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Abstract. Following Mettu and Plaxton [22, 21], we study oblivious
algorithms for the k-medians problem. Such an algorithm produces an
incremental sequence of facility sets. We give improved algorithms, in-
cluding a (24 + ε)-competitive deterministic polynomial algorithm and
a 2e ≈ 5.44-competitive randomized non-polynomial algorithm. Our ap-
proach is similar to that of [18], which was done independently.

We then consider the competitive ratio with respect to size. An al-
gorithm is s-size-competitive if, for each k, the cost of Fk is at most the
minimum cost of any set of k facilities, while the size of Fk is at most
sk. We present optimally competitive algorithms for this problem.

Our proofs reduce oblivious medians to the following online bidding
problem: faced with some unknown threshold T ∈ R

+, an algorithm must
submit “bids” b ∈ R

+ until it submits a bid b ≥ T , paying the sum of its
bids. We describe optimally competitive algorithms for online bidding.

Some of these results extend to approximately metric distance func-
tions, oblivious fractionalmedians, and oblivious bicriteria approximation.

When the number of medians takes only two possible values k or l,
for k < l, we show that the optimal cost-competitive ratio is 2 − 1/l.

1 Introduction and Summary of Results

An instance of the k-median problem is specified by a finite set C of customers,
a finite set F of facilities, and, for each customer u and facility f , a distance
duf ≥ 0 from u to f representing the cost of serving u from f . The cost of a
set of facilities X ⊆ F is cost(X) =

∑
u∈C duX , where duX = minf∈X duf . For a

given k, the (offline) k-median problem is to compute a k-median, that is, a set
X ⊆ F of cardinality k for which cost(X) = optk is minimum (among all sets of
cardinality k). Metric k-median refers to the case where the distance function is
metric (the shortest u-to-f path has length duf for each u and f).

The k-median problem is a well-known NP-hard facility location problem.
Substantial work has been done on efficient approximation algorithms that, given
k, find a set Fk of k medians of approximately minimum cost [2, 1, 6, 5, 13, 12, 24].
In particular, for the metric version Arya et al. show that, for any ε > 0, a set
Fk of cost at most (3 + ε)optk can be found in polynomial time [2].
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problem: cost-competitive metric size-competitive bidding
time: polynomial non-polynomial polynomial non-polynomial polynomial

deterministic 24 + ε 8 O(logn) 4 4
randomized 6e + ε < 16.31 2e < 5.44 O(logn) e < 2.72 e < 2.72

Fig. 1. Competitive ratios shown for oblivious medians and online bidding. Ratios in
bold are optimal.

Oblivious medians is an online version of the k-median problem where k is
not specified in advance [22, 21]. Instead, authorizations for additional facili-
ties arrive over time. A (possibly randomized) oblivious algorithm produces a
sequence F̄ = (F1, F2, . . . , Fn) of facility sets which must satisfy the oblivious
constraint F1 ⊆ F2 ⊆ · · · ⊆ Fn ⊆ F . In general, in an oblivious solution, the
Fk’s cannot all simultaneously have minimum cost. The algorithm is said to be
c-cost-competitive, or to have cost-competitive ratio of c, if it produces a (possibly
random) sequence F̄ of sets which is c-cost-competitive, that is, such that for
each k, the set Fk has size at most k and (expected) cost at most c · optk. For
offline solutions we use the term “approximate” instead of “competitive”.

Mettu and Plaxton [22, 21] give a c-cost-competitive linear time oblivious
algorithm with c ≈ 30. Our first contribution is to improve this ratio. The
problem is difficult both because (1) the solution must be oblivious, and (2)
even the offline problem is NP-hard. To study separately the effects of the two
difficulties, we consider both polynomial and non-polynomial algorithms.

