other words, Si+1,l is the
exact same shape as Si,l. In that case we can obviously prune
Si+1,l, since its information gain must also be Ii,l. Suppose, how-
ever, in the more realistic case, that Si,l and Si+1,l are similar, but
not identical. We may still be able to prune Si+1,l. The trick is to
ask, “how good could Si+1,l be?” , or a little more formally, “What
is an upper bound on the information gain of Si+1,l”. It turns out
that it is simple to calculate this bound!

Let the distance between Si,l and Si+1,l be R. By triangular in-
equality, sdist(Si+1,l, Dk) can be as low as sdist(Si,l, Dk) − R
and as high as sdist(Si,l, Dk) + R regardless of the alignment of



Si+1,l onDk. Thus, every point on the orderline of Si,l has a “mo-
bility” in the range [−R,R] from its current position. Given this
mobility, our goal is to find the best configuration of the points that
gives maximum information gain when split into two partitions.
The points that lie outside [τ −R, τ +R] can have no effect on the
information gain for candidate (Si+1,l, τ). For the points inside
[τ −R, τ +R] we can shift them optimistically in either direction
to increase the information gain.

Every class c ∈ C has nc instances in the database which are di-
vided into two partitions by a split. Let nc,1 and nc,2 be the number
of instances of class c in partition Dleft and Dright, respectively.
A class is weighted to the left (or simply called left-major/right-
minor) if nc,1

N1
>

nc,2

N2
. Similarly, a class is called right-major/left-

minor if nc,1

N1
≤ nc,2

N2
. The following lemma describes the optimal

choice for a single point. We relegate the proof to Appendix to
enhance the flow of the paper.

THEOREM 1. Shifting a point from its minor partition to its ma-
jor partition always increases information gain.

If we shift a point from the minor partition to the major partition,
the major/minor partitions of the class remain the same as before
shifting, simply because, if nc,1

N1
>

nc,2

N2
then nc,1+1

N1+1
>

nc,2−1

N2−1
.

Therefore, shifting all the minor points of a class to its major par-
tition increases the information gain monotonically, and thus, this
can be treated as an atomic operation. We denote such a sequence
of shifts as a “transfer”. Transferring a class may change the major-
minor partitions of other classes and, consequently, the transfer di-
rection for that class. Therefore, if we transfer every class based
on the major-minor partitions in the initial orderline, it does not
necessarily guarantee the maximum information gain.

In the case of two-class datasets, there is always one left-major
and one-right major class. Therefore, shifting all of the points in
[τ − R, τ + R] to their major partition will not change the major-
minor partitions of either of the classes; thus, this guarantees the
optimization (i.e. the upper bound) even if the initial transfer direc-
tions are used.

For a case of more than two-classes, almost all of the time initial
major-minor partitions hold after all of the transfers are done. Un-
fortunately, it is possible to construct counter examples, even if we
rarely confront them on real data. To obtain the optimal bound we
need to try all possible transfer directions for all of the classes re-
sulting in 2C trials. Fortunately, many classification problems deal
with a small number of classes. For example, 60% of the UCR time
series datasets have four or less classes. Given this fact, having the
2C constant in the complexity expression will not be an issue for
many problems.

Algorithm 5 describes the computation of the upper bound. The
algorithm loops through all distinct split positions (line 2-3). For
every split position, the algorithm transfers all of the classes to their
major partition based on the initial orderline (line 5-6) and com-
putes the information gain to find the upper bound. Note that line 4
is “commented out” in the algorithm which is a for loop that checks
all of the 2C combinations of transfer directions. For exact bound in
the case of many-class datasets, this line should be uncommented.

To summarize, for the two-class case we have an exact and ad-
missible pruning technique. In the multi-class case we have a pow-
erful heuristic that empirically gives answers that are essentially
indistinguishable from the optimal answer.

3.3 The Fast Shapelet Discovery Algorithm
With the speedup techniques described in the previous section,

we are now ready to plug them into algorithm 1 and build a faster
version as shown in algorithm 6.
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Figure 4: (a) A sequence S1 and its orderline. (b) Distance
between the sequences S1 and S2 is R. (c) The points on the
orderline within [τ −R, τ +R] are transferred to their major-
ity partition. (d) The computation of the information gain for
(S1, τ) and upper bound for (S2, τ).

