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ABSTRACT 
The data broadcast problem is to find a schedule for broad- 
casting a given set of messages over multiple channels. The 
goal is to minimize the cost of the broadcast plus the ex- 
pected response time to clients who periodically and proba- 
bilistically tune in to wait for particular m e s s a g e s .  
The problem models disseminating data to clients in asym- 
metric communication environments, where there is a much 
larger capacity from the information source to the clients 
than in the reverse direction. Examples include satellites, 
cable TV, internet broadcast, and mobile phones. Such en- 
vironments favor the "push-based" model where the server 
broadcasts (pushes) its information on the communication 
medium and multiple clients simultaneously retrieve the spe- 
cific information of individual interest. This sort of environ- 
ment motivates the study of "broadcast disks" in Information 
Systems [1; 7]. 
In this paper we present the first polynomial-time approxi- 
mation scheme for the data broadcast problem for the case 
when W = O(1) and each message has arbitrary probability, 
unit length and bounded cost. The best previous polynomial- 
t ime approximation algorithm for this case has a performance 
ratio of 9/8 [6]. 

1. BACKGROUND AND RESULT 
T h e  input  is a set M = { M 1 , . . . , M m }  of messages, 
each with a probabil i ty  pi and cost ci, and a pa ramete r  
W - -  the  number  of channels. The  ou tpu t  is (finitely 
described) infinite broadcast schedule S for the messages 
- -  specifying for each t ime t = 0, 1, 2 , . . .  and channel k, 
a message S(t,  k) (if any) to be broadcas t  at tha t  t ime  
on tha t  channel. The  goal is to min imize  the  cost of the  
schedule, denoted C O S T ( S )  and defined as the  expected 
response time plus the  broadcast cost of S. 
For a finite schedule S, the  expected  response t ime of 
S, denoted  ERT(S) ,  is defined as follows. At  e a c h  

t ime  unit ,  each message is reques ted  by some client 
wi th  probabil i ty  pi. Once a message is requested,  the  
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client waits  unti l  the  next  t ime  at which the  message is 
scheduled on any channel (or the end of the  schedule, 
whichever  comes first). E R T ( S )  is defined to  be  the  ex- 
pec ted  wait ing t ime for a r andom request  at  a r andom 
time.  The  broadcast  cost of S, denoted  BC(S) ,  is de- 
fined to  be the  total  cost of scheduled messages, divided 
by the  length of the  schedule. 
Th roughou t  the  paper,  if any real-valued funct ion f is 
defined wi th  respect  to finite schedules, then  we im- 
plicit ly ex tend  it to any infinite schedule S as follows: 
f ( S )  = l imsup~_ ,oof (S~) ,  where S~ denotes S re- 
s t r ic ted  to the  first n t ime  slots. Thus,  the  above def- 
init ions of expected  response t ime  and broadcast  cost 
implici t ly  ex tend  to infinite schedules. All of the  infi- 
ni te  schedules considered in this paper  will be  periodic,  
in which case this extension is par t icular ly  simple. 
The  da t a  broadcast  problem and special cases were 
s tudied in [2; 3; 4; 5; 6; 10; 16; 19; 23]. Works  s tudying  
applicat ions and closely related problems include [1; 7; 
9; 11; 12; 13; 14; 15; 17; 18; 19; 20; 21; 22; 24]. Some 
of the  above works s tudy  the  general izat ion allowing 
m e s s a g e s  to have arbi t rary  lengths, which we do not  
consider here. 
A m m a r  and Wong [3; 4] proved tha t  there  always ex- 
ists an opt imal  infinite schedule wi th  finite period. They  
also formula ted  a natura l  re laxat ion of the  problem tha t  
gives an explici t  lower bound  on the  op t imum;  the  per-  
formance  guarantee  in this paper  is proven with  r e s p e c t  

to t ha t  lower bound.  More recently, cons tant - fac tor  
po lynomia l - t ime  approximat ion  a lgor i thms have been 
shown [5; 6], the  best  to da te  being a 9 /8 -approx ima t ion  
[6]. A l though  the  problem itself is not  known to  be NP-  
hard,  several variants  are known to be [6; 16; 19]. 
K h a n n a  and Zhou [18, ~1.2] s ta te  t ha t  it is unknown 
whether  the  problem is M A X - S N P  hard,  even when 
W = 1 and wi thout  broadcast  costs. In this paper ,  
we show t h a t  it is not  (unless P = N P ) .  We present  
the  first determinis t ic  polynomial  t ime  approximat ion  
scheme for the  problem, assuming the  W and each cost 
is bounded  by a constant.  By "polynomial  t ime" ,  we 
mean  tha t  the  t ime  taken to ou tpu t  the  finite descrip- 
t ion of the  infinite schedule is polynomial  in the  number  
of messages m in the  input .  