Theorem 1. (a) Oblivious metric medians has non-polynomial deterministic
and randomized algorithms that are 8-cost-competitive and 2e-cost-competitive,
respectively. (b) If metric k-median has a polynomial c-cost-approximation algo-
rithm, then the oblivious problem has polynomial deterministic and randomized
algorithms that are 8c-cost-competitive and 2ec-cost-competitive, respectively.

As it is known that there is a polynomial (3 + ε)-cost-approximation algorithm
for the offline metric medians [2], Theorem 1 implies the cost-competitive ratios
shown in Fig. 1. Theorem 1 was recently and independently discovered by Lin,
Nagarajan, Rajaraman and Williamson [18]. For polynomial algorithms, they
improved the result further using a Lagrangian-multiplier-preserving approxi-
mation algorithm for facility location; they obtained 16-cost-competitive and
randomized 4e-competitive polynomial algorithms for metric medians.

We also consider here oblivious algorithms that are s-size-competitive: they
are allowed to use extra medians, but must achieve the optimal cost for each k.
An algorithm is s-size-competitive if it produces a sequence F̄ such that each set
Fk has cost at most optk and size at most sk. (If the algorithm is randomized, it
must produce a random sequence such that each set Fk costs at most optk and
has expected size at most sk.)

To our knowledge, size-competitive algorithms for oblivious medians have not
been studied, although other online problems have been analyzed in an analogous
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setting of resource augmentation (e.g. [14, 7, 17]). We completely characterize the
optimal size-competitive ratios for oblivious medians:

Theorem 2. (a) Oblivious medians has non-polynomial deterministic and ran-
domized oblivious algorithms that are 4-size-competitive and e-size-competitive,
respectively. (b) No deterministic or randomized oblivious algorithm is less than
4-size-competitive or e-size-competitive, respectively. (c) If offline k-median has
a polynomial c-size-competitive algorithm, then the oblivious problem has poly-
nomial deterministic and randomized algorithms that are 4c-size-competitive and
ec-size-competitive, respectively.

The upper and lower bounds in Theorem 2 hold for both the metric and non-
metric problems. Part (c) on polynomial algorithms is included for completeness,
as is the following result for offline k-medians (proof omitted):

Theorem 3. Offline k-medians has a polynomial O(log(n))-size-approximation
algorithm.

This improves the best previous result — a bicriteria approximation algorithm
that finds a facility set of size ln(n+n/ε)k and cost (1+ε)optk [24]. Our algorithm
finds a true (not bicriteria) approximate solution: a facility set of size O(log k)
and cost at most optk.

Theorems 2 and 3 imply the size-competitive ratios shown in Fig. 1. Note also
that no polynomial algorithm (oblivious or offline) is o(log n)-size-competitive
unless P=NP, even for the metric case.

To analyze oblivious medians, we reduce the size- and cost-competitive obliv-
ious problems to the following folklore “online bidding problem”: An algorithm
repeatedly submits “bids” b ∈ R

+, until it submits a bid b that is at least as
large as some unknown threshold T ∈ R

+. Its cost is the total of the submitted
bids. The algorithm is β-competitive if, for any T ∈ R

+, its cost is at most βT
(or, if the algorithm is randomized, its expected cost is at most βT ). More gen-
erally, the algorithm may be given in advance a closed universe U ⊆ R

+, with a
guarantee that the threshold T is in U and a requirement that all bids be in U .

For U = R
+, it is known that an optimal deterministic strategy bids increasing

powers of 2, and that there is a better randomized strategy which bids (randomly
translated) powers of e. We complete this characterization by proving that the
randomized strategy is optimal.

Theorem 4. (a) Online bidding has deterministic and randomized algorithms
that are 4-competitive and e-competitive, respectively. Furthermore, if U is finite,
the algorithms run in time polynomial in |U|. (b) No deterministic or randomized
algorithm is less than 4-competitive or e-competitive, respectively, even when
restricted to instances of the form U = {1, 2, ..., n} for some integer n.

