JOURNAL OF ALGORITHMS 27, 339—-356 (1998)
ARTICLE NO. AL970922

Data Collection for the Sloan Digital Sky Survey—
A Network-Flow Heuristic

Robert Lupton'

Astrophysics Department, Princeton University, Princeton, New Jersey 08540

F. Miller Maley*

Mathematics Department, Princeton University, Princeton, New Jersey 08540
and

Neal Young?®

Computer Science Department, Dartmouth College, Hanover, New Hampshire 03755

Received June 6, 1997; revised July 14, 1997

This paper describes an NP-hard combinatorial optimization problem arising in
the Sloan Digital Sky Survey and a practical approximation algorithm that has been
implemented and will be used in the survey. The algorithm is based on network
flow theory and Lagrangian relaxation. © 1998 Academic Press

1. THE SLOAN DIGITAL SKY SURVEY

The Sloan Digital Sky Survey [is] a joint project of the Astrophysical Re-
search Consortium. ... The goal of the project, which is scheduled to begin in
1997 and take five years, is to make a much better map of the universe than is
currently available. The volume of the universe to be surveyed will be 100 times

" E-mail: rhi@astro.princeton.edu.

YE-mail: fmaley@haverford.edu.

SE-mail: ney@cs.dartmouth.edu. Parts of this research were done at AT & T Bell Labora-
tories, Murray Hill, NJ 07974, the School of ORIE, Cornell University, Ithaca NY 14853 on
Eva Tardos’ National Science Foundation PY] grant DDM-9157199, and the Departments of
Astrophysics and Computer Science, Princeton University.

339

0196-6774 /98 $25.00

Copyright © 1998 by Academic Press
All rights of reproduction in any form reserved.

340 LUPTON, MALEY, AND YOUNG

larger than the volume of previous surveys. The number of galaxies with known
distances is expected to increase by a factor of 100 to 1,000,000 galaxies and the
number of quasars to increase to 100,000.

The Sloan Foundation. .. has contributed $8 million to the $18 million capital
costs of the project. ...

In order to do the survey, ARC is designing and building a special purpose
2.5 meter (100-inch) telescope at its Apache Point Observatory. ...

[The Sky Survey will proceed in two phases. In the first phase, a two-dimen-
sional map of the sky will be made. For the second phase, the] million brightest
stars and the one hundred thousand brightest quasars will be selected for
spectroscopic analysis from the two-dimensional map ... ([29]).

To gather the spectroscopic data in the second phase, the telescope will
be pointed repeatedly at the sky to take a series of ‘“snapshots.” Each
snapshot will capture data for up to 660 galaxies and quasars in the
circular portion of the sky visible through the telescope. For each captured
galaxy, light from that galaxy will enter the telescope and travel through an
optical fiber to a spectral analyzer. The optical fibers (one for each galaxy)
will be held in place by a “plug plate” drilled to hold the up to 660 fibers,
each aligned to accept the light of its respective galaxy [5].

1.1. A Capacitated Covering Problem

The second phase of the survey is expected to cost on the order of $4-5
million. This cost will depend primarily on the number of snapshots taken.
This paper concerns the following problem: given the *‘two-dimensional’”
locations of the desired galaxies, determine a minimum-size set of snap-
shots that capture them. Formally:

Euclidean Capacitated Covering by Disks (ECCD). Given a collection of
points on the unit sphere, a radius r, and a capacity c, find a small set of
discs of radius r (located on the sphere) such that each given point can be
assigned to a disc containing it, with no disc being assigned more than ¢
points.

The sphere corresponds to the view sphere centered at the telescope. The
points correspond to the images of the galaxies projected on the view
sphere. Each disc represents one shapshop to be taken through the
telescope; the points assigned to that disc correspond to those galaxies for
which data will be collected in that snapshot. The capacity ¢ is the
maximum number of galaxies for which spectral data can be gathered in a
single snapshot (due to limitations in packing the optical fibers).

The ECCD problem is NP-hard [21]. The instances we need to solve will
have hundreds of thousands of points. Luckily, as Fig. 1 illustrates, the
instances we need to solve are nicely structured.

DATA COLLECTION FOR SKY SURVEY 341

a b c

FIG. 1. (a) Sample instance (points are dark), (b) near-uniform cover, and (c) better
cover. This near-uniform cover is from an earlier implementation not using Hardin et al.’s
covers, which are more uniform.