Algorithm 5 upperIG(L,R)

Require: An order line L and the candidate distance R.
Ensure: Return an upper bound of information gain.
1: maxI ← 0
2: for k ← 1 to |D| − 1 except j do
3: τ ← (Lk + Lk+1)/2
4: //for all 2C combinations of transfer directions do
5: for all points p ∈ [τ −R, τ +R]
6: move p to its majority end.
7: Count n1,i and n2,i for i = 1, 2, . . . , C.
8: Count N1 and N2 for both the partitions.
9: I ← information gain computed by definition 3

10: maxI ← max(maxI, I)
11: return maxI

In lines 5-7, the sufficient statistics are computed for the current
time series Dj paired with every other time series Dk.

The algorithm maintains a set of orderlines in the history H . For
every candidate Si,l, before committing to the expensive computa-
tion of the orderline, the algorithm quickly computes upper bounds
using the orderlines in the history (line 14). If any of the upper
bounds is smaller than the maximum gain achieved so far we can
safely abandon the candidate (line 15).

Since the upper bound computation is based upon the triangu-
lar inequality, we are only allowed to use the previous orderlines
computed for sequences of the same length as the current candi-
date 1. Therefore, once the search moves on to the next length the
algorithm clears the history H and starts building it up for the new
length (line 9).

The size of the history H is a user-defined value and the algo-
rithm is insensitive to this value once it is set to at least five. To
prevent our history cache in line 22 growing without bound, we
need to have a replacement policy. The oldest-first (LIFO) policy
is the most suitable for this algorithm. This is because the recent
subsequences tend to be correlated with the current candidate and,
therefore, have small distances from the candidate. Note that, we
do not add all orderlines to the history. We only add the orderlines
that have less information gain (i.e. orderlines for poor shapelet
candidate) than the current maxGain. Because only poor candi-

1The reader may wonder why we cannot create a bound between
a sequence and a shorter sequence that is its prefix. Such bounds
cannot be created because we are normalizing all sequences, and
after normalizing the distances may increase or decrease.



Algorithm 6 Fast_Shapelet_Discovery(D)

Require: A dataset D of time series
Ensure: Return the shapelet
1: m← minimum length of a time series in D
2: maxGain← 0,maxGap← 0
3: for j ← 1 to |D| do {every time series in D}
4: S ← jth time series of D
5: for k ← 1 to |D| do {compute statistics for S and Dk}
6: x← S, y ← Dk

7: Statsx,y ← {M, Sx, Sy, Sx2 , Sy2}
8: for l← 1 to m do {every possible length}
9: clear H

10: for i← 1 to |S| do {every start position}
11: for w ← 1 to |H| do {every candidate in H}
12: (L′, S′)← H[w]
13: R← sdist(Si,l, S

′)
14: if upperIG(L′, R) < maxGain then {prune this

candidate}
15: continue with next i
16: for k ← 1 to |D| do {since not pruned; compute dis-

tances of every time series to the candidate Si,l}
17: Lk ← sdist_new(i, l, Statsx,y)
18: sort(L)
19: (τ, updated)← bestIG(L,maxGain,maxGap)
20: if updated then {gain and/or gap are changed}
21: bestS ← Si,l,bestτ ← τ ,bestL← L
22: add (L, Si,l) to H if maxGain is not changed
23: return (bestS, bestτ, bestL,maxGain,maxGap)

dates have the power of pruning similar candidates by predicting
their low information gain.