2. SUMMARY OF APPROACH 
Our a lgor i thm is based on a s imple new observat ion 
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tha t  works for a special case of the problem. We use 
fairly technical but  to some extent s tandard techniques 
to extend it to the general case. We sketch the idea 
here, glossing over a fair amount of technical detail. 
Ammar  and T o n g  [3; 4] relax the optimization problem 
by allowing messages to (a) be scheduled at non-integer 
times and (b) to overlap, while still insisting that  the 
total  density of the scheduled messages is at most W,  
the number of channels (the extension to the multiple 
channel case is due to [6]). The density of a message (or 
set of messages) is the total  number of scheduled times, 
divided by the length of the schedule. Standard  calculus 
yields a solution to this relaxed problem. The solution 
specifies for each message Mi a density d~, meaning that  
the message should be scheduled every T*--- 1/d* t ime 
units. 
Ammar  and T o n g  describe the following simple ran- 
domized rounding algorithm for producing a real sched- 
ule: For t = 1 , 2 , . . . ,  for k = 1 . . . W ,  choose a sin- 
gle message M~ randomly so that Pr{Mi selected) is 
d * / W  = W/v~;  schedule Mi in schedule slot S( t ,k ) .  
They observe that  the expected waiting t ime for a ran- 
dom request for Mi is essentially ~-/* in this schedule. 
Since the expected waiting t ime in the relaxed sched- 
ule is essentially T/*/2 (because an average request falls 
midway between two successive broadcasts  of Mi), this 
yields a 2-approximation w.r.t, expected response time. 
Since the expected broadcast  cost of S is the same as the 
broadcast  cost of the relaxed solution, the algorithm is 
a 2-approximation algorithm w.r.t, the total  cost. Am- 
mar  and T o n g  also describe a greedy algorithm that  
Bar-Noy, Bhatia, Naor and Schieber generalize in [6] to 
the multiple channel case and prove to be essentially a 
derandomization of the randomized algorithm, with the 
same performance guarantee. 

R o u n d - r o b i n  w i t h i n  g r o u p s .  Since our goal is a 
PTAS, we natural ly group messages tha t  are essentially 
equivalent (i.e. have essentially the same cost and prob- 
ability). Our simple idea is the following variation of 
Ammar  and Wong's rounding scheme, which is most 
simply described as follows: Schedule the messages as 
Ammar  and T o n g  do, but  then, within each group, 
rearrange the messages so that they are scheduled in 
round-robin (cyclic) order. The broadcast  cost is un- 
changed, but  the expected response t ime improves as 
follows. Whereas before, a random request for a mes- 
sage M in a group G would have waited (in expectation) 
for [G[ messages from G until finding its message, in the 
round-robin schedule, a random request for M will wait 
(by symmetry)  for (1 + 2 + . . .  + [G[)/[G D -- ([G[ + 1)/2 
messages from G. That  is, the expected wait in the 
round-robin schedule is (]G] + 1)/(2[G[) t imes the ex- 
pected wait in the Ammar-Wong schedule. Since the 
Ammar-Wong schedule has performance guarantee 2, 
the round-robin schedule has performance guarantee 
maxG([G[ + 1)/]G[ -- 1 + 1 / m i n e  [G[. Thus, when the 
groups are all large, the Ammar-Wong relaxation is es- 
sentially tight. 

E x t e n d i n g  t o  t h e  g e n e r a l  case .  Recall tha t  for our 
purposes a group is a collection of messages with up- 

proximately (w.r.t. E) the same probabil i ty and cost. As 
long as each group has size at least l / c ,  the round-robin 
schedule gives a (1 + c)-approximation. 
To extend to the general case, we show the following. 
Any set of messages can be part i t ioned into three classes 
as follows: 

A - -  A constant number of important (high proba- 
bility) messages. 

B - -  Messages belonging to large groups. 

C - -  Leftover messages, contributing negligibly to 
the cost. 