In this paper we describe a heuristic algorithm for the problem. The
algorithm is effective for instances arising in the survey and will be used
for it. The basic idea behind the algorithm is to start with a near-uniform
cover of the sphere by discs [13] and then to iteratively improve the cover.
The key observation is that a given cover can be improved by first solving a
relaxation of the problem in which the “point-in-disc” constraints are
replaced by penalties for assigning points to discs not containing them, and
then moving the discs to minimize the cost of the assignment found. The
relaxed problem reduces to the minimum-cost flow problem. In our tests,
the algorithm runs in nearly linear time and finds covers that are roughly
20% better than comparable near-uniform covers.

2. RELATED WORK

The NP-completeness of the variant when the points lie in the plane was
proven by Megiddo and Supowit [21]. The proof adapts easily to our
problem. The NP-completeness of the planar problem when the discs are
required to be centered on the given points was proven by Marchetti-
Spaccamela [20]. When the covering regions are rings, instead of discs,
Maass [19] showed the problem NP-complete even if the points all lie on a
single line.

Papadimitriou [26] (improving results by Fisher and Hochbaum [7])
considered the related p-medians problem in the plane, which is that of
covering the given points with p discs (of arbitrary radii, but centered at p
of the given points) so as to minimize the sum of the disc radii. He showed
the problem to be NP-complete and presented average-case analyses of
several algorithms. One of the heuristics is a uniform (‘“honeycomb’)
covering of the points by discs, which he showed gives a near-optimal
solution with high probability when p is w(log n) and o(n/log n) and the
points are randomly distributed in the unit square.

342 LUPTON, MALEY, AND YOUNG

The problem can be modeled as a capacitated set-cover problem. The
well-known greedy algorithm of Johnson [15] and Lovasz [17], as modified
for the capacitated case by Bar-1lan, Kortsarz, and Peleg [2], would yield a
In n approximate solution, where n is the number of galaxies. This algo-
rithm is not good enough in practice. For this particular set-cover problem
the dual of the set system has bounded VC dimension; in this case an
improved approximation algorithm is known for the uncapacitated case [3],
but, judging from a few small trials, this algorithm does not appear to take
sufficient advantage of the structure of our problem instances to perform
well in practice.

Numerous generalizations of our problem have been considered under
various names, including “(un)capacitated facility (or plant) location,”
“p-centers,” and “minimax facility location.” These problems have been
studied under various metrics and also in general graphs. In general,
polynomial-time exact algorithms are known only when the number of
covering regions (in our case, discs) is small (e.g., [1]) or when the
underlying metric space (or network) is tree-like (e.g., [23, 10, 22, 12, 14,
6]). Generally, these algorithms are for uncapacitated problems.

There is a large literature on these problems in operations research.
Relevant books include [18, 25, 9, 8]. Much of this research has concen-
trated on adapting integer-programming techniques to fairly general for-
mulations of the problem. For example, recent works on the capacitated
facility location problem (a generalization of our problem to arbitrary
networks) include [4, 31]. Quoting from the conclusion of “Approximate
solutions to large scale capacitated facility location problems’ [30]:

The problem of locating facilities has inspired a rich body of literature which
spans well over two decades. Numerous algorithms have been devised and
successfully applied to problems with as many as 200 customers and 100
facilities. The computational experience on larger problems, however, has been
virtually non-existent In the work leading to this paper, the objective was to
develop a heuristic algorithm that can be used to generate effective solutions
for large scale facility locations problems. The computational results obtained
so far seem to indicate that this requirement can be met for problems with as
many as 1000 customers and 100 facilities.

3. THE ALGORITHM

The instances arising in the Sky Survey exhibit particular structure.
Within any given region, the galaxies are distributed densely throughout
the region, somewhat uniformly but with clustering tendencies and varia-
tion in density. The density of the galaxies means that virtually the entire
region must be covered by discs. The variation in density means that more
discs must be concentrated within densely populated regions. As a refer-

DATA COLLECTION FOR SKY SURVEY 343

ence point, consider the sparsest possible covering of the area by discs
(resembling a “honeycomb’). This cover provides roughly the right roral
capacity and does well in sparse areas, but in dense areas does not provide
sufficient capacity. Any good solution will have to maintain a honeycomb-
like structure in sparse areas while bunching discs more densely in dense
areas.

The outer loop of the algorithm does a binary search for the smallest
value of a density parameter § that leads to success in the inner loop. The
inner loop begins with a near-uniform cover of normalized density 1 + &
and iteratively improves it (see Fig. 1 for “before” and “‘after’” covers).
Each iteration of the loop perturbs the discs, as described below, in an
attempt to improve the cover (Fig. 2 shows the results of such a series of
improvement steps). If the desired coverage is obtained, the inner loop
stops (successfully). If the perturbation ceases to improve the cover, the
inner loop stops (unsuccessfully).

