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ABSTRACT
In the standard Huffman coding problem, one is given a set
of words and for each word a positive frequency. The goal
is to encode each word w as a codeword c(w) over a given
alphabet. The encoding must be prefix free (no codeword
is a prefix of any other) and should minimize the weighted
average codeword size

∑
w freq(w) |c(w)|. The problem has a

well-known polynomial-time algorithm due to Huffman [15].

Here we consider the generalization in which the letters of
the encoding alphabet may have non-uniform lengths. The
goal is to minimize the weighted average codeword length∑

w freq(w) cost(c(w)), where cost(s) is the sum of the (pos-
sibly non-uniform) lengths of the letters in s. Despite much
previous work, the problem is not known to be NP-hard,
nor was it previously known to have a polynomial-time ap-
proximation algorithm. Here we describe a polynomial-time
approximation scheme (PTAS) for the problem.

Categories and Subject Descriptors
E.4 [Data]: Coding And Information Theory—Data com-
paction and compression; F.2 [Theory Of Computation]:
Analysis Of Algorithms And Problem Complexity

General Terms
Algorithms

1. INTRODUCTION
Given a set of W of n words with associated probabilities
or frequencies p1 ≥ p2 ≥ · · · ≥ pn > 0 and an encoding
alphabet Σ, the prefix coding problem, sometimes known as
the Huffman encoding problem is to find a prefix-free code
over Σ of minimum cost. This problem is very well studied
and has a well-known O(n)-time greedy algorithm due to
Huffman [15] (O(n logn) if the pi are not sorted in advance).

Here we consider the generalization of the problem in which
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the letters used for encoding can have different costs. That
is, letting r = |Σ|, the r letters have associated costs 
1 ≤

2 ≤ · · · ≤ 
r and the cost of a codeword is defined to be the
sum of the costs of its letters (rather than the length of the
codeword).

For an example of the problem we are addressing refer to
Figure 1. Both codes have minimum cost for the frequencies
(p1, p2, p3, p4) = (2, 2, 1, 1) but under different letter costs.
The code {00, 01, 10, 11} has minimum cost for the standard
Huffman case of Σ = {0, 1} in which the length of each letter
is 1, i.e., the cost of a word is the number of bits it has. The
code {aaa, aab, ab, b} has minimum cost for the alphabet
Σ = {a, b} in which the length of a “a” is 1 and the length
of a “b” is 3.

This generalization is motivated by coding problems in which
different characters have different transmission times or stor-
age costs [5; 22; 19; 28; 29]. One example is the telegraph
channel [10; 11] in which Σ = {·,−} and 
2 = 2
1, i.e.,
in which dashes are twice as long as dots. Another is the
(a, b) run-length-limited codes used in magnetic and opti-
cal storage [16; 12], in which the codewords are binary and
constrained so that each 1 must be preceded by at least
a, and at most b, 0’s. (This example can be modeled by
the problem studied here by using an encoding alphabet of
r = b − a + 1 characters {0k1 : k = a, a + 1, . . . , b} with
associated costs {
i = a+ i− 1}.)

The literature contains many algorithms for the generalized
problem. The special case when all the probabilities are
equal (but not the letter lengths), known as the Varn coding
problem, is solvable in polynomial-time [29; 1; 7; 25; 13; 6].
For the generalized problem, Blachman [5], Marcus [22], and
(much later) Gilbert [11] give heuristic constructions. Karp
gave the first algorithm yielding an exact solution (assuming
the letter costs are integers); Karp’s algorithm transforms
the problem into an integer program and does not run in
polynomial time [19]. Karp’s result was followed by many
others [21; 9; 8; 23; 3] presenting solutions of cost at most
OPT + f(
1, 
2, . . . , 
r) where OPT is the cost of the op-
timal code and f(
1, 
2, . . . , 
r) is some fixed function of
the edge costs, with the different algorithms having differ-
ent f(·) (note that for these results the pi are considered to
be probabilities that sum to 1). These algorithms essentially
demonstrate that a generalized version of entropy is a lower
bound on the code cost and then design algorithms that
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Figure 1: Two minimum-cost codes for the frequencies (p1, p2, p3, p4) = (2, 2, 1, 1) but under different alphabets.
Codes are represented using the standard tree format with leaves signifying codewords. The left tree is for
Σ = {0, 1} with 
1 = cost(0) = 1 and 
2 = cost(1) = 1. The right tree is for Σ = {a, b} with 
1 = cost(a) = 1
and 
2 = cost(b) = 3. The four codewords encoded by the left tree are {00, 01, 10, 11}; the cost of the code is
2 · 2 + 2 · 2 + 1 · 2 + 1 · 2 = 12. The four codewords encoded by the right tree are {aaa, aab, ab, b}; the cost of the
code is 2 · 3 + 2 · 3 + 1 · 4 + 1 · 5 = 21.