The basic intuition for the existence of this p a r t i t i o n i s  
that ,  due to the rounding, the message-probabilit ies of 
the successive groups decrease exponentially fast. Thus, 
for all but  a constant number of groups (where the 
message-probabili ty is high), either the  group is very 
large, or the total probabili ty of the messages in the 
group is very small. Althouth the intuit ion is basic, ob- 
taining the proof with the appropriate  parameters  is is 
somewhat involved and delicate. 
Once we have the parti t ion,  we proceed as follows: 

1. Find the density c~ of messages in A in a near-optimal  
schedule of A and B. 
2. Compute  an optimal "short" schedule SA of A hav- 
ing density approximately ~. 
3. Schedule the messages in B in the slots not occupied 
by A, using the group-round-robin algorithm. 
4. "Stretch" the schedule, interspersing empty slots ev- 
ery 1/c t ime units, and schedule the messages for C in 
these empty slots. 

Note that  in order to "cut and paste" the schedules 
together, we have to explicitly control the  density of A 
and B. This in itself requires lit t le tha t  is new. The 
main new difficulty is the following. In step 3, we are 
using the round-robin algorithm to schedule B, but  in 
a schedule that  is already part ial ly filled by A. For 
the analysis of the round-robin algorithm to continue 
to approximately hold, we require tha t  the empty slots 
in schedule SA are sufficiently evenly distributed so tha t  
the scheduling of B is not overly delayed at  any t ime 
(cost increases quadratically with delay). 
A-priori,  imposing this additional requirement on SA 
might increase the cost of SA too much. To show tha t  
this is not the case, we show (using a non-constructive 
probabilist ic argument) that  there is a schedule of A 
that  has constant-length period, density approximately 
~, and cost approximately the cost of any optimal sched- 
ule of A with density ~. Since the period of this sched- 
ule is small, the empty slots are necessarily evenly dis- 
t r ibuted.  
The final output  of the algorithm is a finite (size lin- 
ear in the input  size) description from which an infinite 
schedule with approximately optimal expected cost can 
be generated by a randomized algorithm in an "on-line" 
fashion, where each step requires O ( W )  t ime to sched- 
ule. 
The running t ime of the various steps is as follows. In 
step 1, only a constant number of densities ~ need to be 
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considered: we can t ry  them all and take the best. For 
each a ,  the t ime for the remaining steps is as follows. 
Step 2 can be done in constant t ime since the schedule 
we are looking for has constant length. Step 3 can be 
done in randomized t ime in the size of the output .  Step 
4 can also be done in randomized linear t ime in the size 
of the output.  
The final technical hurdle is showing that  the algo- 
r i thm can be derandomized (extending the analysis of 
the greedy algorithm by Bar-Noy, Bhatia,  Naor and 
Schieber to this more complicated setting). The result- 
ing deterministic algorithm outputs a polynomial-length 
schedule, the repetit ion of which gives the desired near- 
optimal infinite schedule. 

3. G R O U P  R O U N D  R O B I N  
Let the set of messages M be part i t ioned into groups 
G1, . . .  ,Gq where group Gj has size gj every message 
in Gj has the same probabil i ty pj and broadcast cost 
cj. Let a be the desired maximum density of M in the 
schedule. In this notation, Ammar  and Wong's relax- 
ation of the problem is: 

{ m i n ~ - ~ p j g j r j  + cj 
r>0 ~ 2 rj  

L B ( M , a )  = j= l  q 1 
Subject to: ~ ~ ~ (~W 

j=l 3 

L e m m a  1 (Lower  B o u n d  [3]) The minimization 
problem LB(B, a)  is a lower bound to the contribution 
of the messages of B to the cost of any schedule S over 
W channels, in which B has density ~ a. 
The problem has a unique solution v* satsifying: 
gj~; = ~/(2c~ + A*)/pj,  for some A* >~ O. I f  
~ j E B g J ~  <~ a W ,  then A* = O; otherwise, 

A* is the unique solution to: ~ j e B  ~/pj/(2cj  + A*) = 
~ W .  

L e m m a  2 ( R a n d o m i z e d  A p p r o x i m a t i o n )  In the 
setting of this section, the randomized algorithm 1 con- 
structs a one-channel schedule S whose cost satisfies: 

E[COST(S)] = j~---1 ~ (pjgj(gj2 + 1 )  rjq- ~ )  21 

I f  "r is chosen ~n order to minimize LB(M, 1), then 
algorithm 1 is a maxj (1 q- 1/gj )-approximation. 