Next we describe how the algorithm perturbs a given cover in order to
improve it. We start with the observation that for a given set of discs (with
known locations), the problem of finding the maximum number of galaxies
that can be assigned reduces to a generalized maximum bipartite matching
problem in a graph G = (U, V, E), where the vertices in U correspond to
galaxies, the vertices in V7 correspond to the discs, and edge (u,v) is
present if u’s galaxy is in v’s disc. A maximum legal assignment of galaxies
to discs then corresponds to a maximum size set S of edges such that each
u € U is incident to at most one edge in S while each v € V' is incident to
at most ¢ edges in S.

Since the latter problem reduces in a standard way to the maximum flow
problem [27], which can be efficiently solved, it follows that for a given set
of discs, one can efficiently find a maximum legal assignment of galaxies to
discs.

FIG. 2. Composite of intermediate covers.

344 LUPTON, MALEY, AND YOUNG

Of course, the maximum legal assignment may still leave many galaxies
unassigned, even though many discs are not used to capacity. In this case,
how can discs be moved to improve the coverage? Consider the following
relaxation of the problem:

Relaxed Problem. Given a set of discs, a set of galaxies, and a capacity
¢, find a minimum-penalty assignment of the galaxies to discs such that no
disc is assigned more than ¢ galaxies.

Here a galaxy can be assigned to a disc not containing it, but there is a
penalty for doing so that encourages assignments of galaxies to nearby
discs (details of the penalty function are in Section 3.2).

The relaxed problem can be solved efficiently (even for arbitrary penal-
ties) by reducing it to the assignment problem or to minimum-cost maxi-
mum flow. We reduced it to the latter, more general, problem in anticipa-
tion of having to incorporate more complex constraints on the assignment
(that no sufficiently close pairs of galaxies should be assigned to the same
disc) at a later point. As described below, even the more general problem
can be solved quickly enough for our purposes.

A solution to the relaxed problem will assign all galaxies to discs, but a
given disc may be assigned galaxies outside of it. The advantage of the
relaxed problem is that a solution to it can give information about how to
improve a given set of discs. The intuition is that if excess demand (i.e., a
high density of galaxies relative to discs) exists in one area and excess
capacity exists in another, then a disc between the two areas will tend to be
assigned galaxies that are outside of the disc and that lie toward the area
of excess demand. Figure 3 illustrates this.

Once a minimum-penalty solution to the relaxed problem has been
found, the algorithm moves the discs to minimize the cost of the particular
assignment of galaxies to discs specified by the minimum-penalty solution.
This problem can be solved independently for each disc. For a given disc,
for a fixed set of galaxies assigned to it, the sum of the penalties for those
assignments is a function f(x, y) of the coordinates (x, y) of the center of
the disc. As long as the penalty function is convex and reasonably smooth,
f will be also. Starting with the current location (x,, y,) of the disc, a
simple gradient-based method (described in Section 3.2) is used to find
(x, y) maximizing f(x, y).

This gives us the essentials of the inner loop of the algorithm (see Fig.
4). It starts with a near-uniform cover of some specified (normalized)
density 1 + 8. It improves the cover by finding a minimum-penalty assign-
ment of the galaxies to the discs and then moving the discs to their optimal
locations given that assignment. It continues, alternately improving the
assignment and then moving the discs, until the net penalty ceases to
decrease appreciably. At the end of the inner loop, the algorithm finds a

DATA COLLECTION FOR SKY SURVEY 345

o

N
K2 i
S DA S SO

;
:
S

L3

;

QXA L
D

FIG. 3. Relaxed assignment.

legal (not relaxed) assignment of galaxies to discs maximizing the number
of assigned galaxies. Figure 2 shows a sequence of covers generated by a
single run of the inner loop.

The outer loop performs a binary search to find the smallest d that
causes the inner loop to successfully cover the galaxies. The presentation

Inner Loop (e is fixed, 6 is determined by the outer loop)

1. Compute a minimum-size near-uniform cover C of the region by discs so that the
total capacity of the discs in C is at least 1+ § times the number of galaxies.

2. Repeat until convergence (after “polishing”) or 1—¢ of the discs are legally assigned.

(a) Compute a minimum-penalty assignment A of the galaxies to the discs in C.
Do this by solving (an approximation of) the corresponding minimum-cost flow
problem.