construct codes within an additive function of that entropy.
They do not imply imply a PTAS for the problem, though,
even with fixed letter costs. Golin and Rote [12] gave a
dynamic programming algorithm that produces exact solu-
tions in O(n�r+2) time for the special case when the 
i are
restricted to be integers. Bradford et. al. [24] improved this
to O(n�r ) when r = 2.

For further references on Huffman coding with unequal let-
ter costs, see Abrahams’ recent survey on source coding [2,
Section 2.7], which contains a section on the problem.

Despite the extensive literature, there is no known polynomial-
time algorithm for the generalized problem, nor is the prob-
lem known to be NP-hard. Before this work, the problem
was not known to have any polynomial-time approximation
algorithm. Our main result here is a polynomial-time ap-
proximation scheme (PTAS) for the problem:

Theorem 1. Given an instance ((pi), (
j)) of the Huff-
man coding problem with unequal letter costs, and given a
positive ε, there exists an algorithm that constructs a pre-
fix code of cost at most (1 + ε)OPT; this algorithm runs in
time nd log(n) exp(O(ln(1/ε)2/ε2)), where d is the number
of distinct letter costs.

The algorithm is based on a new relaxation of Huffman cod-
ing with unequal letter costs. The relaxation, called the k-
prefix code problem, allows codewords of cost more than k to
be prefixes of other codewords. The algorithm uses grouping
and enumeration techniques to find a near-minimum-cost k-
prefix code (where k is a constant depending only on ε),
and then converts this k-prefix code into a true prefix code
increasing the cost by at most a 1 +O(ε) factor.

The techniques introduced in this paper can also be used
to construct PTAS’s for the regular-language prefix-coding
problem, a different generalization of Huffman coding that

asks for a minimum-cost prefix code under the additional
restriction that all codewords belong to a given regular lan-
guage L. As one example, the binary codes, constrained
so all codewords must end in a 1, are used for group test-
ing and the construction of self-synchronizing codes [4; 26].
As another example, binary codes whose codewords con-
tain at most a specified number of 1’s are used for energy
minimization of transmissions in mobile environments [27].
Algorithms (other than exhaustive search) for the regular-
language prefix-coding problem generalize [12] and run in

time nΘ(S(L)) where S(L) is the number of states in the
smallest deterministic finite automaton that accepts L. In
this extended abstract we do not discuss how the techniques
here extend to that problem.

Alphabetic coding is like the generalized problem considered
here, but with an additional constraint on the code: the
codewords must be chosen in increasing alphabetic order
(with respect to the words to be encoded). This problem
arises in designing testing procedures in which the time re-
quired by a test depends upon the outcome of the test [20,
6.2.2, ex. 33] and has also been studied under the names
dichotomous search [14] or the leaky shower problem [18].
Alphabetic coding has a polynomial-time algorithm [17].

2. NOTATIONS AND DEFINITIONS
A problem instance is specified by a set W of n words with
associated frequencies p1 ≥ p2 ≥ · · · ≥ pn > 0, an alphabet
Σ of r ≥ 2 letters with associated costs 
1 ≤ 
2 ≤ · · · ≤ 
r,
and an ε > 0. The Huffman coding problem with unequal let-
ter costs is the problem of finding a prefix code of minimum
cost.

Definitions 1. A code (usually denoted c) is an injec-
tive map from W to Σ∗. Its image c(W ) is called the set of
codewords of c. A set S ⊂ Σ∗ is prefix-free if no element
of S is a prefix of any other element of S; a prefix code
is one whose set of codewords is prefix-free. The cost of a
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code c is
∑n

i=1 pi cost(c(wi)), where cost(x) is the sum of the
costs of the letters of x.