Weighted medians. All of our results extend to the weighted version, where
we allow the facilities and the customers to have non-negative weights w. In this
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case, for a facility set X , one constrains the total weight
∑

f∈X w(f) to be at
most k, and one takes cost(X) =

∑
u∈C w(u)duX .

Approximate triangle inequality. Mettu and Plaxton show that their obliv-
ious median algorithm also works in “λ-approximate” metric spaces, achieving
cost-competitive-ratio O(λ4) [22, 21]. We reduce this ratio to O(λ2). We say
that the cost function d is a λ-relaxed metric if dfy ≤ λ(dfx + dxg + dgy) for
any f, g ∈ F and x, y ∈ C. (This condition is somewhat less restrictive than the
one in [22, 21]. A related concept was studied in [10].) Theorem 1 generalizes as
follows (proofs omitted):

Theorem 5. (a) Oblivious λ-relaxed metric medians has (non-polynomial) de-
terministic and randomized algorithms that are 8λ2-cost-competitive and
2eλ2-cost-competitive, respectively. (b) If offline λ-relaxed metric k-median has
a polynomial c-cost-approximation algorithm, then the oblivious problem has de-
terministic and randomized polynomial algorithms that are 8λ2c-cost-competitive
and 2eλ2c-cost-competitive, respectively.

The kl-medians problem. A natural question to ask is whether better com-
petitive ratios are possible if the number of medians can take only some limited
number of values. As shown in [22, 21], no algorithm can be better than 2-
competitive even when there are only two possible numbers of medians, either
1 or k, for some large k. Here, we solve the deterministic kl-median problem
(where the number of medians is either k or l > k).

Theorem 6. For any k < l, there is a deterministic oblivious algorithm for
kl-medians with competitive ratio 2 − 1/l, and no better ratio is possible.

Oblivious fractional medians. A fractional k-median is a solution to the
linear program which is the relaxation of the standard integer program for the
k-median problem. The natural oblivious version of this fractional problem is to
find a c ≥ 1 and, for every integer k ∈ [n] simultaneously, a pair (x(k)

if ), (y(k)
f )

meeting the constraints of the linear program, as well as y
(k)
f ≤ y

(k+1)
f (for all f)

and
∑

u

∑
f xufduf ≤ c · optk (where optk is the minimum cost of any fractional

k-median). The goal is to minimize the competitive ratio c.
The proof of the theorem below (omitted) extends the proof of Theorem 1,

along with the observation that the randomized algorithm for the fractional
problem can be derandomized without increasing the competitive ratio.

Theorem 7. Oblivious fractional metric medians has a deterministic polyno-
mial algorithm that is 2e-cost-competitive.

Bicriteria approximations. Combining Theorem 2, Theorem 8, and offline
bicriteria results from [2, 19, 20, 16], we can obtain oblivious, polynomial algo-
rithms with the following bicriteria (c, s)-competitiveness guarantees for obliv-
ious metric medians. The first quantity c is the cost-competitive ratio and the
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second quantity s is the size-competitive ratio: (a) (3 + ε, 4), for any ε > 0, (b)
(2 + ε, 4(1 + 2ε−1)), for any ε > 0, (c) (1 + ε, 4(3 + 5ε−1)), for any ε > 0.

Notation. Throughout we use the following terminology for online bidding.
Given the universe U , the algorithm outputs a bid set B ⊆ U . Against a particular
threshold T , the algorithm pays for the bids {b ∈ B : b ≤ T+}, where T + =
min{b ∈ B : b ≥ T }. The bid set B is β-competitive if, for any T ∈ U , this
payment is at most βT . Also, R

+ denotes the set of non-negative reals, Z the set
of integers, and N

+ the set of positive integers. For n ∈ N
+, let [n] = {1, 2, . . . , n}.

