
Simple

with

Abstract

Applications to

Richard J. Lipton *

Princeton University

Strategies for Large Zero-Sum Games

Complexity Theory

Neal E. Young t

Cornell University

1 Introduction

Von Neumann’s Min-Max Theorem guarantees that each
player of a zero-sum matrix game hss an optimal mixed
strategy. We show that each player has a near-optimal
mixed strategy that chooses uniformly from a multiset of
pure strategies of size logarithmic in the number of pure
strategies available to the opponent. Thus, for exponen-
tially large games, for which even representing an optimal
mixed strategy can require exponential space, there are near-
optimal, linear-size strategies. These strategies are eaay to
play and serve as small witnesses to the approximate value
of the game.

Because of the fundamental role of games, we expect this

theorem to have many applications in complexity theory and

cryptography. We use it to strengthen the connection estab-

lished by Yao between randomized and distributional com-

plexity and to obtain the following results: (1) Every lan-

guage has anti-checkers — small hard multisets of inputs

certifying that small circuits can’t decide the language. (2)

Circuits of a given size can generate random instances that

are hard for all circuits of linearly smaller size. (3) Given

an oracle M for any exponentially large game, the approx-

imate value of the game and near-optimal strategies for it

‘(M). (4) For any NP-complete lan-can be computed in I&

guage L, the problems of (a) computing a hard distribution

of instances of L and (b) estimating the circuit complexity

of L are both in Z;.

*Computer Science Dept, Princeton Univ., Princeton, NJ
08544. Supported in part by NSF grant CCR-9304718. Email:

rjl@cs.princeton.edu
t Dept. of Operations Reseakh and Ind. Eng., Cornell Uni-

versity, Ithaca, NY 14853. This work was partly supported by

NSF grants CCR-8906949 and CCR-9I 11348 and Eva Tardos’

PYI grant, and partly done at UMIACS, University of Maryland,

College Park, MD 20742. Email: ney@orie.cornell. edu.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinety. To copy otherwise, or to republish, requires a fee
and/or specific permission.

STOC 94- 5/94 Montreal, Quebec, Canada
@ 1994 ACM 0-89791 -663-8/94/0005..$3.50

Games play a fundamental role in many parts of the-

ory. For example, cryptographic problems can often

be viewed as games between those who wish to keep

a secret and those who wish to discover it [8]. Many

computational classes can be defined in natural ways as

games: for example, PSPACE can be defined in this way

[6]. Other times games arise in a slightly more subtle

way. For example, questions about how hard it is to

generate hard instances of some problem can be mod-

eled as a game between the generator and the algorithm.

Yao [18, 19] exploits this idea to prove lower bounds on

randomized algorithms.

The classic result on games is the famous Min-Max

Theorem of von Neumann [17], which guarantees that

each player of a zero-sum game has an optimal mixed

strategy. For exponential y large games, optimal strate-

gies are generally exponentially large. In many cases,

we need to know not only that an object exists but also

that it is not too complex. Without this latter restric-

tion we cannot use the object.

Simple strategies for large games. Our first result

is a variant of von Neumann’s Min-Max Theorem that

shows that each player has a near-optimal mixed strat-

egy that plays uniformly from a multiset of size logarith-

mic in the number of pure strategies available to the op-

ponent. The proof is a surprisingly simple probabilistic

argument similar to circuit derandomization techniques
[1, 15]. However, the central nature of games in theory

suggests that this simple result may have far-reaching

consequences. This result was obtained independently

by Althofer [3].

Strengthening the connection between random-

ized and distributional complexities. This con-
nection was first established by Yao [18, 19]. He con-

sidered a game where MIN’S pure strategies are the

deterministic algorithms in a given class, MAX’s pure

734

strategies are the inputs of a given size, and the pay-

off for a particular pair is the cost of the algorithm on

the input. If MIN moves first, the expected payoff can

be interpreted as the worst-case expected complexity of

the best randomized algorithm. If MAX moves first,

the expected payoff can be interpreted as the average-

case complexity of the best algorithm for the hardest

input distribution. By von Neumann’s theorem, these

are the same. Thus, the worst-case complexity of the

best randomized algorithm equals the optimal average-

case complexity against the hardest input distribution.