Unless otherwise stated, all the codes considered here are
ordered, i.e. the map c assigns codewords of smaller costs
to words of larger probability: cost(c(w1)) ≤ cost(c(w2)) ≤
· · · ≤ cost(c(wn)). Clearly, any optimal code must be or-
dered.

Definition 2. A k-prefix code is a code in which no
codeword of cost less than k is a prefix of any other codeword.

One of the main reasons that prefix-codes are useful is that
they are uniquely decipherable. A k-prefix code is in gen-
eral not uniquely decipherable and therefore not particularly
useful by itself. The problem of designing a k-prefix code is
introduced and used here solely as an intermediate tool for
solving the original problem.

We generally use w to denote a word to be encoded, x to
denote a potential codeword (a string in Σ∗), cost(x) to
denote the sum of the costs of the letters in x’s, and |x| (the
size of x) to denote the number of letters. To distinguish
the given words W from the potential codewords Σ∗, we
call the former words and the latter strings. We use d to
denote the number of distinct letter costs.

The following assumption about the input is convenient:

Assumption 1. Each 
i for i ≥ 2 is an integer multiple
of ε, 
2 equals 1, and ε is either an integer multiple of 
1
or evenly divides 
1, Thus, all codeword costs are integer
multiples of min{
1, ε}.

It is also without loss of generality:

Lemma 1. The following reduction reduces any problem
instance to an instance satisfying Assumption 1:
1. Scale the 
i’s uniformly to make 
2 = 1.
2. Decrease ε to its next smallest multiple, or divisor, of 
1.
3. Increase each 
i for i ≥ 2 to its next largest multiple of ε.
4. Scale the 
i’s, and ε, uniformly to make 
2 = 1.

Proof. Step 2 decreases ε by at most a factor of 2. Step
3 increases the cost of any solution by at most a 1+ε factor.
Step 4 decreases ε by at most a factor of 1 + ε.

In the main sections (particularly Lemmas 7 and 8) we also
assume that 
1 > ε/n. The special case 
1 ≤ ε/n is easy and
is dealt with in Section 7.

Before we explain the main algorithm (Algorithm 3), we first
explain two subroutines used in that algorithm: Algorithm 1
for constructing a so-called leveled k-prefix code meeting cer-
tain constraints, and Algorithm 2 for converting such a code
into a true prefix code.

Algorithm 1 – builds a leveled k-prefix-free set of code-
words given the level 0 codeword and the number of code-
words per level.

INPUT: Letter costs, directed graph D, constraints
(f(0), f(1), . . . , f((k − 1)/ε)).

OUTPUT: leveled k-prefix code with f(i) codewords in
each level i ≥ 1 and a codeword in level zero of size f(0)
(if f(0) > 0). (Or “inconsistent” if no such code exists.)

1: S ← ∅
2: For any node 
 of D, define vS(
) to be the number of

strings of cost 
 having no prefix in S. (The algorithm
will build a table v with v[
] = vS(
) as it proceeds.)

3: If f(0) > 0, then S ← {af(0)} (a is the smallest letter).
4: For each node 
 on level 0, initialize v[
]:

v[
] = 1 if 
 < f(0) or f(0) = 0; v[
] = 0 otherwise.
5: for i = 1, 2, . . . , (k − 1)/ε do
6: For each node 
 of D in level i, by order of increas-

ing costs, initialize v[
] using the recurrence vS(
) =∑r
i=1 vS(
− 
i).

7: Let 
 = 1+ iε−min{
1, ε}. If v[
] < f(i), then return
“inconsistent”. Otherwise, choose f(i) codewords of
cost 
 and add them to S. Decrement v[
] by f(i).

8: Complete S by adding n− |S| strings of minimum cost
among the strings of cost ≥ k that don’t have a prefix
of cost < k in S. If |S| < n and there aren’t any such
strings, return “inconsistent”. (Find the n− |S| strings
by extending D as needed beyond cost k.)

9: Return the set of codewords S.

