
Efficient and Effective Explanation of Change in
Hierarchical Summaries

Deepak Agarwal
Yahoo! Research

Dhiman Barman
UC Riverside

Dimitrios Gunopulos
UC Riverside

Flip Korn
AT&T Labs–Research

Divesh Srivastava
AT&T Labs–Research

Neal E. Young
UC Riverside

ABSTRACT
Dimension attributes in data warehouses are typically hierarchical
(e.g., geographic locations in sales data, URLs in Web traffic logs).
OLAP tools are used to summarize the measure attributes (e.g., to-
tal sales) along a dimension hierarchy, and to characterize changes
(e.g., trends and anomalies) in a hierarchical summary over time.
When the number of changes identified is large (e.g., total sales in
many stores differed from their expected values), a parsimonious
explanation of the most significant changes is desirable. In this pa-
per, we propose a natural model of parsimonious explanation, as a
composition of node weights along the root-to-leaf paths in a di-
mension hierarchy, which permits changes to be aggregated with
maximal generalization along the dimension hierarchy. We formal-
ize this model of explaining changes in hierarchical summaries and
investigate the problem of identifying optimally parsimonious ex-
planations on arbitrary rooted one dimensional tree hierarchies. We
show that such explanations can be computed efficiently in time es-
sentially proportional to the number of leaves and the depth of the
hierarchy. Further, our method can produce parsimonious explana-
tions from the output of any statistical model that provides predic-
tions and confidence intervals, making it widely applicable. Our
experiments use real data sets to demonstrate the utility and robust-
ness of our proposed model for explaining significant changes, as
well as its superior parsimony compared to alternatives.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications–Datamining;
F.2.m [Analysis of Algorithms and Complexity]: Miscellaneous

General Terms
Algorithms,Experimentation,Theory, Performance

Keywords
OLAP, hierarchical summary, change, parsimonious explanations,
statistical model

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’07, August 12–15, 2007, San Jose, California, USA.
Copyright 2007 ACM 978-1-59593-609-7/07/0008 ...$5.00.

Dimension attributes in data warehouses are typically hierarchi-
cal, and a variety of OLAP applications (such as point-of-sales
analysis and decision support) call for summarizing the measure
attributes in fact tables along the hierarchies of these attributes.
For example, the total sales at different WalMart stores can be
summarized hierarchically by geographic location (e.g., state/city/
zip_code/store), by time (e.g., year/month/day/hour), or by product
category (e.g., clothing/outerwear/jackets/brand). Existing OLAP
tools help to summarize and navigate the data at different levels
of aggregation (e.g., jackets sold in each state during December
2006) via drill-down and roll-up operators. OLAP tools are also
used to characterize changes in these hierarchical summaries over
time (e.g., the sales in December 2006 compared to their expecta-
tions over different locations), to detect anomalies and characterize
trends. When the number of changes identified is large (e.g., the
total sales at many locations differed significantly from their ex-
pectations), one seeks explanations.

Explanations may be verbose (e.g., a separate ad hoc explanation
for the observed change at each location) or parsimonious (e.g., a
single explanation for multiple observed changes, such as attribut-
ing a drop in sales at a large number of locations in Louisiana in
2005 to Hurricane Katrina). Parsimonious explanations are ob-
viously more desirable and more effective than (ad hoc) verbose
explanations. In this paper, we are interested in parsimonious ex-
planations of changes in measure attributes (e.g., total sales) ag-
gregated along an associated dimension attribute hierarchy (e.g.,
location).