(b) Move the discs in C' to minimize the penalty associated with the assignment A.
Move each disc independently to minimize its associated penalty by a simple
gradient-descent method.

3. Find a maximum legal assignment of the galaxies to €. Do this by solving a
corresponding maximum-flow problem.

4. If at least 1 — € of the galaxies are assigned, succeed, else fail.

FIG. 4. Given a desired coverage 1 — ¢, where ¢ > 0, the outer loop of the algorithm
does a binary search for the smallest value of 6 > 0 such that the above inner loop succeeds.
Further details, including the “polishing” step, the “approximation’ of the flow problem, and
the criteria for convergence, are described in Section 3.2.

346 LUPTON, MALEY, AND YOUNG

here is a slight simplification of the actual algorithm, in that the actual
algorithm uses a “‘polishing” heuristic before terminating the inner loop,
and a heuristic is applied to reduce size of the network-flow problem
before solving it. These heuristics, other details about convergence of the
inner and outer loops, and starting conditions for the outer loop are
described in Section 3.2.

3.1. Example Run of Inner Loop

The sample instance in Fig. 1 contains 12,642 points—a random 10% of
the points in a subregion of the sky previously scanned. The size of this
subregion is about 10% of that of the region that will be mapped by the
survey. A uniform cover of 218 discs of capacity 60 (total capacity 13,080)
allows 81% of the galaxies to be assigned. After 16 iterations of the inner
loop of the algorithm, the improved cover captures 97.8% of the points.
Figure 1 shows the initial near-uniform cover and the final cover; Fig. 2
shows a composite of the successive covers. Section 4 describes compre-
hensive testing of quality of solutions given by the algorithm and its
running time.

3.2. Implementation Details

For the initial near-uniform covers, we use Hardin, Sloane, and Smith’s
[13] catalogue of packings of points on the sphere. These packings give
covers of the entire sphere, but we need a cover of only a (usually
rectangular) subregion of the sky. To prune a ‘“global” cover C the
algorithm first finds a maximum legal assignment of galaxies to discs in C,
then discards all discs having at most a few assigned galaxies. (The cutoff
for discarding a disc is chosen so that the resulting number of discs is as
desired.)

The inner loop of the algorithm is implemented in C + + using LEDA
[24] for basic data structures. We use a scaling algorithm by Goldberg [11]
to solve the minimum-cost flow problems. We use TCL for the outer loop
of the algorithm and to collect performance data.

Penalty Function

The penalty for assigning a galaxy to a disc whose center is distance d
away is proportional to
d? —r?, ifd <r,
PUA) =\ 100(a? = 12), ifd>r.

Recall that r is the disc radius. When solving the relaxed problem, the
algorithm first rounds the penalties. Rounding so that there are few

DATA COLLECTION FOR SKY SURVEY 347

distinct penalties allows a heuristic reduction in the size of the resulting
flow problem. (This heuristic is discussed further below.) Figure 5 shows
plots of p and the rounded penalties. The rounding is chosen to preserve
the distance between the galaxy and the edge of the disc within roughly a
factor of 2. The edge of the disc is important because the penalty function
is least smooth for points near the edge. The factor of 2 is somewhat
arbitrary; it was chosen to balance between the advantages of rounding

0 r T r r r - T T

rounded -
-10} penalty — { 1

03 02 03 04 05 06 07 08 09

20000 : : :
18000 | rounded — A
16000 | penaity
14000 | d
12000 | ’
10000 |

14 16 18 2

FIG. 5. The assignment penalty as a function of the distance d (in disc radii) between the
disc center and the galaxy: (@) d < 1; (b) d > 1.

348 LUPTON, MALEY, AND YOUNG

and the resulting loss of accuracy. After rounding, only 14 or so distinct
penalties (each an integer power of 2) arise.

Reducing the Size of the Flow Problem

We expected the bottleneck in the algorithm to be solving the minimum-
cost flow problems. To minimize this time, the algorithm uses a heuristic
to reduce the minimum-cost flow problem to a smaller, approximately
equivalent, problem. This is the ‘“approximation” of the flow problem
mentioned in the high-level description of the algorithm. First, the algo-
rithm only considers assigning each galaxy to discs whose centers are
within a distance of 2 disc radii, and of these at most the three closest
discs. Second, it rounds the penalties as described above to reduce the
number of distinct penalties. Finally, instead of having vertices for individ-
ual galaxies, it has vertices for equivalence classes of galaxies, where two
galaxies are equivalent if they have the same assignable discs with the
same rounded penalties. With these heuristics, even for very dense sets of
galaxies, the number of equivalence classes will be proportional to the
number of discs as long as each disc intersects O(1) other discs. This is
true in our case.