3. FINDING AN OPTIMALK-PREFIX CODE
Algorithm 1 finds an optimal k-prefix code meeting some
given constraints. The first constraint is that the code should
be leveled:

Definitions 3. For i ∈ {1, . . . , (k − 1)/ε}, define the ith
level of Σ∗ to be the set of strings x such that 1+(i−1)ε ≤
cost(x) < 1 + iε. Define level 0 to be the set of strings that
cost less than 1.

A code is maximal within level i if every codeword in
level i is of cost 1 + iε−min{
1, ε}.

A code is leveled if it is maximal within all levels i > 0.

Note that level 0 can only contain words of a∗, where a is
the letter of cost 
1. Note also that by assumption either (i)

1 is an integer multiple of ε, in which case each level i > 0
consists of the strings of cost 1 + (i− 1)ε and every code is
trivially maximal, or (ii) 
1 evenly divides ε, in which case
every string in level i has cost 1 + (i − 1)ε + j
1 for some
integer j ≤ n.

The second constraint that the constructed codeword must
meet is specified by a tuple f = (f(0), · · · , f((k − 1)/ε)) of
integers, with the following meaning.

1. If f(0) = 0, then there must be no codeword in level
0; if f(0) > 0, then the set of codewords must contain

the codeword af(0) from level 0.
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Algorithm 2 — converts a k-prefix code into a prefix code

INPUT: letter costs; k-prefix code c
OUTPUT: prefix code c′

1: Let a and b be the letters of cost 
1 and 
2, respectively.
2: For positive integer i, define enc(i) = b′1b

′
1b

′
2b

′
2b

′
jb

′
jab

where b′1b
′
2 . . . b

′
j is obtained from the binary represen-

tation b1b2 . . . bj of i by replacing each “0” with “a” and
each “1” with b. Define enc(0) = ab.

3: for each codeword of cost ≥ k do
4: Let α be the smallest prefix of cost ≥ k and β the re-

maining suffix. Replace the codeword by α enc(i)β b,
where i is the number of b’s in β.

5: Return the modified code.

2. For every level i > 1, the set of codewords must contain
exactly f(i) codewords in level i.

Algorithm 1 uses a directed graph D that is computed by
Algorithm 3 and given to Algorithm 1 as input. The nodes
of D are all possible codeword costs in [0, k], with an arc
from 
 to 
′ if and only if 
′ − 
 ∈ {
1, 1, · · · , 
r}.

Here is the performance guarantee of Algorithm 1:

Lemma 2. Given a constraint f = (f(0), . . . , f((k−1)/ε)),
if there exists a leveled k-prefix code consistent with the con-
straint, then Algorithm 1 constructs one of minimum cost.

Proof. It is straightforward to verify that Algorithm 1
correctly computes each vS(
) and produces a leveled k-
prefix code consistent with the constraint, if one exists.

Among the codes meeting the constraints of being leveled
and consistent with f , the chosen code has minimum cost
because the cost of codewords on levels 0, 1, . . . , (k− 1)/ε is
determined by those constraints, and, given the codewords
in those levels, the chosen code takes a set of codewords of
cost ≥ k of minimum possible cost.

4. CONVERTING AK-PREFIX CODE INTO
A PREFIX CODE

Algorithm 2 converts a k-prefix code into a prefix code. The
next lemma captures what we need to know about Algo-
rithm 2 in order to use it in the main algorithm (Algo-
rithm 3):

Lemma 3. Given any k-prefix code c of cost α, Algo-
rithm 2 constructs a prefix code c′ of cost at most α[1 +

2(5 + 2 log2 k)/k].

Proof. First we analyze the cost. Let c(w) = αβ and
c′(w) = α enc(i)β b, respectively, be an original and modified
codeword in Algorithm 2. From i ≤ cost(β) it follows that
cost(c′(w)) ≤ cost(c(w)) + 
2[5 + 2 log2 cost(c(w))]. Since
cost(c(w)) ≥ k if the codeword is modified, each modified
codeword costs at most 1+ 
2(5+2 log2 k)/k times as much
as the original.