Existing work has addressed the issue of explaining change be-
tween OLAP aggregates in terms of subaggregates [21] (we de-
scribe in more detail how this work differs from ours in Section 2),
but these changes were expressed as outliers of point-to-point sub-
aggregate comparisons. We seek a more holistic explanation. We
propose a natural model that makes effective use of the dimension
hierarchy and describes changes at the leaf nodes of the hierarchy
(e.g., individual stores in the location hierarchy) as a composition
of “node weights” along each node’s root-to-leaf path in the dimen-
sion hierarchy – each node weight constitutes an explanatory term.
For example, overall sales in stores in California increased by a
factor of three; sales in San Jose stores further grew by a factor of
two (a six-fold total increase), whereas sales in Los Angeles stores
increased less than the statewide increase by half (so a total growth
factor of 1.5). Formally, we assume that the dimension hierarchy
remains fixed over time, and each data item (e.g., a record in a fact
table) has a timestamp and is associated with a leaf node (e.g., an
individual store) of the hierarchy. A hierarchical summary or snap-
shot (over some time interval) then associates with each node in
the dimension hierarchy (e.g., store, zip_code, city, state) the ag-

6

Research Track Paper

gregated value of the measure attribute (e.g., total sales) of all data
items (with a timestamp in that time interval) in its subtree.

If we consider two snapshots, it is clear that the changes between
the trees can be expressed over the different levels of the dimension
hierarchy in numerous possible ways. For example, if the sales at
all California stores increased four-fold, we can model this change
(among other possibilities) as a weight of four for each individual
store, or a weight of four at the California state level, or as a weight
of two at the California state level and a weight of two for each
store. The important question is, what are the nodes in the hierarchy
that explain the (most significant) changes parsimoniously.

A straightforward and intuitive attempt at identification of par-
simonious explanations is a top-down approach. Starting from the
roots of the two snapshots, compare aggregate values of the mea-
sure attributes at corresponding nodes. If the difference between
the aggregates is completely “explained” by the composition of
node weights along the path from the root to the parent of that
node, no additional node weight (or explanatory term) is needed
at that node. Otherwise, the node weight is set appropriately to the
differential value with respect to the composition of weights along
nodes for ancestor path from the root to that node. While straight-
forward and intuitive, such an explanation can be easily shown to
not be optimally parsimonious. For example, if 1 out of 5 stores in
Los Angeles that all used to have the same sales exhibited a 4-fold
increase in sales, while the other 4 exhibited no change in sales,
a top-down explanation would attribute a 1.6-fold (8/5) increase at
the Los Angeles city level, and would then have to have additional
explanations at each store to explain the differences with the city-
level explanation - thus needing 6 explanatory terms. An optimally
parsimonious explanation, on the other hand, needs only 1 explana-
tory term - a 4-fold increase at the anomalous store. This explana-
tion is parsimonious in the sense that changes are aggregated with
maximal generalization along the dimension hierarchy.

We envision that in many practical cases the user may want to
compare a snapshot of the hierarchy with the values predicted by a
model. Such an operation would be particularly useful for example
when validating a forecasting model, or to identify conditions that
are not properly modeled or to provide parsimonious explanation
of anomalies that are expected to be related through the hierarchi-
cal structure. In this scenario, the use of statistical modeling would
provide an expected value for each leaf of the hierarchy, with asso-
ciated confidence intervals. Our proposed method can provide par-
simonious explanation after incorporating uncertainty in the fore-
casts, quantified through confidence intervals.

1.1 Our Contributions
We summarize our contributions as follows:

• We formalize the notion of parsimonious explanation of change
when comparing two hierarchical summaries, or when we
compare a snapshot with the results of a forecasting model.
To account for confidence intervals provided by a forecast-
ing model, and to deal with noise, our model allows for a
maximum tolerance between the observed change and the
root-to-leaf explanation.

• We prove that optimally parsimonious explanations of our
problem can be computed efficiently in polynomial time, pro-
portional to the product of the number of leaves and the depth
of the dimension hierarchy.

• To complement our conceptual and algorithmic contributions,
we conduct a statistically sound experimental evaluation to
understand the effectiveness and efficiency of our approach

on real hierarchical datasets. We use a predictive model based
on an exponentially weighted moving average (EWMA), which
is widely used in time series applications. Our experiments
demonstrate the effectiveness and robustness of our proposed
approach for explaining significant changes, and show that it
is more efficient than the worst-case bounds in practice.