A main drawback is that for equality to hold, the

“randomized algorithms” must generally be allowed to

have exponentially large encodings. Because of this,

Yao’s theorem has been used mainly in the weaker di-

rection: to prove lower bounds on randomized complex-

ity and upper bounds on average-case complexity. The

stronger direction (equality) holds only for complexity

measures that allow program size to grow exponentially

with input size.

Our variant of the Min-Max theorem reduces the de-

pendence on encoding size. Our variant implies that

it suffices to consider randomized algorithms that have

linear-size encodings. Thus, the stronger direction holds

(approximately) for complexity measures that allow

program size to grow linearly with input size. This in-

cludes most measures of circuit complexity.

Note that this application is similar to known cir-

cuit derandomization techniques [1, 15]. However, the

theorem has many other applications. For instance, by

applying it to the program/input game for the input

player we show that there are hard distributions that

can be generated by small circuits.

Anti-checkers and circuits that generate hard

random instances. We give applications concerning

the complexity of generating and solving hard random

instances of problems. Our main application is to show

that every language has anti-checkers — small multisets

of inputs such that correctly classifying a fraction of the

inputs in the multiset is nearly as hard as correctly clas-

sifying all inputs of the given size. Circuits of a given

size can use anti-checkers to generate random instances

that are hard for all slightly smaller circuits.

Uniform complexity. We obtain related results for

uniform complexity measures. Specifically, we show

that the following problems are in Z;:

● estimating the value of any exponentially large

game given an oracle for the payoffs;

● computing approximate upper and lower bounds on
the circuit complexity of L and

● computing hard random instances of L,

where L is any NP-complete language.

2 Other Related Work

Theorem 2, our first variant of von Neumann’s Min-

Max Theorem, was obtained independently by Althofer

[3]. He considers applications to other linear programs,

large game trees, and uniform sampling spaces.

A subsequent work [20] gives simple greedy algo-

rithms that (given the payoff matrix) find the k-uniform

strategies shown to exist in Theorems ‘2 and 3.

Uniform complexity. As mentioned previously, the

complexity clsss PSPACE has a natucal characteriza-

tion via games. More recently, the complexity classes

NEXP and CONEXP have been similarly characterized

[7]. Our variant of von Neumann’s Thecmem can be used

in these characterizations of NEXP and CONEXP.

Most research on hard distributions to date concerns

uniform complexity. A significant body of work con-

cerns average-case completeness, e.g, [!1, 16, 10, 12, 4].

These results are analogous to NP-completeness re-

sults, except they concern distributional problems —

(problem, input distribution) pairs. These results re-

late the complexities of classes of distributional prob-

lems. Generally, few relations to worst-case complexity

are known (see, however, [4]).

Ben-David et al. [4] and Li and Vitanyi [13] show the

existence of distributions under which ithe average-case

complexity of any program is within a constant (expo-

nential in the size of the program) of the worst-case com-

plexity. Generating random instances from such distri-

butions is difficult — it requires diagonalizing against

all programs in question. The result applies to uniform

complexity classes, not circuits. More precisely, it gen-

erates inputs that are hard only for programs that are

exponentially smaller than the inputs.

Circuit complexity. Schapire [14] shows that his
technique for boosting the correctness of PAC-learning

strategies can also be applied to boost the correctness of

circuits. This implies the existence of distributions from

which random instances are nearly as hard for circuits

as worst-csse instances. His results establish a version

of Corollary 8, weaker in that the complexity of generat-

ing the distribution is not known and in that the factor

in bound (2) is a larger polynomial.

Upper bounds. One example of the use of the Min-

Max Theorem in the stronger direction (to upper bound

randomized complexity, measured, in tlhis csse, by the

competitive ratio) is given by Alon, K.arp, Peleg and

West [2]. They show the existence of randomized k-
server strategies by considering a certain zero-sum ma-

trix game. The competitiveness of the strategy is re-

lated to the value of the game, which in turn depends

on the underlying metric space.

735

3 Simple Strategies

A two-play er zero-sum game is specified by an rx c

matrix~ undisplayed as follows. MIN, the row player,

chooses a probability distribution p over the rows. MAX,

the column player, chooses a probability distribution q

over the columns. A row i and a column j are drawn

randomly from p and q, and MIN pays Mij to MAX.