Next we show that c′ is prefix free. Suppose c′(v) is a prefix
of c′(w) for some v, w ∈ W . Since the original code was
k-prefix free, it must be that

c′(v) = α enc(i)βb
and c′(w) = γ enc(j)δb

where α and γ each have cost ≥ k but have no proper prefix
of cost ≥ k, and where i and j are the number of b’s in
β and δ, respectively (as in Algorithm 2). Since c′(v) is a
prefix of c′(w), α is a prefix of c′(w), which means α = γ.
Thus, enc(i) is a prefix of enc(j)δb. Since every letter in
enc() is doubled except the last two, it must be that i = j.
Thus, βb is a prefix of δb. But (since i = j) β has the same
number of b’s as δ, so it must be that β = δ. Finally, we
can conclude that αβ = γδ. Since these were the original
codewords assigned to v and w, it must be that v = w.

5. THE MAIN ALGORITHM
The main algorithm is Algorithm 3. It consists of:

1. Some preprocessing (Steps 1, 2, 3, and 4).

2. Calling Algorithm 1 for Oε(1) different constraint tu-
ples (f(0), . . . , f((k − 1)/ε)) (Steps 5, 6, 7).

3. Choosing the best k-prefix code among those output
by Algorithm 2, transforming it into a prefix code
(Step 9), and returning the resulting code.

Next we analyze the cost of the code produced.

Lemma 4. Step 4 partitions W into O(k/ε2) groups.

Proof. Take any two consecutive groups other than G1.
The cumulative probability of the words in the two groups is
at least (1−p1)ε

2/(2k). Thus there can be at most 1+4k/ε2

such groups.

Lemma 5. OPT ≥ 1− p1.

Proof. At most one codeword can belong to a∗. All the
other codewords contain at least one letter which costs at
least 1, and their cumulative frequency is at least 1−pmax =
1− p1.

We now focus on Steps 5 through 8. The analysis of Algo-
rithm 1 implies that these find a code that is optimal among
leveled k-prefix codes meeting the grouping constraints (map-
ping elements within each group to the same level). The
next lemma implies that this code has cost at most 1+O(ε)
times the minimum cost of any k-prefix code.

Lemma 6. For any k-prefix code c, there exists a leveled
k-prefix code c′ that maps group elements within each group
to the same level, and such that cost(c′) ≤ cost(c)(1+O(ε)).
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Algorithm 3 — finds a (1 +O(ε))-optimal prefix code

INPUT: Set W of words with frequencies p1 ≥ p2 ≥ · · · ≥
pn > 0; letter costs 
1 ≤ 
2 ≤ · · · ≤ 
r; ε > 0.

OUTPUT: prefix code of cost at most (1 +O(ε))OPT

1: Adjust ε and the 
i’s so that 
2 = 1, ε is an integer divisor
or multiple of 
1, and each 
i for i ≥ 2 is a multiple of ε
(as in Lemma 1).

2: Choose k = Θ(log(1/ε)/ε) so k − 1 is a multiple of ε.
3: Construct a directed graph D whose nodes are all code-

word costs in [0, k], with an arc from 
 to 
′ iff 
′ − 
 ∈
{
1, 
2, · · · , 
r}. Do this by enumerating the vertices and
edges ofD using breadth-first search from the root (node
0).

4: Greedily partition W into groups.

• The first group is G1 = {w1}.
• Take i maximum such that pi > (1 − p1)ε

2/(2k).
Then G2 = {w2}, G3 = {w3}, . . ., and Gi = {wi}.

• While W is not empty, greedily take for the next
group {wj , wj+1, . . . , w�}, where pj + · · · + p� ≤
(1− p1)ε

2/k < pj + · · ·+ p�+1.

5: By exhaustive search, guess whether there is a codeword
of cost < 1 and what its size is (call it f(0)), and, for
each i = 1, 2, . . . , (k − 1)/ε, guess which groups will be
assigned to level i (i.e., with costs in [1+ε(i−1), 1+εi))
and let f(i) denote the total number of words in those
groups.

6: for each such guess (f(0), . . . , f((k − 1)/ε)) do
7: Use Algorithm 1 to construct an optimal k-prefix code

consistent with the guess (if one exists).
8: Let c be the minimum-cost code constructed.
9: Using Algorithm 2, convert c into a prefix code c′.
10: Return c′.

Proof. Let c be an optimal k-prefix code. We modify c
level by level so that for each i, c is maximal within level
i and so that level i contains all or none of the elements of
each group, as follows. Since level 0 contains at most one
codeword, and the first group contains exactly one element,
this is already true for level 0. Assume that we have already
modified c to guarantee those properties for levels up to i−1,
and consider level i.