A l g o r i t h m  1 Group round-robin algorithm 

if  ~ ? - 1  1/rj < 1 t h e n  
• ~dcl a dummy group Go with p0 = co = go = 0 
and 1/~0 = 1 - 5:~=1 1 /~ .  

f o r  t = 1 . . co  d o  

• Draw at random a group G¢ with probabil i ty 1/r3. 
Schedule in time slot t, the next message of group 
G~ in Round Robin order, if j # O; and stay idle 
otherwise. 

PROOF. A message of Gj is broadcast  during a t ime 
slot with probabil i ty 1/~-j, then the average density of 
the group Gj is then 1/rj .  Then: E[BC(S)] = ~ cj / r j .  
As explained above, a request for a message in ~ j  waits 
on average 1/2 until the end of the current t ime slot 
and then (gj + 1)/2 broadcasts of a message in Gj on 

average. Then: E[ERT(S)] ---- ½ + ~ i  pjg jr j  2 " 
Finally i f r  = ~-*, then since ~-~ipjg j = 1 and v* /> 1, 

we get that :  E[COST(S)] < ~ ( p j g ~ f f  + c j / • ) ,  
hence the claimed performance ratio. [ ]  

R e m a r k  1 Note tha t  the law of large numbers implies 
tha t  the expected cost is obtained with probabil i ty 1. 

4. S C H E D U L I N G  A A N D  B 
Next we t reat  the case where the set of the messages M 
can be part i t ioned into two sets A and B such that  

• A consists of a constant number of messages 

• B is part i t ioned into groups as in the previous 
section, such that  each group has size at least 
a(¢)]A] 2, where a = g(¢) will be defined later. 

Recall from the discussion in t h e  introduction that  the 
challenge at this point is to show tha t  there is a near- 
optimal schedule of A with the appropria te  density a 
and in which the empty slots are relatively uniformly 
distributed. If so, then we can find the desired schedule 
for A by exhaustive search, and then schedule B into 
the empty space in the schedule using the round-robin 
algorithm previously described. 
To show the existence of the desired schedule for A, we 
show there is a near-optimal schedule of A with the ap- 
propriate  density and with constant period (independent 
of a). 

L e m m a  3 Given a set of messages A, with cost at most 
C, some constant 0 < ~ < 1 and a density 0 < ~ < 1, 
there exists a periodic schedule S satsifying: 

I. The density of empty slots is S is approxi- 
mately (1 - o0: 
1 - a ( S ) / >  ( 1 - e ) ( 1 - c ~ ) ,  and a(S)  E]O,I[ 

2. The cost of S is approximately optimal: 
COST(S, A) ~< (1 + ¢) OPT(A,  a )  + ¢/2 

3. The period Ts of S can be bounded: 
40 In(1 + 4/e)  

Ts ~ max(C, 1)-[A[ 2 
c4(1 - e/6) 

PROOF SKETCH. Our proof uses the probabilistic 
method. The main new, simple idea, is in the con- 
struction, which efficiently smoothes the cost function 
by erasing its possible wide variations over t ime in the 
part icular schedule under study. 
Let T be a parameter  to be determined later. Let S* 
be a periodic schedule of A with density a and which 
is nearly optimal: basically, COST(S* ,A)  ~< (1 + 
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E) OPT(A,a) .  Let T* denote the period of S*, which 
w.l.o.g, is a multiple of T. 
From S*, construct another periodic schedule S~ by in- 
serting in S*, every T steps from a random starting 
point, all the messages of A in a fixed order. $2 is thus 
structured into blocks of length T + ]A]. Let S~ be the 
random schedule obtained by concatenating n blocks 
chosen at random from $2. For suitable values of T 
and n, we can prove that with positive probability, 
Sn satisfies the first two statements of the Lemma. The 
period of S~ is clearly n(T  + IA]), which together with 
the choice of T gives the third statement of the Lemma. 
O 

40 ln(1 + 4/~) max(C, 1) de- 
N o t a t i o n  1 Let T(~) -- e 4 ( 1 -  ¢/6) 

note the bound of the lemma for period(S)/lAI 2. Pa- 
rameter ~ will be defined as a(e) =da  2WT(¢) /¢ .  

The algorithm for scheduling At3B is given below, and is 
an e-approximation for the cases studied in this section. 
Since this is the critical case, the analysis is promoted 
from a lemma to a proposition. 