MIN plays to minimize the expected payment; MAX

plays to maximize it. The rows and columns are called

the pure strategies available to MIN and MAX, respec-

tively, while the possible choices of p and g are called

mixed strategies. The Min-Max Theorem states that

playing first and revealing one’s mixed strategy is not a

disadvantage:

Theorem 1 ([17])

Note that the second player need not play a mixed strat-

egy — once the first player’s strategy is fixed, the ex-

pected payoff is optimized for the second player by some
pure strategy. The expected payoff when both players

play optimally is called the value of the game. We de-

note it V(M).

3.1 Simple strategies for large games.

Games that model computations are often exponen-

tially large. Generally, the optimal strategies are the
primal and dual solutions, respectively, to an O(NM)-

size linear program. For exponentially large games, op-

timal strategies are generally too large to even represent.

This motivates considering smaller mixed strategies:

Definition 1 A mized strategy is k-uniform if it

chooses uniformly from a multiset of k pure strategies.

We show that for k proportional to the logarithm of

the number of pure strategies available to the opponent,

each player has a near-optimal k-uniform strategy.

Let Tlmin and &fmaX denote minij Mij and maxij Mij,

respectively. Recall that M is an r x c matrix.

Theorem 2 For any e >0 and k ~ in(c)/ 262,

where ~k denotes the k-uniform strategies for MIN.

Equality holds only if k = in(c)/ 262. The symmetric
result holds for MAX.

Proof Assume WLOG that Mmin = O and Mmax = 1.

Fix c >0 and k > in(c)/ 2C2, and form S by drawing

k times independently at random from MIN’S optimal

mixed strategy. For any fixed pure strategy j of the

opponent, the probability that

(1)

is bounded by e-2kt2. This is because the left-hand side

is the average of k independent random variables in [0, 1]

with expected value at most V(M) [11].

By the choice of k, e-2k’2 < 1/c. Thus, the expected

number of the opponent’s c pure strategies that satisfy

(1) is less than 1. Since the number of such strategies

is an integer, it must be zero for some S of size k. ❑

For many important games, MmaX – Mmin is constant.

In this case, the theorem says that for any 6, MIN has

an O(log c)-uniform strategy that is within c of optimal.

To model dovetailing computations, we give the fol-

lowing variant, in which MIN plays a small subset of

pure strategies (called a dovetailing set) simultaneously,

choosing the best once MAX commits to a play.

Theorem 3 For c >0 and k ~ logl+, C,

min max~ei~ Mij s V(M) + ~(V(M) – Mmin).
lSl=k j

Equality holds only if k = logl+, c. The symmetric re-

sult holds for MAX.

We omit the proof, which is similar to the proof of The-

orem 3.

4 Distributional vs. Randomized Com-

plexity

We next consider Theorems 2 and 3 in the context of

the program/input game introduced by Yao.

Definitions 2 Fix a finite class P of programs, a jinite

class Z of inputs and a function M : Q x Z + $? (where

M(i, j) represents some cost of the computation i(j)).

The (unlimited) randomized complexity of M is

minp maxjez ~i p(i)M(i ~), where p ranges over the
probability distributions on P.

The (unlimited) distributional complexity of M is

m% miniep ~j q(j)M(i, j), where q ranges over the
probability distributions on Z.

The program/input game for M is the two-player

zero-sum game given by Mij = M(i, j) for i E P and

jEZ.

As Yao observed, von Neumann’s theorem applied

to the program/input game implies that the unlimited
randomized complexity and the unlimited distributional

complexity are equal to V(M). As a corollary of Theo-

rem 2 applied for each player, we obtain the following.

736

Definitions 3 A k-uniform randomized program is a

randomized program obtained by playing uniformly from

a multiset of k programs in P.

The k-uniform randomized complexity of M is

mi% maxj~z ~i p(i)M(i, j), where p ranges over the k-
uniform distm’butions on P.

The k-uniform distributional complexity of M is

m% miniep ~j q(j)M(i, j), where q ranges over the k-

uniform distributions on Z.

Corollary 4 Let A = Mmin – itf~a,.

1.

2.

A

For any c >0 and k > ln(lZl) / 2C2, the k-uniform

randomized complexity of M exceeds the unlimited

randomized complexity by less than 6A.