4. LOGICAL SHAPELET
A shapelet is a tuple consisting of a subsequence and a split point

(threshold) that attempts to separate the classes in exactly two dif-
ferent groups. However, it is easy to imagine situations where it
may not be sufficient to use only one shapelet to achieve separation
of classes, but a combination of shapelets. To demonstrate this, we
show a simple example. In Figure 5(a), we have a two-class prob-
lem where each class has two time series. The square class con-
tains two sinusoidal patterns with both positive and negative peaks,
while the circle class has only one positive or one negative peak.
If we attempt to use the classic shapelet definition to separate these
classes, we find there is no way to do so. Classic shapelets sim-
ply do not have the expressiveness to represent this concept. The
reason is that every single distinct pattern appears in both of the
classes, or in only one of the time series of one of the classes. For
example, in 5(b) three different unary shapelets and their orderlines
are illustrated, and none of them achieved a separation between the
classes.

To overcome this problem, we propose using multiple shapelets
which allow distinctions based on logical combinations of the shapelets.
For example, if we use the first two shapelets in figure 5(b) then
we can say that (S1, τ1) and (S2, τ2) separate the classes best.
From now on, we use standard logic symbols

∧
and

∨
for and

and or operations. For a new instance x, if sdist(S1, x) < τ1∧
sdist(S2, x) < τ2 is true, then we can classify x as a mem-

ber of the square class, or otherwise the circle class. When us-
ing multiple shapelets in such a way, chaining of logical combi-
nations among the shapelets is possible; for example, (S1, τ1)

∧
(S2, τ2)

∨
(S3, τ3). However, for the sake of simplicity and to

guard against over fitting with too complex a model [4], we only
consider two cases, only

∧
, and only

∨
combinations. We further

guard against overfitting with too flexible a model by allowing only
just a single threshold for both shapelets.

We have already seen how to create an orderline for classic shapelets,
how do we define an orderline for conjunctive or disjunctive shapelets?
To combine the orderlines for such cases, we adopt a very simple
approach. For

∧
operation, the maximum of the distances from

the literal shapelets is considered as the distance on the new order-
line, and for

∨
the minimum is considered. Apart from these minor

changes, the computation of the entropy and information gain are
unchanged.

For example, in figure 5(d) the combined orderline for (S1

∧
S2, τ) is shown. The two classes are now separable because both
the shapelets occur together in the square class and do not both
occur together in individual instances of the circle class.

Given these minor changes to allow logical shapelets, we can
still avail ourselves of the speedup techniques proposed in section
3. The original shapelet algorithm just needs to be modified to run
multiple times, and some minor additional bookkeeping must be
done. When the first shapelet is found by the algorithm 6, we now
test to see if there is any class whose instances are in both the parti-
tions of the optimal split. We call such a class “broken” (We could
say “non-linearly separable,” however, our situation has a slightly
different interpretation). If there is a broken class, we continue to
search for a new shapelet on the same dataset that can merge the
parts of the broken class. However, this time we must make sure
that new shapelet does not have a match with a subsequence in Dk

that overlaps with the matching subsequence of an already discov-
ered shapelet. After finding the new shapelet, we combine the or-
derlines and the threshold based on the appropriate logic operation.
Finally, we are in position to measure the information gain to see if
it is better than our best-so-far. If the gain improves, we test for a
broken class again and continue as before. Once there is no broken
class or the gain does not increase, we recursively find shapelet(s)
in the left and right partitions.

The above approach is susceptible to overfitting. It can degen-
erate into (S1, τ1)

∨
(S2, τ2)

∨
. . .
∨

(Sni , τn) where ni is the
number of instances in the class i and each Sj for j = 1, 2, . . . , ni

is a subsequence of different instances of class i in the dataset D.
In this case, all of the instances of class i would be in the left side
with zero distances. To avoid overfitting, we can have a hard bound
on the number of literals in the logic expression. In this work, the
bound is hard coded to four, however, for a very large dataset we
could slowly increase this number, if we carefully check to guard
against overfitting. Note that the situation here is almost perfectly
analogous to the problem of overfitting in decision trees, and we
expect that similar solutions could work here.

5. EVALUATION
We begin by noting that we have taken extraordinary lengths

to make all our experiments reproducible. As such, all code and
data are available at [2], and will be maintained there in perpetuity.
Moreover, while our proposed algorithm is not sensitive to the few
parameters required as inputs, we explicitly state all parameters for
every dataset at [2].