P r o p o s i t i o n  1 Let e < 1/7. /n  the setting of this sec- 
tion, Algorithm 2 yields a schedule S, such that: 

E[COST(S)] ~< (1 + he) OPT(A U B) 

A l g o r i t h m  2 Scheduling A and B 

for x = 1..(W- T(e)IA] 2 - 1) do 
• Compute an optimal periodic schedule S~ of A 
with density a -- x / ( W .  T(e)IA[ ~) and period 
T(e)IAI 2. 

• Choose s0 which minimizes: 
COST(Soo, A) + LB(B, 1 - a0) 

• Compute the T* that minimizes LB(B, 1 - so); Add 
a dummy group Go with p0 = co -- 0 and T~, such 
that: 1/T~ : (1 - a o ) W  - ~ j e B  1/T~. 

O u t p u t :  
for t : 1..oo do 

• Schedule during time slot t, the same messages 
of A on the same channels, as in S~ o. 
for all empty slot s during time slot t do 

Draw a group Gj of B with probabil- 
ity 1/(~-] (1 - so)W).  Schedule in slot s, the next 
message of Gj in Round Robin order, if j ¢ 0; 
and stay idle otherwise. 

D 

PROOF SKETCH. The proof works in two steps: 

1. Scheduling the messages of B with the randomized 
algorithm 1 in the empty slots achieves a good 
approximation of COST(Sao, A) + LB(B, 1 - ao) 
(Using the mapping lemma 10). 

2. COST(So o, A) + LB(B, 1 - a0) is .a good approx- 
imation of the optimal cost (Using Lemma 3). 

5. C - -  T H E  N E G L I G I B L E  M E S S A G E S  
In this section, to show how to incorporate the "neg- 
ligible" messages into the schedule. We assume that  
the set of messages M is partitioned into two sets A B  
and C, where C has a "negligible contribution" to the 
cost. (This section can be skipped by the reader who is 
in a hurry). 

D e f i n i t i o n  1 A subset of messages C C M has negli- 
gible contribution if its contribution to the lower bound 
is O(e), when it is scheduled on one channel with den- 
sity O(~/C), i.e.: 

LBw=I (C, ¢/(10C)) < 3~ O P T( M) / 10  
The constants 1/10 and 3/10 are arbitrary and are cho- 
sen in order to improve readability in the following re- 
sults. 

Basically, a subset of messages C is negligible if its con- 
tr ibution to the cost is small, in the schedule constructed 
by inserting its messages are inserted from time to time 
(every O(1/~) steps) into a schedule of the rest of the 
messages. 

L e m m a  4 Consider a set of messages M,  partitioned 
into two sets A B  and C, where C has a negligible con- 
tribution to the cost. Then, for any schedule S of AB ,  
one can construct in linear time a random schedule S t 
of M,  such that: 

E[COST(S')] 
< (1 + ~o)COST(S,  A B )  + ~o OPT(M)  

If COST(S,  AB)  <. OPT(M) ,  this is a (1 + ~)- 
approximation. 

PROOF. We first construct from S another schedule 
$1 of A B  by inserting an empty slot, on all the chan- 
nels, every IOC/e - 1 slots, starting at a random point 
in ( 0 , . . . , 1 0 C / ~  - 2}. The stretching lemma 8 en- 
sures that: E[COST(S1)] <~ (1 + ~/IO)COST(S ,  AB) .  
Let T* be the solution to the minimization prob- 
lem LBw=I(C,e/(IOC)).  We obtain S' by scheduling 
the messages of C on the first channel in the empty 
slots of S~, according to the randomized algorithm 1 
with T = 10T*C/¢. Lemma 2 and the scaling lemma 9 
ensure that  the expected contribution of C is bounded 
by 3LB(C,e/(IOC)) <~ 9¢OPT(M)/10 .  []  

R e m a r k  2 The algorithm above can easily be deran- 
domized by trying all the starting point and choosing 
the one that minimizes the over cost for the messages 
of A B  and use the greedy algorithm 4 to schedule C. 

6. PTAS F O R  DATA B R O A D C A S T  
We now assume that we are in the general case. The 
aim of the section is to prove the following theorem, 
which is the main result of the paper. 

T h e o r e m  1 ( P T A S )  Given e < 1/7 and a set M of 
messages, with message costs bounded by C, Algorithm 6 
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constructs in O(m s) time a periodic schedule S with pe- 
riod <~ ( m S +  mmax(1 ,C)) /e ,  so that: 

COST(S) ~< (1 + 11~) OPT(M)  

We,will first derive a PTRAS that will be derandomized 
in Section 6.2. 