Plan of the paper. We prove our upper bounds on competitive algorithms for
oblivious medians (Theorem 1 for cost-competitive algorithms and Theorem 2(a)
for size-competitive algorithms) by reducing oblivious medians to online bidding
(Theorem 8, below) and then proving the upper bounds for online bidding (The-
orem 4). We prove our lower bounds on size-competitive algorithms for oblivious
medians (Theorem 2(b)) by reducing online bidding to size-competitive medians
(Theorem 9, below) and then proving the lower bounds for online bidding in
Theorem 4. We prove the reductions in Section 2 and analyze online bidding in
Section 3. In Section 4 we prove Theorem 6.

2 Oblivious Medians and Online Bidding

We start by showing that oblivious medians can be reduced to online bidding.
We show that (a) 2cβ-cost-competitive oblivious metric medians reduces (in
polynomial time) to β-competitive online bidding and c-cost-approximate offline
medians, and (b) sβ-size-competitive oblivious medians reduces (in polynomial
time) to β-competitive online bidding and s-size-approximate offline medians.

Note that part (b) holds even for non-metric medians. Also, if allowing non-
polynomial time, one can take F ∗

k to be the optimal k-median in Theorem 8,
which is both 1-cost-approximate and 1-size-approximate; then the oblivious
solution F̄ is (a) 2β-cost-competitive or (b) β-size-competitive.

Theorem 8. Let β ≥ 1 and assume that there exists a polynomial β-competitive
algorithm for online bidding. Fix an instance of k-median.

(a) In the metric case, suppose that for each i ∈ [n] we have a set of facilities
F ∗

i with |F ∗
i | ≤ i and cost(F ∗

i ) ≤ c · opti. Then in polynomial time we can
compute an oblivious solution (Fi)i where |Fi| ≤ i and cost(Fi) ≤ 2cβ · opti.

(b) Suppose that for each i ∈ [n], we have a set of facilities F ∗
i with |F ∗

i | ≤ s·i
and cost(F ∗

i ) ≤ opti. Then in polynomial time we can compute an oblivious
solution (Fi)i where |Fi| ≤ sβ · i and cost(Fi) ≤ opti.

If the algorithm for online bidding is randomized, then the computations in
(a) and (b) are also randomized.

Proof. We first prove part (a) of Theorem 8 in the deterministic case. The proof
in the randomized setting is similar and we omit it.

For convenience, we introduce distances between facilities: given two f, g ∈ F ,
let d′fg = minx∈C(dfx + dxg). This extension satisfies the triangle inequality. By
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assumption, each F ∗
k is c-cost-approximate: |F ∗

k | ≤ k and cost(F ∗
k ) ≤ c · optk.

Assume without loss of generality that cost(F ∗
k ) ≤ cost(F ∗

k+1) for all k.
The algorithm constructs the oblivious solution (Fi)i from (F ∗

i )i in several
steps. First, fix some index set K ⊆ [n], with 1 ∈ K, by a method to be described
later, and let κ(1), κ(2), . . . , κ(m) denote the indices in K in increasing order.
Next, compute Fk just for k ∈ K. Start by defining Fκ(m) = F ∗

κ(m). Then, working
backwards, inductively define Fκ(i) to contain the facilities within Fκ(i+1) that
are “closest” to F ∗

κ(i).
More precisely, given two subsets A, B of F , let Γ (A, B) denote a subset

Γ of B, minimal with respect to inclusion, and such that d′µΓ = d′µB for all
µ ∈ A (breaking ties arbitrarily). Obviously, |Γ (A, B)| ≤ |A|, and Γ (A, B) can
be computed in polynomial time given A and B. Then Fκ(i) = Γ (F ∗

κ(i), Fκ(i+1)).
Finally, define Fk for k ∈ [n] \ K as follows. Let k− = max{i ∈ K : i ≤ k} (it

is well defined, since 1 ∈ K.) Define Fk = Fk− . To complete the construction, it
remains to describe how to compute K, which we momentarily defer.

To analyze the size, note that |Fk| ≤ k, because for k ∈ K, by definition of Γ
we have |Fk| ≤ |F ∗

k | ≤ k, while for k �∈ K, we have |Fk| = |Fk− | ≤ k− < k.
To analyze the cost, we use the following lemma. (The proof can be found in

[8] and is also implicit in [13].)