The precaution of using equivalence classes turned out to be unneces-
sary for two reasons. First, the average number of galaxies per equivalence
class was typically no more than three. More fundamentally, solving the
flow problems was not in fact a substantial bottleneck; see the data in
Section 4.2 and the subsequent discussion. (It is conceivable that the
rounding of the penalties decreased the time used by the minimum-cost
flow algorithm, as the latter works by scaling.)

Constructing the Flow Problem

The algorithm stores all the discs in a two-dimensional array so that
discs near any given point can be found rapidly. To construct the flow
problem, the algorithm iterates through the galaxies. For each galaxy, it
finds the discs whose centers are within 2 disc radii. It selects the three
nearest of these discs and computes the rounded distances to each. These
discs and their rounded distances determine the equivalence class of the
galaxy. The equivalence class is found (or created if necessary). From the
equivalence classes, the flow network is constructed.

So that the equivalence classes can be found quickly, each equivalence
class is stored in a hash table maintained at its nearest disc. The hash table
for a disc D contains those equivalence classes whose nearest disc is D.
This method preserves locality of reference. In an earlier implementation,
a single large hash table held all the equivalence classes. For large

DATA COLLECTION FOR SKY SURVEY 349

problems, this table was too large to fit in main memory. This slowed the
algorithm by a factor of roughly 50.

Moving the Discs

After the minimum-penalty relaxed assignment is found, recall that each
disc is moved individually to minimize the penalty associated with that disc.
The “simple gradient-descent method” used to do this is as follows. To
minimize f(x, y), starting at a point (x,, y,), compute the gradient (direc-
tion of maximum rate of increase); then move (x,y) in steps of «
(approximately 16 /1000 disc radii, chosen to balance speed and accuracy)
in the direction opposite the gradient until such steps ceased to decrease
the value of f(x,y). Recompute the gradient at the new location and
repeat the process with « halved. Continue in this fashion, halving « each
time, until « is decreased to approximately 2 /1000 disc radii.

Convergence and ** Polishing”

The outermost loop of the algorithm does a binary search on the size of
the uniform starting cover. Within this loop, the inner loop iteratively
improves the given cover.

We describe convergence of the inner loop first. Recall that the inner
loop starts with a given cover and improves it until the desired number of
galaxies are legally covered or until “convergence” occurs. Convergence is
determined as follows: after each iteration, if the gap between the actual
number of galaxies covered and the desired number did not decrease by at
least 5%, then the algorithm considers the process ‘‘stuck.” At this point it
changes the basic improvement step (this is the ‘“polishing” heuristic
mentioned in the high-level descriptions of the algorithm) as follows: it
solves the relaxed problem as if the disc radius were 2% smaller. It
continues with this heuristic until it also becomes stuck. Every time the
process becomes stuck, the algorithm alternates between the standard
improvement step and the modified one. If the process is ever stuck for at
least two sequential rounds, it is considered to have converged. The
purpose of the polishing heuristic is that in the original relaxed problem, a
disc may be assigned galaxies that are just barely outside of it at little
penalty. These galaxies cannot be legally assigned, yet may ‘‘hold” discs in
place in the subsequent disc-moving step. ‘“Shrinking” the effective radius
of the disc for a few rounds encourages these galaxies to be assigned
elsewhere.

Next we describe initial conditions and the convergence criterion for the
outer loop. The outer loop maintains a lower bound L and an upper
bound U on the minimum sufficient cover size. It also maintains covers C,
and C, obtained by starting with a uniform cover of size L or U

350 LUPTON, MALEY, AND YOUNG

(respectively) and applying the basic algorithm to improve the cover until
the desired coverage is obtained or convergence occurs. Initially L and U
are taken to be 1.05 and 1.15, respectively, times the number of galaxies
divided by the capacity per disc. The binary search maintains the invariant
that C; and C,, are, respectively, insufficient and sufficient to achieve the
desired coverage. If this invariant does not hold initially, L and/or U
are/is adjusted in increments of 5% to achieve the invariant. The algo-
rithm halts the binary search as soon as the following condition ceases to
be met: C, has more than one more disc than C,, C is at least 0.5%
bigger than C,, and C,, legally covers at least 0.5% more galaxies than C, .
Once the search halts, the algorithm returns C.