6.1 Randomized 
We now need to put together the ideas developed for 
the special cases of the previous sections. As a prelim- 
inaxy treatment,  we use standard rounding techniques 
to reduce the number of different messages. 

L e m m a  5 ( R o u n d i n g )  Without loss of generality, we 
can assume that the request probabilities pi are a mul- 
tiple of powers of 1/(1 + e) and the broadcast costs are 
multiples of e / W  : 

pi = r/(1 +e )  j ,  for some j >/1 

ci = k . e / W ,  for some k E {0, . . .  , C . W / e }  

where l < r <~ l + e. 

PROOF. Standard and omitted. [] 

The following lemma is the main tool for putt ing to- 
gether the various special cases studied so far, and is 
thus a key part of our construction. We would like to 
claim that similar ideas could be applied to other prob- 
lems as well, however we were unable to abstract simple 
and general ideas from the technical proof. Perhaps, if 
one believes that every approximation scheme rests on 
one "structural lemma", it can be seen as the structural 
lemma for this problem. 

L e m m a  6 ( P a r t i t i o n ) G i v e n  e > 0 and ,¢ > O, 
one can construct, in linear time in m,  a partition of 
the groups (Gj,k), of messages with probability r / (1 + 
e) j (where r is the normalizing constant such that 
~-~{j>>.a;k=o..cw/,} rgj,k/(1 + e) j = 1) and cost k e / W ,  
into three sets A, B,  C so that: 

I. The groups of A have total size constant: [AI =def 
Y]~Gj,k eA gj,k = O~,~,e,w (1), independent of m.  

2. The groups of B are all large: 
V(Gj,k 6 S) ,9j ,k  >>- nlAI s 

3. The messages in C have negligible contribution if  
they are scheduled rarely (with density O(e/C)): 

LBw=1(C, i-~c) ~< a~ OPT(M)  T6 

PROOF SKETCH. Since the proof is rather technical, 
we will only in this extended abstract give the construc- 
tion of the partition into A, B and C in the case when 
there are no costs (C -- 0) and there is only one broad- 
cast channel (W = 1); this already contains the gist of 
the proof. 
Let a = ( 1 + 6 )  -1 < 1. In the case where there are no 
costs, the lower bound can be solved explicitly (see [3; 
6]) even when there is a density constraint, to yield, for 
any subset X of the message set: 

L B ( X , ~ )  = ~ ( ~ G j ~ x  gjaJ/2) s 

The construction. The construction is best understood 
by referring to figure 1. We first deal with indices such 
that  gj << a - j / 4 .  Let j0 be some constant to be defined 
later, and define C1 = {(j : j > jo, 9J <<. a-J~4}, and 
A1 = { j  : j <<. jo, gj <<. a-J~4}. (One can observe al- 
ready that  since the contributions of the messages of C1 
form the tail of a geometrically decreasing series, they 
will be negligible, and so they will end up in C; more- 
over, since j and gj are both bounded for the definition 
of At, set A1 can only contain a small number of mes- 
sages and so these messages will end up in A). 
We now consider the more delicate case of the groups 
for which gj > a -j /4,  for which we will need to use the 
pigeon hole principle. We partition their indices into 
(20/e) blocks as follows: 

A1 = {( / ,k ) :  # ~< j </~2}, 

As = {(/,  k) : u s ~< j < u 3 } , . . .  

A20/, = {(j, k) : p2o/, ~< j < #a+2o/,}, 

where /, is some constant to be defined later. Ac- 
cording to [3], we can then rewrite the lower bound 
on the expected response time as ~ / 2 L B ( M ) / r  = 
~ gJ aj/s >/ ~ h  ~jeAh gJ aj/s, and the pigeon hole 
principle tells us that there exists at least one h such 
that  ~ jeAh gJ aj/s <~ ~ox /2LB(M) / r"  We now de- 

fine As = {j : j < # h  gj > a- j /4} ,  Cs = Ah, and 
B = { j  : j > u h, gj >a-J~4}.  

Finally we set A = A 10  As and C = C10  C2 as shown 
on Figure 1. 

l 
loggj  ~ _ ~  = a - j  " 

~ gj = a-312 

~ gj = a-J~4 

3 log a 

Figure 1: The partition. 

[] 

It is now a simple matter to take our building blocks 
and deduce a randomized approximation scheme for the 
general Data Broadcast problem. 