Leveling phase for level i. First modify c so that it is
maximal within level i by taking every codeword z in level
i and padding it with enough a’s (i.e., replace z by zaj) so
that its cost is 1 + iε − min{
1, ε}, i.e. so that adding one
more letter a would move the codeword out of level i. (Here
we use the assumption that every letter cost is a multiple
of ε, with the possible exception of 
1 which then evenly
divides ε.)

Grouping phase for level i. Next modify the code so that
level i contains all or none of the elements of each group (i.e.,
no group is “split”). By induction, no group is split in levels
0, . . . , i − 1. Since the code is ordered, at most one group
can be split from level i. Take each codeword in that group
and on level i and pad it with an a to move it out of level i.
Then, if necessary, reorder the code (on levels greater than

i).

When this construction has been done for every i, the orig-
inal k-prefix code c has been changed into a leveled k-prefix
code c′ that maps elements within each group to the same
level. Next we show that the cost of c′ is 1+O(ε) times the
cost of c.

First consider a codeword that is padded in the leveling
phase for some level i but not in the grouping phase for that
level. Since each codeword has this happen at most once,
and the operation increases the cost of the codeword by at
most ε times the original cost of the codeword, the total
increase in cost due to such operations is at most ε times
the original cost of the code.

Next consider codewords that are padded in the grouping
phases. In the leveling and grouping phases for a given level
i, the cost of a codeword is increased by at most ε+ 
1 ≤ 2.
Since only one group is padded in the grouping phase, and
(by the grouping criterion) the group has total probability at
most (1−p1)ε

2/k, the total increase in cost of all codewords
in the group during the leveling and grouping phase for level
i is at most 2(1−p1)ε

2/k. Since there are O(k/ε) levels, the
total increase in cost due to these operations for all levels is
O((1 − p1)ε). By Lemma 5, this is O(ε) times the original
cost of the code.

Together with Lemma 2, Lemma 6 implies that at the end
of Step 8, Algorithm 3 finds a k-prefix code that has cost at
most (1 + O(ε))OPT . Lemma 3 implies that, for k chosen
as in Step 2, the main algorithm converts the k-prefix code
into a prefix code that also has cost at most (1+O(ε))OPT .
This concludes the proof of the performance guarantee in
Theorem 1 for the case 
1 > ε/n.

6. ANALYSIS OF RUNNING TIME
We analyze the directed graph D which was built in Step 3
of Algorithm 3 and used by Algorithm 1.

Lemma 7. Graph D has at most nk/ε nodes and dnk/ε
edges, where d is the number of distinct letter costs among
{
1, . . . , 
r}.

Proof. From Step 1 of Algorithm 3 all letter costs other
than 
1 are multiples of ε, and 
1 is either a multiple of ε or
evenly divides ε. Moreover, we’ve assumed 
1 > ε/n. Thus
each of the k/ε levels has at most n distinct costs. Thus D
has at most nk/ε nodes; each node has outdegree at most
d, the number of distinct letter costs.

In particular, in Step 3 of Algorithm 3 graph D can be
constructed in time O(ndk/ε). Using an array with a bucket
for each possible codeword cost, we can access the nodes of
D in constant time.

Lemma 8. Algorithm 1 can be implemented to run in time
O(ndk/ε).
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Proof. Since 
1 > ε/n, there are O(n/ε) nodes on level
0, so Step 3 of Algorithm 1 takes time O(n/ε).

The loop of Step 5 is iterated k/ε times. The total time for
Step 6, is at most O(1) per edge, therefore at most dnk/ε
total.

Total time for Step 7 is O(n) (O(1) per codeword). (The
exact cost of each iteration depends on details of implemen-
tation of the codeword set S. We use an implicit represen-
tation of the coding tree corresponding to S by highlighting
an edge e of D and giving it a “codeword weight” w(e) if it
is used to build w(e) codewords of S. This data structure
can be used to obtain the desired time bounds. The actual
code S can be constructed from this implicit representation
in time proportional to the size of S.)