Lemma 1. Assume that the distance function is metric. Consider two sets
A, B ⊆ F and let Γ = Γ (A, B). Then for every x ∈ X we have cxΓ ≤ 2cxA+cxB.

We now claim that
cost(Fk) ≤ 2

∑

�≥k−,�∈K
cost(F ∗

� ). (1)

Indeed, for indices k ∈ K, we have k = k−, and (1) follows from Lemma 1
summed over all x and from the construction of Fk (for k = κ(m), . . . , κ(1)). For
k �∈ K, inequality (1) holds as well, simply because Fk = Fk− , the bound holds
for k = k−, and (k−)− = k−.

Since cost(F ∗
k ) ≤ c optk, to make F 2cβ-cost-competitive we will choose K so

that, for all k, ∑

�≥k−,�∈K
cost(F ∗

� ) ≤ β cost(F ∗
k ). (2)

To compute the set K, let U = {cost(F ∗
n ), cost(F ∗

n−1), . . . , cost(F
∗
1 )} and take B

to be any β-competitive bid set for universe U . Define K = {κ(m),
κ(m − 1), . . . , κ(1)} to be a minimal set (containing 1) such that the bid set is
B = {cost(F ∗

κ(m)), cost(F
∗
κ(m−1)), . . . , cost(F

∗
κ(1))}. Then the left-hand side of (2)

is exactly the sum of the bids paid from the bid set for threshold T = cost(F ∗
k ).

Since the bid set is β-competitive, this is at most β cost(F ∗
k ), so (2) holds. This

completes the proof of part (a).
We now prove part (b) of Theorem 8. By assumption each F ∗

k is s-size-
approximate, that is, |F ∗

k | ≤ sk and cost(F ∗
k ) ≤ optk.

Fix some β-competitive bid set B. Let Bk be the set of bids in B paid against
threshold T = k with U = [n]. Define Fk =

⋃
b∈Bk

F ∗
b . Then F̄ = (F1, F2, ..., Fn)
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is an oblivious solution because Bk ⊆ B� for � ≥ k. Further, cost(Fk) ≤ optk
because Fk contains F ∗

b for some b ≥ k, so cost(Fk) ≤ cost(F ∗
b ) ≤ optb ≤ optk.

Since B is β-competitive, we have |Fk| ≤
∑

b∈Bk
|F ∗

b | ≤
∑

b∈Bk
sb ≤ sβk.

Our next reduction shows that competitive online bidding reduces to size-
competitive oblivious medians. Note that, together with Theorem 8(b), this im-
plies that online bidding and size-competitive oblivious medians are equivalent.

Theorem 9. Let s ≥ 1 and assume that, for oblivious medians ( metric or
not), there is a (possibly randomized) s-size-competitive algorithm. Then, for
any integer n, there is a (randomized) s-competitive algorithm for online bidding
with U = [n].

Proof. We give the proof in the deterministic setting. (The proof in the ran-
domized setting is similar and we omit it.) For any arbitrarily large m, we
construct sets C of customers and F of facilities, a metric distance function
duf , for u ∈ C and f ∈ F . The facility set F will be partitioned into sets
M1, M2, . . . , Mm, where |Mk| = k for each k, with the following properties: (i)
For all k, cost(Mk) > cost(Mk+1), and (ii) For all k, and for every set F of fa-
cilities, if cost(F ) ≤ cost(Mk) then there exists � ≥ k such that M� is contained
in F . These conditions imply that each Mk is the unique optimum k-median.