We wish to demonstrate two major points with our experiments.
First, our novel speedup techniques can be used to find both classic
and logical shapelets significantly faster. Second, there exist real-
world problems for which logical shapelets are significantly more
accurate than classic shapelets or other state-of-the-art techniques
(see section 6).

To demonstrate the speedup, we have taken 24 datasets from the
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Figure 5: (a) Two classes of synthetic time series. (b) Examples
of single shapelets that cannot separate the classes. Any other
single shapelet would fail similarly. (c) Two shapelets connected
by an and operation can separate the classes.

UCR time series archive [9]. For brevity the names and properties
of these datasets and tables of time taken for running the shapelet
algorithms on these datasets can be found at [2]. Here we content
ourselves with a visual summary. In figure 6(left), we show the
speedups over the original algorithm. Our algorithm obtained some
speedup for all of the datasets with a maximum of 27.2.

The two speedup methods described in section 3 are not inde-
pendent of each other. Therefore, we also measure the individual
speedups for each of the techniques while deactivating the other.
The individual speedup factors for both the techniques are plot-
ted in figure 6(right). There is no speedup for two of the datasets
(shown by stars) when only the candidate pruning method is active.
The reason is that the amount of pruning achieved for these datasets
cannot surpass the overhead costs of computing the upper bounds
for every candidate. However, when the technique of efficient dis-
tance computation is active, speedups are achieved for all of the
datasets including these two.
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Figure 6: (left) Comparison of running times between our
method and the original shapelet algorithm. Note the log scale
on both axes. (right) The individual speedup factors for both
of our proposed techniques: Candidate Pruning and Efficient
Distance Computation.

It is critical to note that our improvements in speed are not due
to trivial differences in hardware or to simple implementation op-
timizations, but reflect the utility of the two original techniques in-
troduced in section 3. In particular, all experiments were done on
exactly the same environment and on the same input data files. The
code for the original shapelet discovery algorithm was graciously
donated by Dr. Ye who also confirmed that we are using her code
in the best possible manner. Since our technique reduced the worst
case complexity by a factor of m and has an admissible pruning

technique which is not present in the original code, we can be sure
that the speedup is valid.

As described in section 3.2, our linear time upper bound is not
admissible for the many-class cases. Among the 24 datasets we
used for scalability experiments, 13 datasets have more than two
classes. For these 13 datasets, the average rate of computing false
upper bound is just 1.56% with a standard deviation of 2.86%. In
reality, the impact of false bounds on the final result is inconsequen-
tial because of the massive search space for shapelet. Our algorithm
rarely misses the optimal information gain in that space and has not
missed in any of the above 13 many-class datasets.

6. CASE STUDIES
In this section we show three case studies in three different do-

mains. In all the case studies we demonstrate that logical combina-
tions of shapelets can describe the difference between the classes
very robustly. We compare our algorithm to the 1-NN classifier
using Dynamic Time Warping (DTW) because a recent extensive
comparison of dozens of time series classification algorithms, on
dozens of datasets, strongly suggests that 1-NN DTW is exception-
ally difficult to beat [3]. Note that the 1-NN classifier using DTW
is less amenable for realtime classification of time series since it
requires an O(m2) distance measure to be computed for every in-
stance in the dataset. In contrast, classification with shapelets re-
quires just a singleO(n(m−n)) calculation (n is the length of the
shapelet). Thus, classification with time series shapelets is typically
thousands of times faster than 1-NN DTW. We do not experimen-
tally show this here, since it was amply demonstrated in the original
shapelet paper [19].

6.1 Cricket: Automatic Scorer
In the game of cricket (a very popular game in British Common-

wealth countries), an umpire signals different events in the game to
a distant scorer/book-keeper. Typically, the signals involve particu-
lar motions of the hands. For example, the umpire stretches up both
the hands above the head to signal a score of “six.” A complete list
of signals can be found in [1]. Researchers have recently begun to
attempt to classify these signals automatically to ease/remove the
task of a scorer [10].