For any c > 0 and k > ln(lpl) / 2#, the unlim-

ited distributional complexity of M exceeds the k-

uniform distm”butional complexity by less than CA.

good k-uniform randomized program corresponds

to a rnultiset of k programs such- th~t, for any input,

the average complexity of those programs on that input

is close to the unlimited randomized complexity of M.

A good k-uniform input distribution corresponds to a

multiset of k inputs such that, for any program, the

average complexity of that program on those inputs is

close to the unlimited distributional complexity.

Sometimes it is also useful to consider small sets

of programs such that, on any input, some program

achieves a low complexity on that input. Similarly, one

might want a small set of inputs such that any program

has high complexity on at least one of the inputs in the

set. We call such small sets dovetailing sets. As a corol-

lary to Theorem 3, we obtain the following.

Corollary 5 1. For any c > 0 and k > logl~(IZI,

2.

5

there exists a set of at most k programs Su-ch ~hat,

for any input, the complexity of some program in
the set is less than V(M) + c(V(M) – Mmin) on

that input.

For any c > 0 and k > logl+c 1P], there exists a

set of at most k inputs such that, for any program,

the complexity of the program is more than V(M) –

c(M~.. – V(M)) on some input in the set.

Anti-checkers against circuits.

An anti-checker for L against circuits of size s is a

multiset of inputs such that any circuit of size s fails

to correctly classify (w.r.t. L) a fraction of the inputs
in the multiset. Anti-checkers are similar to program

checkers [5] (which verify program correctness on a per-

input basis) in that anti-checkers allow certification of

the complexity of L on a per-circuit basis.

We apply Corollary 4 is to show that, provided s is

slightly less than the circuit size required to decide L

without error, there are anti-checkers for L of size 0(s).

As a consequence, we obtain small circuits that generate

hard random inputs.

Other flavors of anti-checkers for various complexity

measures and with different notions of “anti-checking”

are possible. To illustrate the issues, at the end of this

section we give a variation in which the anti-checker is a

small set of inputs such that any progralm of a given size

has a high running time on at least one of the inputs in

the set.

The first form of anti-checker is obtained by applying

Corollary 4 to a program/input game where the pro-

grams are the circuits of size s and the inputs are the

binary strings of size n. (More generally, we could take

the programs to be those with encoding i (O s i < 2’)

and the inputs to be those with encoding j (O < j < 2n),

We require only that the program encocling scheme sat-

isfy some basic compositional properties.) We take the

complexity measure to be correctness, i,,e., the payoff of

the program/input game is zero if the program is correct

on the input and one otherwise.

As described below in the proof of Theorem 6, a k-

uniform randomized program with worst-case probabil-

ityy of error less than 1/2 yields a deterministic program

of size O(ks) that is correct on all inputs. Thus, for cir-

cuits just slightly smaller than the smadlest circuit de-

ciding membership without error, there are hard input

distributions on which no such circuit achieves a proba-

bility of error significantly less than 1/2. Further, there

are such hard input distributions which are k-uniform

for small k. The underlying multiset yields the desired

anti-checker,

Definition 4 Define CL, the circuit complexity of lan-

guage L, to be the function such that CL(n) is the size

(length of the encoding in binary) of the smallest circuit

deciding membership in L of all n-bit binary strings.

Theorem 6 There exists a number IV such that, for

any language L and numbers n > N, e > 0, and

s ~ cL(n)C2 / 3n, there exists a muitiset of s/e2 length

n binary strings such that every circuit of size s mis-

classifies at least a fraction 1/2 – e of the strings in the

multiset.

Proof Let M(i, j) be O if the ith sizes circuit correctly ,

decides whether the jth n-bit binary string is in L and

1 otherwise. Let 6 = 1/2 – V(M). The two parts of

Corollary 4 respectively imply:

i. There are 1 + n in(2) / 262 circuits of size s such

that on any n-bit string, a majority of the circuits

classifies the string correctly.

737

ii. Provided c > 6, there are s in(2)/ 2(6 – 6)2 n-bit

strings such that any size s circuit misclassifies at

least a fraction 1/2 – c of the strings.