Assume for the moment that there exists such a metric space, and consider an
s-size-competitive oblivious median F̄ for it. Let B = {k : Mk ⊆ Fk}. We show
that B is an s-competitive bid set for universe U = [m]. Against any threshold
T ∈ [m], the total of the bids paid will be

X =
∑

{k : k < T, Mk ⊆ Fk} + min{� : � ≥ T, M� ⊆ F�} (3)

Now,
∑

{k : k < T, Mk ⊆ Fk} ≤
∑

{k : k < T, Mk ⊆ FT } since F̄ is a nested
sequence. Similarly, we have

min{� : � ≥ T, M� ⊆ F�} ≤ min{� : � ≥ T, M� ⊆ FT }

(By (ii), M� ⊆ FT for some � ≥ T , so the minimum on the right is well-defined
for T ∈ [m].) Thus:

X ≤
∑

{k : k < T, Mk ⊆ FT } + min{� : � ≥ T, M� ⊆ FT }

=
∑

{|Mk| : k < T, Mk ⊆ FT } + min{|M�| : � ≥ T, M� ⊆ FT } since |Mk| = k

≤
∑

{|Mk| : Mk ⊆ FT }
≤ |FT | since the Mk’s are disjoint
≤ sT since F̄ is s-size-competitive.

Thus, the bid set B is s-competitive for universe U = [m].

We now present the construction of the metric space satisfying conditions (i) and
(ii). Let C be the set of integer vectors ū = (u1, u2, . . . , um) where u� ∈ [1, �] for
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all � = 1, 2, . . . , m. For each � ∈ [1, m], introduce a set M� = {µ�,1, µ�,2, . . . , µ�,�},
and for each node ū in C, connect ū to µ�,u�

with an edge of length δ� = 1 +
(m!)−�. The set of facilities is F =

⋃
� M�. All distances between points in C ∪F

other than those specified above are determined by shortest-path distances. The
resulting distance function satisfies the triangle inequality.

We have cost(Mj) = m!δj for each j ∈ [1, m], so (i) holds. We prove (ii) by
contradiction. Fix some index j and consider a set F ⊆ F that does not contain
M� for any � ≥ j: for each � ≥ j there is i� ≤ � such that µ�,i�

/∈ F . Define a
customer ū as follows: ui = 1 for � = 1, . . . , j − 1 and ui = i� for � = j, . . . , m.
Then the facility µ�,i ∈ F serving this ū must have � < j or i �= i�. Either way, it
is at distance at least δj−1 from ū. Since each other customers pays strictly more
than 1, we get cost(F ) > m! − 1 + δj−1 = m!δj = cost(Mj) – a contradiction.

3 Online Bidding

In this section we prove Theorem 4. For completeness, we give proofs of the
(folklore) deterministic and randomized upper bounds and deterministic lower
bound. The upper bound uses a doubling algorithm that has been used in several
papers, first in [15, 23] and later in [11, 3, 4, 9]. Our main new contribution in this
section is a new randomized lower bound that matches the upper bound. (The
proof of Lemma 3 was communicated to us by Yossi Azar.)

Lemma 2. For online bidding, there is a deterministic 4-competitive algorithm.
If U is finite, the algorithm runs in time polynomial in |U|.

Proof. First consider the case U = R
+. Define the algorithm to produce the set

of bids {0} ∪ {2j : j ∈ N}. Let i = �log2 T 	, where T > 0 is the threshold: the
algorithm pays

∑
j≤i 2j = 2i+1 ≤ 4T , hence is 4-competitive.

Next, we reduce the general case to the case U = R
+. Knowing that T ∈ U ,

the algorithm, when it would have bid b �∈ U , will instead bid the next smaller
bid in U (if there is one, and otherwise the bid is skipped). This only decreases
the cost the algorithm pays against any threshold T ∈ U . Note that the modified
algorithm can be implemented in time polynomial in |U| if U is finite.

Lemma 3. For online bidding, no deterministic algorithm can be better than
4-competitive, even for U = N

+.