The rest of this paper is structured as follows. In Section 2, we
discusss related work. In Section 3, we formalize the variants of
our problem of parsimonious explanation. Algorithms, along with
their proofs of correctness and complexity analysis, are presented
in Section 4. Experimental results along with description of the
statistical models used are given in Section 5.

2. RELATED WORK
Hierarchies on data attributes have played a significant role in

data warehouses, for which database operators such as the dat-
acube have been developed to summarize and navigate the data at
the different levels of aggregation [6]. In the data mining litera-
ture, several tools have been proposed for summarizing hierarchi-
cal data at a single time instance, including GMDL regions [16],
Icecubes [10], and Hierarchical Heavy Hitters (HHH) [9, 7].

With respect to detecting changes in data, recent approaches in-
clude velocity density estimation [1] for visualizing change, win-
dowed statistical testing [14] for detecting distributional changes,
and histogram differencing [8] for identifying items which exhibit
the largest changes in frequencies. However, these papers deal with
flat (non-hierarchical) data. There have been a few papers explicitly
dealing with hierarchical data. Zhang et al. studied change detec-
tion of (aggregated) time series corresponding to HHH IP prefixes
in the IP address hierarchy [26]. Chawathe et al. studied the prob-
lem of change detection on semi-structured data, but for topological
changes [23].

The problem of path explorations of hierarchies was studied in [22].
Here the user defines a set of linear constraints and the values in the
datacube cells are predicted using the Maximum Entropy Principle.
Given a supplied model, the technique finds the cells that are sig-
nificantly different values from the expected values. Our problem
is essentially the opposite: to find the best model that explains the
changes. There is also some marginally related work on identify-
ing bursts in hierarchical time series data, that is, the time intervals
tightly capturing high arrival frequencies [27, 15].

Most related to our work is the DIFF operator for explaining dif-
ferences in the datacube [21]. In their problem, a user selects two
aggregates at the same level in the datacube which fixes some of the
dimensions. The ratio between the selected aggregates is then ex-
plained in terms of the free dimensions, and subaggregates having
deviating ratios explained recursively. This puts constraints on the
intermediate node ratios, whereas our solution has the freedom to
explain leaf aggregate changes in terms of intermediate node ratios,
and is thus more parsimonious. In the example involving the Los
Angeles stores mentioned earlier, the need to additionally “explain”
the ratio of 8/5 at the Los Angeles city level internal node results
in a verbose explanation using the DIFF approach. To demonstrate
this verbose behavior of DIFF on real data, we shall experimentally
compare against the DIFF operator in Section 5.

The problem of using compact hierarchical histograms for ap-
proximating leaf-level data was studied in [20] which employed a
predefined hierarchy like our approach but solved the dual prob-
lem: given a bound on the size of the synopsis (i.e., the number
of explanations), find the synopsis that minimizes the error. Fur-
ther, the paper considered three different partitioning functions and
solved via dynamic programming to reduce distributive error met-

7

Research Track Paper

rics given a space bound. Their LPM variant is the same problem
studied in [21] but solved heuristically due to the expensive cost
of distribute error metrics; the other partitioning functions find in-
ferior solutions to LPM. Our work is based on the initial problem
formulation presented in [4].