From (i), it follows that there is a circuit of size

ns in(2)/ 262 + s + 0(rz/62) that correctly classifies all

n-bit strings. (The circuit returns the majority of what

the n/262 circuits return.) Thus, nsln(2)/262+s+

0(n/62) ~ CL(n). By the choice of s, this implies

c$/E< ~ n(2) /6+0(1/n). This implies that, for large

enough n, the number of strings in (ii) is at most s/c2.

•1

For instance, taking c = 1/3, n > N and s ~

C~(n)/27n, there exists a multiset of 9s inputs such that

any circuit of size s errs on one sixth of the inputs in

the multiset. Intuitively, the problem of computing all

2“ inputs correctly is harder than the problem of com-

puting a fraction of a fixed multiset of inputs correctly.

Thus, it is surprising that such hard multisets exist.

Note also the contrapositive: to show that CL(n) s

27ns, it suffices to exhibit, for every multiset of 9s in-

puts, a size s circuit that errs on less than one sixth of

the inputs in the multiset. Note that the tradeoff here is

close to tight: for any such multiset, some circuit of size

O(sn) correctly classifies every input in the multiset.

Similar results are possible for other complexity mea-

sures (e.g., running time, space, circuit depth, etc.).

There are three general considerations:

1. Instead of considering expected complexity (e.g., the

expected running time of a program), one considers

the probability y that the complexity exceeds a given

threshold. This yields a game with small kfmaX –

V(M), which allows small anti-checkers.

2. For some complexity measures, to build a deter-

ministic program that has low complexity on all

inputs, it suffices to find a small set of programs

such that, on any input, at least one (as opposed
to a majority) of the programs in the set has low

complexity.

3. One might be interested in a weaker form of anti-

checker, one such that any program has high com-

plexity on at least one (as opposed to a fraction) of

the inputs in the set.

The following example illustrates these three consid-

erations.

Definitions 5 Let pL(n, t) denote the size of the small-
est program that decides language L in time t for all

n-bit inputs.

Theorem 7 Fiz any language L and numbers n, t and

s < PL(n, t). Let T be the inputs of size n; let P be the

programs of size s that correctly decide

size n.

There exists a set S ~ Z of size

L on inputs of

such that each program in P requires more than time t

on some input in S.

Proof For i c P and j c Z, let M(i, j) be zero if

program i runs in time t on input j and one otherwise.

The value of the program/input game for M is the min-

imum probability of exceeding time t by any program

on a random input from the hardest input distribution.

Let this value be 1 – 6. By Corollary 5,

i.

ii.

Taking e = 1/(1 – i) – 1, for k = O(n/6), there

exists a set of k programs such that, for any input,

the complexity of some program in the set is less

than 1 = (1 – 6)(1 + c) on that input.

Taking c = 1/6 – 1, for k = 0(s/ log(l/6)), there

exists a size k set of inputs such that, for any pro-

gram, the complexity of the program is more than

O = 1 – 6(1+ c) on some input in the set.

By (i), there exists a program of size O(ns/c$) that

correctly classifies each size n input in time O(d).

This program simply dovetails the k programs in the

set and returns when the first program finishes. (At

least one of the programs finishes in time t.) Thus,

6 = O(sn/C~(n, O(ni!))).

By (ii), there exists a set of 0(s/ log(l/6)) inputs such

that any program of size s takes time at least t on at

least one of the inputs in the set. ❑

5.1 Generating hard random instances.

An easy corollary of the existence of small anti-

checkers is that circuits of a given size (up to the circuit

complexity of the language) can generate random inputs

that are hard for all slightly smaller circuits to classify

correctly.

Definition 6 For any probability distribution D on

{O, l}*, define CL,D, the circuit complexity of deciding

(L, D) with error, to be the funciion such that C~,D(n, c)

is the size of the smallest circuit deciding membership

in L with probability of error at most ~ when given a

random input drawn from D restricted to stw”ngs of size

n.

Corollary 8

guage L, and

There exists an N such that, for any lan-

any numbers n > N, O < c ~ 1/2, and

738

SI ~ CL(n), some circuii of size s’ computes a distribu-

tion D such that

cL,~(~, 1/2 – 6) ~ ~(S’62/Yl) (2)

&D(~, 0) ~ ~(S’). (3)

The proof is a straightforward application of Theorem

6 — the circuit computes the uniform distribution on

the anti-checker against circuits of size Q(s’e2/n).