Proof. let xn be the nth bid, sn =
∑n

1 xi and yn = sn+1/sn. Suppose, for a
contradiction, that there exists a < 4 such that sn+1/xn < a for all n. Rewriting,
we get yn+1 ≤ (1 − 1/yn)a. Since 1 − 1/z < z/4, this implies yn+1 < (yn/4)a;
thus yn < (a/4)ny0, and so eventually sn+1 < sn, which is a contradiction.

Lemma 4. For online bidding, there is a randomized e-competitive algorithm.
If U is finite, then the algorithm runs in time polynomial in |U|.

Proof. First we consider the case U = R
+. Pick a real number ξ ∈ (0, 1] uniformly

at random, then choose the set of bids B = {0} ∪ {ei+ξ : i ∈ N}.
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For the analysis, let random variable b be the largest bid paid by the algorithm
against threshold T > 0. The total paid by the algorithm is less than

∑∞
i=0 be−i =

be/(e − 1). Since b/T is distributed like eξ where ξ is distributed uniformly in
[0, 1), the expectation of b is T

∫ 1
0 ez dz = T (e − 1). Thus, the expected total

payment is eT , and the algorithm is e-competitive.
The general case reduces to the case U = R

+ just as in the proof of Lemma 2.

Lemma 5. Fix any n ∈ N
+. Suppose µ : [n] → R

+ and π : [n] → R
+ satisfy

n∑

T=t

1
T

π(T ) ≥ 1
b

b∑

T=t

µ(T ) (∀b, t : 1 ≤ t ≤ b ≤ n). (4)

For online bidding with U = [n], there is no randomized algorithm with compet-
itive ratio better than

∑n
T=1 µ(T ) /

∑n
T=1 π(T ).

Proof. Consider a random set B of bids generated by any β-competitive ran-
domized algorithm when U = [n]. Without loss of generality, the maximum bid
in B is n.

Let B = {b1, b2, . . . , bm = n} be the ordered sequence of bids in B. Consider
the sequence of intervals ([1, b1], [b1 +1, b2], [b2 +1, b3], . . . , [bm−1 +1, bm]), which
exactly covers the points 1, 2, . . . , n. Let x(t, b) denote the probability (over all
random B) that [t, b] is one of these intervals. The algorithm pays bid b against
threshold T if and only if, for some integer t ≤ T , [t, b] is one of these intervals.
Thus, for any threshold T and bid b,

∑T
t=1 x(t, b) is the probability that bid b is

made against threshold T . (We will use this below.)
We claim that β, x form a feasible solution to the following linear program

(LP):

minimizeβ,x β subject to

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

β −
n∑

b=1

b

T

T∑

t=1

x(t, b) ≥ 0 (∀T ∈ [n])

n∑

b=T

T∑

t=1

x(t, b) ≥ 1 (∀T ∈ [n])

x(t, b) ≥ 0 (∀t, b ∈ [n]).

The first constraint is met because, for any threshold T ,
∑

t≤T ;b b x(t, b) is the
expected sum of the bids made by the algorithm if T is the threshold. This is at
most βT because the algorithm has competitive ratio β. The second constraint
is met because for any threshold T , the algorithm must have at least one bid
above the threshold, hence at least one [t, b] with t ≤ T ≤ b.

Thus, the value of this linear program (LP) is a lower bound on the optimal
competitive ratio of the randomized algorithm. To get a lower bound on the
value of (LP), we use the dual (DLP) (where the dual variables µ(T ) correspond
to the first set of constraints and π(T ) to the second set of constraints):
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maximizeµ,π

n∑

T=1

µ(T ) subject to

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

n∑

T=1

π(T ) ≤ 1

b∑

T=t

µ(T ) −
n∑

T=t

b

T
π(T ) ≤ 0 (∀t, b ∈ [n])

µ(T ), π(T ) ≥ 0 (∀T ∈ [n]).

Now, given any µ and π meeting the condition of the lemma, if we scale µ
and π by dividing by

∑
T π(T ), we get a feasible dual solution whose value is∑

T µ(T ) /
∑

T π(T ). Since the value of any feasible dual solution is a lower
bound on the value of any feasible solution to the primal, it follows that the
competitive ratio β of the randomized algorithm is at least

∑
T µ(T ) /

∑
T π(T ).