P r o p o s i t i o n  2 ( P T R A S )  Given 0 < e < 1/7, the 
randomized algorithm 3 yields a random schedule S with 
cost: 

E[COST(S)] ~< (1 + 106) OPT(M)  
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A l g o r i t h m  3 A PTRAS 

• Round the probabilities and costs of the messages 
in M, and partition the set of messages M into three 
sets A, B, C, according to Lemma 6 with ~ = ~(e). 
• Schedule A and B with algorithm 2. 
• Insert the messages of C into the schedule of A 
and B, with the algorithm described in Lemma 4. 

PROOF. Consider the rounded instance M of the set 
of messages. According to the previous Proposition 1 
and Lemma 4, we have: 

E[COST(S)] <~ (1 + ~)(1 + 5~) OPT(M)  
But Lemma 5 ensures that: 

OPT(M)  ~< (1 + 3E) OPT(M)  
which yields the result. [] 

N o t e  1 The insertion of C can be done at the same 
time than the broadcast of A and B in Algorithm 3. 

6.2 Derandomization 
The PTR.AS has one slight problem, namely, that  it 
is not periodic, hence may be somewhat awkward to 
implement in some settings. In this section we deran- 
domize it using greedy choices, and show how to control 
the period of the resulting algorithm. 

D e f i n i t i o n  2 (S ta te )  We define the state 
(8~lk)l<~j<~q,l<~k<~y j at slot t as the time period elapsed 
from the beginning of the k th of the gj last broadcasts 
of group Gj to the end of slot t, as shown Figure 2. 

last gj = 4 broadcasts o f  a message in Gj 
~ - -  ,-7-. Slot  t 

i 8}1 i:~ 2}<8~3 I< 395 } 

t 
> 

Figure 2: Definition of the state at time slot t. 

L e m m a  7 ( D e r a n d o m i z a t i o n  of  A l g o r i t h m  1) 
Given a set of messages partitioned into groups 
G1, . . . ,Gq of size gj, and a set of reals 7"j > 0 so 
that ~-~j 1/75 <<. 1, the greedy algorithm ~ yields a 
one-channel schedule S whose cost satisfies: 

COST( S) <~ ~ (pj gi (gj + I ) ~j ) l 2 Tj+ - ~  

If v minimizes LB(M, 1), we get a maxj(1 + 1/gj)- 
approximation. 

A l g o r i t h m  4 Greedy Algorithm 

• Add a dummy group Go, if needed. 
for t = 1..co do 

• Let (sj,k) be the state at time slot t - 1. 
• Let j E {0, . . .  , q} which minimizes: 

gj 
(c~ - pTJ  Ek=~ s~,k) 

• Schedule during slot t, the next message of Gj 
in the Round Robin order, if j ¢ 0, and stay idle 
otherwise. 

PROOF SKETCH. The greedy choice at time slot t is 
made in order to minimize the expected cost of the al- 
ready allocated slots 1 , . . .  , (t - 1), if the schedule con- 
tinues with the randomized algorithm 1 after time t; this 
property ensures that the greedy schedule is at least as 
good as the randomized one. 12 

The above greedy algorithm could conceivably have very 
large period. The lemma below shows that  we can tSrun- 
cate it so as to obtain a periodic schedule of polynomial 
length. 

C o r o l l a r y  1 ( G r e e d y  p e r i o d i c  s chedu le )  Given a 
set of messages partitioned into groups G1,. . .  ,Gq of size 
gj, a set of reals Tj > 0 such that ~ j  l/~'j <~ W, and 
any T >~ (Sin 2 + (4C - 1)m), Algorithm 5 yields a one- 
chqnnel schedule S with period (T + 2m), whose cost is 
bounded by: 

COST(S) <<" ~ ( pjgj(gj + r j + ~ c J )  
j = l  

A l g o r i t h m  5 A periodic greedy algorithm. 

• Schedule during slot t = 1..m message Mr. 
• Execute the greedy algorithm during slots t = (m + 
1)..(T + m). 
• Sort in increasing order the set {krj : 1 ~< j ~< q; 1 ~< 
k ~< gj} and Schedule in slots t = (T+m+l) . . (T+2m) 
in order of increasing k~-j, the k th message of group 
Gj in the Round Robin order. 

PROOF. Omitted. [ ]  

Our main algorithm can now be found in Algorithm 6. 