4. PERFORMANCE OF THE ALGORITHM

We tested the running time and the quality of the solutions found by the
algorithm on sample instances. In this section we describe the results.

The survey will map roughly 25% of the sky—the region having right
ascension 0—360° and declination 30—-90°. Roughly one million galaxies will
be mapped. Because the two phases of the survey will be pipelined (the
second will be started before the first is done), the second phase will be
done in pieces.

We generated the problem instances from data from a region of the sky
that had been previously scanned for a different purpose. We selected six
subregions, and for these subregions we generated four problem instances
by randomly sampling 30, 50, 70, or 100% of the galaxies. This gave us 24
sample problems. We took the disc radius to be 1.5 arc-sec and the
capacity to be 600 times 0.3, 0.5, 0.7, or 1 corresponding to the sampling
percentages above. (The base capacity is 600 instead of 660 because
approximately 60 points in each disc will be reserved for quasars not in the
sample.) The largest region has an area roughly 4% of the entire sky. For
each subregion, the right ascension and declination ranges and the number
of galaxies are shown in Fig. 6a.

4.1. Quality of Solutions

Figure 6b illustrates the quality of the solutions returned by the algo-
rithm on the 24 problem instances. The figure plots the size of the cover
needed to assign 98% of the galaxies in each region, normalized by
dividing by the number of discs needed just to provide enough capacity to
hold 98% of the galaxies. The plot shows the same information for
covering by near-uniform covers. The algorithm (very roughly) requires
5-15% extra capacity, whereas using uniform covers requires 25-35%
extra capacity.

DATA COLLECTION FOR SKY SURVEY 351

I name “ T. ascens. [declination] galaxies J

b 35 to 55 -55 to -35 29933
c 32to 57| -57to-32 45344
d 30to 59 | -55to -30 52520
e 28 to 62 -57 to -28 70339
f 25to 65| -60to-20] 109681
g 20 to 70 -70 to -18 | 157126
a
1.35
13}
125+
near-uniform cover —
12p algorithm’s cover - |
115¢
11}
108 468010000 Tko
galaxies/1000
b

FIG. 6. (a) Regions from which sample instances were generated; (b) number of discs
needed to achieve a 98% coverage (normalized by capacity lower bound).

4.2. Running Time

Plots of the time per galaxy to solve each problem instance as a function
of the number of galaxies appear in Fig. 7a. This net time includes all of
the iterations needed to find the final cover for the given problem
instance, including the binary search “outer loop.”

The three main components of the running time are the time building
the graphs (including finding the equivalence classes of galaxies), the time
solving the flow problems, and the time moving the discs. These plots show
that the net running time is on the order of 0.1 CPU sec per galaxy
(850,000 galaxies per day), with the three main components each taking a
substantial fraction of the time. These tests were carried out on a Silicon
Graphics machine with six 150 MHz processors, a 16 kbyte data cache, a 1
Mbyte secondary cache, and 256 Mbyte of main memory.

352 LUPTON, MALEY, AND YOUNG

0.2 T T T r T T T

o.18}

016}
5. 0141
>

012+t

total time — |

e
T

moving discs -~ |

seconds per gala
o
o ©
5]

0 20 40 60 80 100 120 140 160

1.8 T T T T T T Y

17} g
16} 4
15¢ E

Sl |

1.1} J

milliseconds per galaxy

0.9} time per iteration — |

086——26—40 60 80 100 120 140 160

galaxies/1000
b
FIG. 7. (a) Net time per galaxy and main components; (b) time per galaxy per iteration.

Each vertical bar represents a group of points with close x-coordinates: the center of the bar
is the average; the endpoints are 1 standard deviation away.

Most of the variation in the time per galaxy is due to the number of
iterations, which varied from 30 to 100 per problem instance and which
increases (in our implementation) with the problem size. Figure 7b plots
the average time per galaxy per iteration versus the problem size. Each
iteration represents the solution of one relaxed problem and one perturba-
tion of one set of discs. The time per iteration grows linearly with the

DATA COLLECTION FOR SKY SURVEY 353

number of galaxies. This is as expected, except for the surprising speed of
the flow computations.

We note that the binary search is fairly naive, given that in principle a
fairly precise guess about the correct size of the starting cover could be
made. Similarly, we feel that a more careful and less conservative estimate
of convergence, possibly interleaving the two loops in some fashion, might
be warranted. These improvements might reduce the total number of
iterations substantially.

Time to Solve Flow Problems

The heuristics for keeping the flow problems small appear to be effec-
tive. Figure 8a plots the average number of edges per galaxy in each flow
problem as a function of the sampling density of the instance.