5.2 Finding near-optimal strategies non-

deterministically.

Small simple strategies approximately determine the

value of any game. Thus, for exponentially large

games, under the right conditions, one can non-

deterministically verify the approximate value.

Theorem 9 Given c >0, r, c, and an r x c game M

in the form of a poly-time oracle computing Mij from i

and j, the problem of computing for each player a mixed

strategy that guarantees a payoff within c(MmaX —Mmin)
P(M)

of V(M) is in X2 , where P(M) means polynomial in

r + c + log(rc)/c.

Proof We describe a X;(M) computation that guesses

and verifies the strategies for both players simultane-

ously, assuming WLOG that MmaX = 1 and Mmin = O.

Non-deterministically guess an approximate value v

for V(M). By Theorem 2, there is a strategy for MIN

that chooses uniformly from a multiset S of k pure

strategies, where k = O(log(c) / 62), and that guar-

antees a payoff less than V(M) + e/2. Guess S non-

deterministically. Use a non-deterministic oracle query

to verify that

Similarly, guess and verify a mixed strategy for MAX

that guarantees a payoff of at least v – 6/2.

Because each strategy guarantees an expected payoff

within c of that guaranteed by the other, each expected

payoff is within c of optimal. ❑

5.3 Estimating circuit complexity and gen-

erating hard distributions in X; n II;.

Using the close relationship established in Theorem

6 between circuit complexity and the value of the pro-

gram/input game defined there, we can in some sense

specialize the preceding theorem to obtain the follow-
ing result, which can be interpreted aa showing that the

circuit complexity of any NP-complete language can be

approximated within a linear factor in Z; fl II;.

Theorem 10 1. For any NP language L, there ex-

ists a decision procedure A in Z; such that A(n, s)

accepts if CL (n) z 3ns but rejects if CL(n) s s.

2. For any NP-complete language L, there exists a de-

cision procedure B in X{ such that B(n, s) accepts

ZfCL(n) ~ s but rejects ifc~(n) > s.

Here the class P is those languages decidable in time

polynomial in n and s.

Proof Let L = {z : (3y) 1(z, y)} be defined by the

poly(lx I)-time predicate t?.

The decision procedure A non-deterministically

guesses an anti-checker and uses standard techniques

to verify it. By Theorem 6, if CL(n) ~ 3ns, then there

are O(s) inputs {~i : i = 1, .. . O(s)} su~chthat any cir-

cuit of size s misclassifies at least one input xi. On the

other hand, if CL (n) s s then clearly no such set exists.

Thus, the following predicate is true if ~~L(n) ~ 3ns but

false if CL(n) ~ s:

(3cI, CO(,) (VC) (3i)

(C’(Zi) = O A (~yi)~(~i, vi) = 1)

V(C’(Xi) = O A (V.zi)l?(zi, Zi) = O),

where C’ ranges over all size s circuits and the

Xi’s range over the n-bit strings. The “(~i)”

quantifies over polynomially many i, so it can

be expanded into an appropriate poly-size for-

mula. Using standard quantifier-elimination tech-

niques, the resulting expression can be converted to

the form (3X, Y)(VC, Z) I’(n, s, C, X, Y, Z), where e’ is

a poly(n, s)-time predicate. Thus, the predicate is in

x;.

We construct the decision procedure B(n, s) using

standard techniques. It is known that, since L is NP-

complete, the circuit complexity of the “witness” func-

tion w such that 1(x, w(z)) for z c L is only polyno-

mially larger than CL(n). Thus the following predicate

holds iff C~(n) ~ s.

(3C, W)(vx)

(c(z) =(1 A (vy)/(z, y) = O)

v(C(Z) = 1 A 1(z, W(Z)) = 1),

where C ranges over all circuits of size a, W ranges over

all circuits of size large enough to compute the witness

function, and z ranges over all inputs of size n. This

predicate is clearly in Z;. H

5.4 Hard dist ribut ions for umiform com-

plexit y classes.

The first part of the proof of Theorem 10 can easily
be modified to show that hard distributions for NP-

complete languages can be computed in X;. This gives

the following result.