PROOF OF THEOREM 1. Theorem 1 is proved by ana- 
lyzing the algorithm 6. The analysis is derived from the 
analysis of the PTRAS. The six first steps are exactly 
the same, except that  the periodic greedy algorithm 5 is 
used instead of the randomized algorithm 1. Since the 
performance ratio in Algorithm 5 is better, the sched- 
ule S obtained Step 6 is at least as good, and is periodic 
with period O(m2): 

COST(S) ~< (1 + 1BE) O P T ( M )  
We finally reduce the period in Steps 7-8 by using 
stretching lemma 8, which ensures that  at an increase of 
(1 +O(e) )  of the cost, we can extract from S a block S* 

with length ~< m2+mm~x(X'O and: 
e 
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A l g o r i t h m  6 The PTAS 
1. Round the probabilities and costs, and partition M 

into A, B, C as in the PTRAS. 
2. Compute r* and the density ao and periodic sched- 

ule S~o of A to minimizes LB(B, (I - so), as in 
Algorithm 2. 

3. Compute the greedy periodic schedule Sn of B with 
v = 0-*(1 - s 0 ) W )  and with period {T(~)]AI2(1 - 
so)W(Sm 2 + (4C + 1)m)} = O(m2). 

4. Concatenate (8m ~ + (4C + 1)m) periods of S~ o and 
map SB into the empty slots in the natural order. 

5. Compute the greedy periodic schedule Sc  of C 
with T = (10Cr*/~) where T* minimizes 
LB(C,¢/IOC), and with period {T(¢)IAI2(Sm 2 + 
(4C + 1)re)e/lOt} = O(m2). 

6. Choose the best starting point in {1, . . .  , loe 1} 
and stretch the schedule of A and B by inserting a 
slot of Sc  on the first channel every (1¢0c _ 1) and 
an empty slot on the other channels at that  time. 
Let S be the resulting schedule. 

7. Choose the best starting point in {1, . . .  , m~+mc - 
m} and construct S' by stretching S by inserting 
the m messages in fixed order on the first channel 
every ( m 2  +mc - m). 

8. S' is then structured into independent blocks of 
length "*2+me. The cheapest block S* will be the 
period of our approximation. 

COST(S*) ~< (1 + 116) OPT(M)  
D 

7. TECHNICAL LEMMAS 
The lemmas in this sections are useful for analyzing sev- 
eral of our constructions. The stretching lemma states 
that changing a schedule by inserting a few empty slots 
once in a while does not affect the expected response 
time. 

L e m m a  8 (S t re t ch ing)  Given a schedule S on 
W channels of M and a positive integer y, let 

n >1 y2+y _ Y- Consider the schedule S' obtained ¢ 

from S by inserting y empty slots just before the time 
slots x , x  + n , . . .  , x  W i .  n , . . . ,  where x is a random 
time in {1, . . .  ,n}. Then: 

E[ERT(S')] ~< (1 + 6) ERT(S) 

PROOF. Omitted. []  

The scaling lemma is immediate. 

L e m m a  9 (Scaling) Given a set of messages M and 
a schedule S, let S~ the schedule obtained by scaling 
S by a factor 1 / s :  S~ schedule at time t / s  on some 
channel the same message as S at time t, and stays idle 
otherwise. Then: 

1 
ERT(So,A) = - -  ERT(S,A) 

S 

BC(S~,A) = s .  BC(S,A) 

PROOF. Immediate. [ ]  

The mapping lemma is used for analyzing the effect of 
inserting the messages from B into the slots left empty 
in the density-constrained schedule of A; these slots may 
be spaced irregularly. 

L e m m a  10 ( M a p p i n g  in to  r e s e r v e d  e m p t y  slots) 
Given a set of messages M,  partitioned into groups of 
identical messages, such that all groups are larger than 
T W ,  consider a one-channel schedule S of M schedul- 
ing each group in Round Robin order, and a periodic 
sequence of reserved time-slots over W channels with 
density a and period T.  Let S' be the schedule obtained 
by mapping the schedule S into the reserved empty slots 
from left to the right, then: 

1 
ERT(S' ,  A) ~< ~--~- ERT(S, A) + T E pi 

Mi E A  

BC(S ' ,A)  = a W . B C ( S , A )  

PROOF. Omitted. []  

Co ro l l a ry  2 (Case  o f  la rge  g r o u p s )  In the case 
where M is partitioned into groups of size >1 2T/G 
S t has a cost bounded by: 

COST(S' ,  A) ~< 

(1 + c){  1 ERT(S, A) + a W .  BC(S, A ) j  ~-~" 

PROOF. Simple calculation. []  
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