Lemma 6. There exists µ : [n] → R
+ and π : [n] → R

+ satisfying Condition (4)
of Lemma 5 and such that

∑
T µ(T )/

∑
T π(T ) ≥ (1 − o(1))e.

Proof. Fix U arbitrarily large and let n = �U2 log U	. Let α > 0 be a constant
to be determined later: We will choose α so that Condition (4) holds, and then
show that the corresponding lower bound is e(1 − o(1)) as U → ∞. Define

µ(T ) =

{
α/T if U ≤ T ≤ U2

0 otherwise
and π(T ) =

{
1/T if U ≤ T ≤ U2 log U

0 otherwise.
.

If T ≥ U2, then the right-hand side of Condition (4) has value 0, so the
condition holds trivially. On the other hand, since π(T ) and µ(T ) are zero for
T < U , if the condition holds for T = U , then it also holds for T < U . So, we
need only verify the condition for T in the range U ≤ T ≤ U2. The expression
on the left-hand side of (4) then has value

U2 log U∑

T=t

1
T 2 ≥

∫ 1+U2 log U

t

1
T 2 dT =

1
t

− 1
1 + U2 log U

≥ 1
t
(1 − o(1)).

In comparison, the expression on the right-hand side has value at most

max
b≥t

1
b

b∑

T=t

α

T
≤ α max

b≥t

1
b

∫ b

t−1

1
T

dT = α max
b≥t

1
b

ln
b

t − 1
=

α

e t(1 − o(1))
.

(The second equation follows by calculus, for the maximum occurs when b =
e(t − 1).) Thus, Condition (4) is met for α = (1 − o(1))e. Then, Lemma 5 gives
a lower bound on the competitive ratio of

∑
T µ(T )

∑
T π(T )

=
∑U2

T=U α/T
∑U2 log U

T=U 1/T
= (1 − o(1))α

ln(U2/U)
ln((U2 log U)/U)

= (1 − o(1))e.

Theorem 4 follows directly from Lemmas 2, 3, 4, 5, and 6.
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4 Oblivious Algorithms for kl-Medians

In this section we sketch the proof of Theorem 6. Formally, in the kl-median
problem we need to compute two sets Fk ⊆ Fl with |Fk| = k and |Fl| = l,
minimizing the competitive ratio R = max {cost(Fk)/optk, cost(Fl)/optl}.

The lower bound is a slight refinement of the one in [22, 21]. The metric space
contains l customers, where customers j is connected to facility gj by an edge
of length δ = 1/l. All customers are also connected to a facility f with edges of
length 1.

Let G = {g1, . . . , gl}. Then G is the optimal l-median. We have cost(f) = l,
cost(G) = lδ, cost(gi) = δ + (l − 1)(2 + δ), and cost(G − gi + f) = (l − 1)δ + 1.
So for δ = 1/l, we get:

cost(gi)
cost(f)

= 2 − 1/l and
cost(G − gi + f)

cost(G)
= 2 − 1/l.

The upper bound is achieved as follows. Let F and G denote, respectively,
the optimum k-median and the optimum l-median. The algorithm choosese the
better of two options: either (a) Fk = F and Fl = F ∪ G − X , where X ⊆ G
is a set of cardinality k that minimizes cost(F ∪ G − X), or (b) Fk = Y , where
Y ⊆ G is a set of cardinality k that minimizes cost(Y ), and Fl = G.

The competitive analysis of this algorithm is based on a probabilistic argu-
ment and will appear in the full version of this paper.

Acknowledgments. We are grateful to anonymous referees for suggestions to im-
prove the presentation. We also wish to thank Yossi Azar for pointing out refer-
ences to previous work on online bidding and simplifying the proof of Lemma 3.
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