739

Proposition 11 Assume the polynomial-time hierar-

chy doesn’t collapse to E: and let k >0. For any NP-

or co-NP-complete language L there is a distribution D

on n-bit strings such that

● D is computable in X~

● no o(nk)-time algorithm (even with O(nk) advice),

when given a random input from D, decides mem-

bership in L with probability of error less than

1/2 – I/nk.

We leave the proof to the full paper.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

Leonard M. Adleman. Two theorems on random

polynomial time. In Proc. of the 19th IEEE Annual

Symp. on Foundation of Computer Science, pages

75-83, 1978.

Noga Alon, Richard M. Karp, David Peleg, and

Douglas West. A graph-theoretic game and its ap-

plication to the k-server problem. In Lyle McGeoch

and Daniel Sleator, editors, On-Line Algom”thms:

Proceedings of a DIMA L%’ Workshop, volume 7 of

DIMA (75’ Series in Discrete Mathematics and The-

oretical Computer Science, pages 1–9, 1992.

Ingo Althofer. On sparse approximations to ran-

domized strategies and covex combinations. Linear

Algebra and its Applications, 199, March 1994.

Shai Ben-David, Benny Chor, Oded Goldreich, and

Michael Luby. On the theory of average case com-

plexity. Journal of Computer and System Sciences,

44:193-219, 1992.

Manuel Blum and S. Kannan. Designing programs

that check their work. In Proc. of the 21st Ann.

ACM Symp. on Theory of Computing, pages 86–

97, 1989.

Ashok K. Chandra, Dexter Kozen, and Larry J.

Stockmeyer. Alternation. Journal of the ACM,

28(1):114-133, January 1981.

Joan Feigenbaum, Daphne Keller, and Peter Shor.
Private communication. 1993.

Shafi Goldwasser, Silvio Micali, and C. Rackoff.

The knowledge complexity of interactive proof sys-

tems. SIAM Journal on Computing, 18(1):186-208,

1989.

Y. Gurevich. Complete and incomplete randomized

NP problems. In Proc. of the 28th IEEE Annual

Symp. on Foundation of Computer Science, pages

111-117, 1987.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Y. Gurevich. Matrix decomposition problem is

complete for the average case. In Proc. of the 91st

IEEE Annual Symp. on Foundation of Computer

Science, pages 802-811, 1990.

Wassily Hoeffding. Probability inequalities for

sums of bounded random variables. American St a-

tistical Journal, pages 13-30, March 1963.

Russell Impagliazzo and Leonid Levin. No better
ways to generate hard NP instances than picking

uniformly at random. In Proc. of the 31st IEEE

Annual Symp. on Foundation of Computer Science,

pages 812-821, 1990.

Ming Li and P. M. B. Vitanyi. A theory of learning

simple concepts under simple distributions and av-

erage case complexity for the universal distribution.

In Proc. of the 30th IEEE Annual Symp. on Foun-

dation of Computer Science, pages 34-39, 1989.

Robert E. Schapire. The strength of weak learn-

ability. Machine Learning, 5: 197–227, 1990.

Uwe Schoning. Probabilistic complexity classes and

lowness. In Proc. of the Second IEEE Structure in

Complexity Theory Conference, pages 2-8, 1987.

R. Venkatesan and Leonid Levin. Random in-

st antes of a graph coloring problem are hard. In

Proc. of the 20th Ann. ACM Symp. on Theory of

Computing, pages 217-222, 1988.

John von Neumann. Zur Theorie der Gesellschaft-

spiel. Mathematische Annalen, 100(295-320), 1928.

Andrew C.C. Yao. Probabilistic complexity: To-

wards a unified measure of complexity. In Proc.

of the 18ih IEEE Annual Symp. on Foundation of

Computer Science, pages 222-227, 1977.

Andrew C.C. YaQ. Lower bounds by probabilis-

tic arguments. In Proc. of the 2dth IEEE Annual

Symp. on Foundation of Computer Science, pages

420-428, 1983.

Neal E. Young. Greedy algorithms by derandomiz-

ing unknown distributions. Technical Report T.R.

1087, Cornell University Department of Operations
Research and Industrial Engineering, Ithaca, NY

14853, 1994.

740