Figure 8b plots the average time per edge to solve the individual flow
problems. The time appears to grow only near-linearly with the number of
edges. Better than worst-case behavior on certain classes of problems is
not uncommon; further the flow problems arising here are not particularly
hard ones. See [16] for computational studies related to this issue.

5. RETROSPECTIVE

The Euclidean capacitated covering problem arising here is very natural.
Looking in the operations research literature, we found numerous capaci-
tated covering algorithms based on integer linear programming, but these
were not fast enough problems of the desired size. The computer science
literature had a number of efficient approximation algorithms for covering
that had provable worst-case performance guarantees, yet these algorithms
would not produce good enough solutions in practice.

Nonetheless, our final solution rests on theoretical foundations. Our
algorithm works in the spirit of Lagrangian relaxation. We decompose the
problem into two parts: finding the cover C and finding the assignment A.
We relax the constraints on A by replacing the *‘disc-containment” con-
straint by a penalty function. Then, for any given cover, finding the
minimum-penalty assignment is a tractable problem. Likewise, for any
given assignment, finding the minimum-penalty cover is tractable. Thus,
the relaxation yields a scheme that iteratively reduces the minimum
penalty and so drives the pair (C, A) closer to feasibility. Lagrangian
relaxation is a common technigue in both operations research [31] and
computer science [28] literature.

Finding the decomposition required an understanding of network flow
theory. The ability to solve large problems hinges on a fast network-flow

354 LUPTON, MALEY, AND YOUNG

26

221 normalized flow problem size — |

18¢

edges per galaxy

1.6}

141

1920307 05 08 07 08 08 1 1i
sample density

a
0.22

02t 1
time to solve flow, per edge —
0.18 1

0.16 +

0.14

milliseconds per edge

0.12¢

0.1

0 50 100 150 700 250

FIG. 8. (a) Number of edges per galaxy vs. density; (b) time per edge vs. number of
edges.

algorithm. Classic augmenting paths algorithms are far too slow for our
purpose. Goldberg’s algorithm incorporates both recent research within
the worst-case model and heuristics discovered by empirical studies (in the
spirit of [16]).

Also useful were Hardin, Sloane, and Smith’s [13] sphere covers. These
enabled us to start with better uniform covers than we might have
otherwise. Finally, in prototyping and testing ideas, it helped to have a

DATA COLLECTION FOR SKY SURVEY 355

pre-existing library of relevant high-level data types and algorithms. For
this we used LEDA [24].

Worst-case analysis did side-track us slightly. Although worst-case analy-
sis suggested that network flow would be the bottleneck for large prob-
lems, it was not at all. Ironically, as described in Section 3.2, our first
attempt to keep the flow problems small by using equivalence classes
backfired: our original implementation used a single hashing data struc-
ture to hold all the equivalence classes; although the standard worst-case
model suggests hashing is quite fast, its incautious use slowed the solutions
of large problems by a factor of 50 due to the lack of locality of reference.

In conclusion, our experience suggests that a successful approach rested
on theoretical understanding, but required that it be creatively adapted to
take advantage of the particular structure of our problem instances.

ACKNOWLEDGMENTS

Thanks to Ken Steiglitz for introducing two of the coauthors and to an anonymous referee
for helpful suggestions.

REFERENCES

1. P. K. Agarwal and M. Sharir, Planar geometric location problems, Algorithmica 11 (1994),
185-195.

2. J. Bar-llan, G. Kortsarz, and D. Peleg, How to allocate network centers, J. Algorithms 15
(1993), 385-415.

3. H. Bronnimann and M. T. Goodrich, Almost optimal set covers in bounded VC-dimen-
sion, Discrete and Computational Geometry 14 (1995).

4. G. Cornugjols, R. Sridharan, and J.-M. Thizy, A comparison of heuristics and relaxations
for the capacitated plant location problem, Eur. J. Oper. Res. 50 (1991), 280.

5. R. P. Crease, How technique is changing science, Science 257 July 7 (1992), 344-353.

6. E. Erkut, R. L. Francis, and A. Tamir, Distance-constrained multifacility minimax
location problems on tree networks, Networks 22 (1992), 37-55.

7. M. L. Fisher and D. S. Hochbaum, Probabilistic analysis of the planar k-median problem,
Math. Oper. Res. 5 (1980), 27-34.