Finally, Step 8 is implemented by doing a breadth-first search
to extend D beyond cost k, starting from all the nodes of
D which have vS(
) ≥ 1. Since the outdegree of any node
is bounded by d, and we stop as soon as we have identi-
fied at most n shortest eligible strings of cost ≥ k, this has
complexity O(nd).

Overall, the algorithm thus has running time O(ndk/ε).

Remark: Constructing an explicit representation of S would
require, in general, complexity Ω(n2), since the optimal code-
words can have total length Ω(n2) (for example, if S =
{b, ab, a2b, . . . , anb}, as might be the case when 
1 � 1).

Lemma 9. Algorithm 2 can be implemented in time O(n).

Proof. (sketch) First represent S with a tree as in the
usual Huffman encoding problem, compacting the represen-
tation as you go so that every internal node has at least two
children, and so the total number of nodes is O(n). Then
calculate the number of b’s recursively in time O(n). Fi-
nally, modify the tree to insert the extra letters. This can
be implemented in time O(n).

We now go back to Algorithm 3. It is easy to see that
everything outside Step 6 takes time O(nd). From Lemma 4,
there are only O(k/ε2) groups, and O(k/ε) levels. Since
the assignment of groups to levels respects the ordering of
both, the map is determined by knowing, for each level, the
maximum index of any group assigned to it. Thus there
are exp(O(ln(k/ε)k/ε)) maps from groups to levels, hence
exp(O(ln(k/ε)k/ε)) choices for (f(1), . . . , f(k/ε)).

How about f(0): how many possibilities must we try? As
written, the algorithm tries every possibility in level 0, which
could mean as many as Θ(n), however it is easy to modify
the algorithm so that we only try O(log(n)/ε) possibilities
for f(0): indeed, rounding costs up to the nearest power of
(1 + ε), it is enough to try f(0) = 0, 1, . . . , 1/ε, (1/ε)(1 +
ε), (1/ε)(1 + ε)2, . . . , 1.

Since each iteration takes time O(ndk/ε), and there are
exp[O(ln(k/ε)k/ε)] log(n)/ε iterations, we obtain a complex-
ity of (nd log(n)/ε2) exp(O(ln(k/ε)k/ε)). Expanding k and

simplifying, this is nd log(n) exp(O(ln(1/ε)2/ε2)). This com-
pletes the proof of Theorem 1 for the case 
1 > ε/n.

7. DEALING WITH THE CASE 
1 ≤ ε/N
Recall that a is the shortest letter and b the second shortest
letter, of cost 
2 = 1.

Lemma 10. If 
1 ≤ ε/n, then there exists a prefix code
c with the following properties. The cost of c is at most
1 + ε times the minimum cost of any prefix code. There is
a unique codeword of the form ai0 where i0 is of the form
�(1 + ε)j� with j = O(log(n)/ε). Every other codeword has
one of the following forms:

1. bajb for some j ≤ n,

2. ajxan where x ∈ Σ− a and j < i0.

Proof. Given a minimum-cost prefix code, let i0 be such
that ai0 is the unique codeword in a∗. Modify the code as
follows.

1. Replace codeword ai0 by ai1 , where i1 is the next largest
integer of the form �(1+ ε)j�. Since i0 < n, j = O(log(n)/ε)

2. For each i (1 ≤ i ≤ n), if the ith codeword has two or
more occurrences of letters other than a, replace the code-
word by baib.

3. Any codeword not modified in Step 1 or 2 must be of the
form ajxa∗ where x ∈ Σ− a and 0 ≤ j < i0. (For any j and
x there can be at most one such starting with ajx.) Replace
it by ajxan.

This gives a prefix code of the desired form. It is easy to
verify that the cost of each codeword is increased by at most
a 1 + ε factor.

The algorithm will first find the minimum-cost code among
those of the form described in Lemma 10 as follows: for each
of the O(log(n)/ε) choices for i0, consider the ordered code
whose codewords are the n least costly strings in the set

{ai0} ∪ {bajb : j < n} ∪ {ajxan : j < i0}.
Among the codes considered, take the one of minimum cost.
By the lemma, the cost of this code will by at most 1 + ε
times the minimum cost of any prefix code.

Under Assumption 1, each iteration can be implemented in
O(n + d) time, so for this special case the algorithm takes
O((n+ d) log(n)/ε) time.
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