In [10], a dataset was collected in which two accelerometers have
been placed on both wrists of four different umpires. The umpires
performed twelve different signals used in the game of cricket at
least ten times. For simplicity of presentation, we select only two
classes from the dataset that has a unique possibility of confusion.
The two classes are “No Ball” and “Wide Ball.” To signal “No
Ball,” the umpire must raise one of his hands to the shoulder-height
and keep his hand horizontal until the scorer confirms the record.
To signal “Wide Ball,” the umpire stretches both of the hands hori-
zontally at shoulder-height (see figure 7).

Each accelerometer has three synchronous and independent mea-
surements for three axes (X,Y, and Z). For every signal performed,
the six channels are concatenated to form one time series. We ap-
pend low variance white noise to each example in the dataset to
make them of length 308. The training set has nine examples as
shown in figure 7. The test set has 98 examples. Note that the
examples for “No Ball” are only right hand signals. This is true
for the test set also. To cover the left handed case and also to in-
clude examples of different lengths, we have generated another test
set using the accelerometer on a standard smart phone. This test
set contains 64 examples of length 600. Each class has an equal
number of examples in both of the training sets.

On this dataset, we performed 1-NN classification using Eu-
clidean distance and Dynamic Time Warping (DTW) as distance



Algorithms Original Test set New Test set
1-NN Euclidean distance 94.89% 56.25%

1-NN Dynamic Time Warping 98.98% 87.50%
1-NN DTW-Sakoe-Chiba 94.89% 75.00%

Shapelet 44.89% 48.43%
Logical Shapelet 95.91% 89.06%

Table 1: The accuracies of different algorithms on the two test
sets.

measures. We also considered DTW with the Sakoe-Chiba band
[15], as it has been shown to outperform classic DTW on many
datasets [7]. The results are shown in table 1. It is interesting to
consider why Logical Shapelets generalize the new data the best.
We conjecture that it is the ability of Logical Shapelets to extract
just the meaningful part of the signal. In contrast, DTW and Eu-
clidean distance must account for the entire time series, including
sections that may be unique to individual umpires idiosyncratic mo-
tion, but not predictive of the concept.

The Computationally expensive 1-NN DTW performs well in
both of the cases, but not suitable for real-time applications. The
original shapelet algorithm fails to capture the fact that the inherent
difference between the classes is in the number of occurrences of
the shapelet. Our logical shapelet algorithm captures the sharp rises
in the Z-axes for “Wide Ball” from the original training set. No
such “No Ball" signal can have two such rises in the Z-axes, and
therefore, classification accuracy does not decrease significantly for
the new test set.
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Figure 7: (a)The training set of the cricket dataset by concate-
nating signals from every axis of the accelerometer. (b) The
two signs an umpire performs to declare two types of illegal de-
livery. (c) Shapelets found by our algorithm and the original
algorithm.

6.2 Sony AIBO Robot: Surface Detection
The SONY AIBO Robot is a small, dog-shaped, quadruped robot

that comes equipped with multiple sensors, including a tri-axial ac-
celerometer. We consider a dataset created by [17] where mea-
surements of the accelerometer are collected. In the experimental
setting, the robot walked on two different surfaces: carpet and ce-
ment. For simplicity we consider only the X-axis readings. A snap
shot of the data is shown in figure 8(a). Each time series represents
one walk cycle. Cemented floors are hard compared to carpets and,
therefore, offer more reactive force than carpets. As such, there are
clear and sharp changes in the acceleration on the cemented floor.

Algorithms Surface Detection Passgraphs
1-NN Euclidean distance 69.55% 63.36%

1-NN Dynamic Time Warping 72.55% 71.76%
1-NN DTW-Sakoe-Chiba 69.55% 74.05%

Shapelet 93.34% 60.31%
Logical Shapelet 96.34% 70.23%

Table 2: The accuracies of different algorithms on the pass-
graph trajectories and accelerometer signals from SONY
AIBO robot.

In addition, there is a much larger variability when the robot walks
on cement.