8. R. L. Francis, “Discrete Location Theory,” Series in Discrete Mathematics and Optimiza-
tion, Wiley, New York, 1990.

9. R. L. Francis, L. F. McGinnis, Jr., and J. A. White, “Facility Layout and Location: An
Analytical Approach,” Series in Industrial and Systems Engineering, Prentice-Hall,
Englewood Cliffs, NJ, 1991.

10. G. N. Frederickson and D. B. Johnson, Finding kth paths and p-centers by generating
and searching good data structures, J. Algorithms 4 (1983), 61-80.

11. A. V. Goldberg, An efficient implementation of a scaling minimum-cost flow algorithm,
J. Algorithms 22 (1997), 1-29.

12. Y. Gurevich, L. Stockmeyer, and U. Vishkin, Solving NP-hard problems on graphs that
are almost trees and an application to facility location problems. J. Assoc. Comput.
Mach. 31 (1984), 459-473.

356 LUPTON, MALEY, AND YOUNG

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

3L

R. H. Hardin, N. J. A. Sloane, and W. D. Smith, Tables of spherical codes in dimensions
3, 4,5, AT & T Bell Laboratories, Murray Hill, NJ, 1993-1997. Available via http:/ /re-
search.att.com.

X. He and Y. Yesha, Efficient parallel algorithms for r-dominating set and p-center
problems on trees, Algorithmica 5 (1990), 129-145.

D. S. Johnson, Approximation algorithms for combinatorial problems, J. Comput. System
Sci. 9 (1974), 256-278.

D. S. Johnson and C. C. McGeoch, Eds., “Network Flows and Matchings—First DI-
MACS Implementation Challenge,” Series in Discrete Mathematics and Computer
Science, Vol. 2, American Mathematical Society, Providence, RI, 1993.

L. Lovasz, On the ratio of optimal integral and fractional covers, Discrete Math. 13 (1975),
383-390.

R. F. Love, J. G. Morris, and G. O. Wesolowsky, “Facilities Location: Models and
Methods,” Publications in Operations Research, Vol. 7, North-Holland, New York, 1988.
W. Maass, On the complexity of nonconvex covering. SIAM J. Comput. 15 (1986),
453-467.

A. Marchetti-Spaccamela, The p-center problem in the plane is NP-complete, in “Pro-
ceedings of the 19th Allerton Conference on Communication, Control, and Computing,”
1981, pp. 31-40.

N. Megiddo and K. J. Supowit, On the complexity of some common geometric location
problems, SIAM J. Comput. 13 (1984), 182-196.

N. Megiddo and A. Tamir, New results on the complexity of p-center problems. SIAM J.
Comput. 12 (1983), 751-758.

N. Megiddo, A. Tamir, E. Zemel, and R. Chandrasekaran, An O(xn log?n) algorithm for
the kth longest path in a tree with applications to location problems. SIAM J. Comput. 10
(1981), 328-337.

K. Melhorn and S. Naher, LEDA—a platform for combinatorial and geometric comput-
ing. Available via http: / /www.mpi-sb.mpg.de /LEDA /leda.html.

G. L. Nemhauser and L. A. Wolsey, “Integer and Combinatorial Optimization,” Wiley,
New York, 1988.

C. H. Papadimitriou, Worst-case and probabilistic analysis of a geometric location
problem, SIAM J. Comput. 10 (1981), 542-557.

C. H. Papadimitriou and K. Steiglitz, “Combinatorial Optimization: Algorithms and
Complexity,” Prentice-Hall, Englewood Cliffs, NJ, 1982.

S. A. Plotkin, D. B. Shmoys, and E. Tardos, Fast approximation algorithms for fractional
packing and covering problems, in “32nd Annual Symposium on Foundations of Com-
puter Science,” pp. 495-504, IEEE Press, New York, 1991.

J. Savani, Sky survey receives $5 million from NSF, Princeton Weekly Bulletin, November
1994.

B. Shetty, Approximate solutions to large scale capacitated facility location problems,
Appl. Math. Comput. 39 (1990), 159.

R. Sridharan, A lagrangian heuristic for the capacitated plant location problem with
single source constraints, Eur. J. Oper. Res. 66 (1993), 305.

	1. THE SLOAN DIGITAL SKY SURVEY
	FIG. 1.

	2. RELATED WORK
	3. THE ALGORITHM
	FIG. 2.
	FIG. 3.
	FIG. 4.
	FIG. 5.

	4. PERFORMANCE OF THE ALGORITHM
	FIG. 6.
	FIG. 7.

	5. RETROSPECTIVE
	FIG. 8.

	ACKNOWLEDGMENTS
	REFERENCES