The test set has 20 instances of walk cycles on the two types of
floors. The training set has 601 instances. A walk cycle is of length
70 at 125 hertz. We have experimented on this dataset and found a
pair of shapelets shown in figure 8(b). The shapelets are connected
by
∧

and come from the two different shifts-of-weight in the walk
cycle on the carpet floor. The pair of shapelets has a significantly
higher classification accuracy compared to classic nearest neighbor
algorithms (see table 2).
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Figure 8: (a) Two classes of time series from the SONY AIBO
accelerometer. (b) The and-shapelets from the walk cycle on
carpet. (c) The Sony AIBO Robot.

6.3 Passgraphs: Preventing Shoulder-Surfers
Passgraphs are a recently proposed biometric system used to au-

thenticate a person and allow her access to some resource. A grid
of dots is presented to the user and she is tasked to connect some
of the dots in the grid in some specific order as a password. In
contrast to text-based passwords where the user can shield the the
entered text (at an ATM for example), Passgraphs are vulnerable to
“shoulder-surfing” as it is easy for a miscreant to see and memorize
the connection sequence over the shoulder of the user. To prevent
the shoulder-surfing attack, [12] has proposed methods involving
pen-pressure. There are also methods based on other pen proper-
ties such as friction, acceleration, etc.

In this case study, we use the data from [12] to see if logical
shapelets can classify between the same pen sequences performed
by different users. We selected x-axis trajectories of two different
users drawing the same passgraph. The logical shapelet shown in
figure 9 consists of tiny fragments of the three turns (peaks in the
time series) in the passgraph connected by

∨
operations. These

shapelets have better accuracies than 1-NN classifier and are promis-
ing enough to use in a real authentication system. This is because
the shapelets can be learned at training time when the user sets the
password, and it is not possible for the shoulder surfer to mimic
the idiosyncratic pen path of the real user when attempting to im-
personate her. Note that,

∧
operations in this case would have



imposed a harder rule for the user to produce all instead of some of
the shapelets exactly to get authenticated.
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Figure 9: (a) Two classes of X-axis trajectories drawn by diffe-
rent users. (b) The or-shapelets from three different examples
of class 0 showing three turns in the passgraphs.

7. CONCLUSIONS
In this paper, we introduce logical shapelets: a new time se-

ries classification primitive with more expressiveness than classic
shapelets. We have demonstrated the existence of logical concepts
in time series datasets, and the utility of logical shapelets in do-
mains as diverse as gesture recognition, robotics and user authen-
tication. We further describe novel techniques to efficiently find
both classic and logical shapelets. Our approach is significantly
faster for every one of the twenty-four datasets we tested.
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8. APPENDIX: PROOF OF THEOREM 1
PROOF. Lets assume c is a left-major class. So nc,1

N1
>

nc,2

N2
.

If we move one point of class c from the right partition to the left
partition, for i = 1, 2, . . . , C the change in information gain is ∆I .
∆I =

∑
i

ni,1

N
log

ni,1

N1
+
∑

i

ni,2

N
log

ni,2

N2
−
∑

i 6=c

ni,1

N
log

ni,1

N1+1

−
∑

i 6=c

ni,2

N
log

ni,2

N2−1
−nc,1+1

N
log

nc,1+1

N1+1
−nc,2−1

N
log

nc,2−1

N2−1

Using
∑

i6=c ni,1 = N1 − nc,1 and
∑

i 6=c ni,2 = N2 − nc,2, we
can simplify the above as below.
N.∆I = N1 logN1 − nc,1 lognc,1 + (nc,1 + 1) log(nc,1 + 1)

+N2 logN2 − nc,2 lognc,2 + (nc,2 − 1) log(nc,2 − 1)
− (N1 + 1) log(N1 + 1)− (N2 − 1) log(N2 − 1)

Since, nc,1

N1
>

nc,2

N2
for t ∈ [0, 1] the following is also true nc,1+1−t

N1+1−t
>

nc,2−t

N2−t
. In addition, nc,1, N1, nc,2, N2 are all positive integers;

therefore, we can take log on both side and integrate from 0 to 1.∫ 1

0
log

nc,1+1−t

N1+1−t
dt−

∫ 1

0
log

nc,2−t

N2−t
dt > 0. If we evaluate the inte-

gral, it becomes the right-side part of the above equation forN.∆I .
Therefore, ∆I > 0.
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