2.1 Connection to Wavelets
Recently [18] investigated a problem similar to our work. The

proposed solution used the Haar wavelet representation to construct
dataset synopses of minimum space. The use of the wavelet rep-
resentation restricts this approach to less efficient (i.e., less parsi-
monious) explanations than our hierarchical parsimonious explana-
tions. Another problem relevant to ours (for the case of binary hier-
archies) is Haar wavelet compression with maximum-error metrics,
introduced in [17]. The best current solution requires O(n2) time
and O(n) space to solve the dual problem [11] and, just as in [21],
constraints are imposed at all nodes rather than just at the leaves,
leading to less parsimonious solutions. [12] introduced the notion
of unrestricted Haar wavelets and [13] defined the Haar+ tree as an
improvement, but these exploit discretization of values and there-
fore are not comparable with our approach which allows for any
(potentially infinite sized) domain. However [13] is equivalent to
the model given by [20] when the hierarchy is restricted to binary
trees. [13] presents provably good approximate algorithms to solve
this problem in O(R2n log n log2 B) or O(R2n log2 B) time (n
is the size of the input, B the maximum number of coefficients in
the synopsis and R the number of the examined values per coeffi-
cient), for general error metrics. Interestingly, our problem (with
binary hierarchies) offers an alternative to Haar wavelet compres-
sion, yielding better answers with smaller complexity: O(n log n)
for the primal problem and O(n log n log ε∗) for the dual. An al-
gorithm that solves the dual problem (as in [20] or [13]) can be
modified to solve the primal problem using a binary search proce-
dure on B. Thus, these algorithms would need to run an additional
log B factor slower if modified to solve our problem.

3. PROBLEM DEFINITION
In this section, we first define a natural change explanation model,

which expresses the change between the leaf nodes of two hierar-
chical summaries as a composition of changes top-down from the
root to the leaves of the tree.1 We then discuss the model in the
context of Occam’s Razor to find a parsimonious explanation of
change. Let S be a set of items from a domain D where the ele-
ments come from a well-defined hierarchy. Each item i ∈ S has
an associated measure value v ∈ V . The ordered pairs (i, v) could
have been obtained by summing over the (projected) columns in
a data warehouse fact table containing a multiset of (itemID,
value) pairs where itemID is a dimension attribute and value
is a measure attribute. Or they could have been aggregated over
some time series window (eg, moving window average). Let T be
a rooted tree obtained by inducing the dimension hierarchy on S,
where the nodes correspond to different prefixes in the dimension
hierarchy. We do not assume a total ordering over the dimension
hierarchy, only that it is partially ordered with maximum height h.
Let � denote a leaf node and m(�) denote some value attached to
the leaf node �. Given values attached to leaf nodes that represent
some measure of change, we define a class of hierarchical change
explanation models below.

DEFINITION 3.1. Hierarchical Change Explanation: Given
1Our method works for both multiplicative and additive compo-
sitions by transforming the former to latter using logarithms; we
illustrate using the additive scale.

a hierarchy T and change values m(�) attached to leaves �, a hier-
archical change explanation model is a complete, top-down compo-
sition of changes (“weights”) w(n) between nodes along the root-
to-leaf path, for each leaf node.

More formally, for each leaf node �,

m(�) = W (�) (1)

where

W (root) = w(root) (2)

W (n) = w(n) + W (p(n)) (3)

for tree nodes n where p(n) is the parent node of n. A solution
to this system gives weights w(n) for each n. In fact, if P(n)
denotes the ancestor path from the root down to a tree node n,
then by unraveling Equations 1-3, our problem is to find weights
w(n) of each node n in the tree subject to the constraints m(�) =P

n∈P(�) w(n). Since this system of equations is under-specified,
there are multiple solutions each of which provides a hierarchical
change explanation.

In general, the change values m(�) are obtained as some dis-
crepancy measure d(m1(�), m2(�)) between two sets of values ob-
served for the hierarchy T . For example, consider the Census
dataset [5] where we have population counts m1(.) and m2(.) for
zip codes and a geographical hierarchy that defines aggregations
at state, county and city levels at two different snapshots T1 and
T2 as exemplified in Figures 1(a) and (b). Here, 3D m(�) =
d(m1(�), m2(�))= log(m2(�)/m1(�)). In general statistical anomaly
detection problems, m1(�) is forecasted value based on some sta-
tistical model that captures normative behavior and m2(�) is the
actual observed value with higher discrepancy being indicative of
anomalous behavior.

3.1 Parsimonious Explanation
Definition 3.1 provides a rich class of hiearchical change expla-

nation models; we provide a couple of examples that are trivial to
compute but sub-optimal and then provide a notion of an optimal
or parsimonious hierarchical change explanation model.

One possible assignment of weights that is used in anomaly de-
tection applications is the one that completely ignores the hierarchi-
cal structure and assigns each leaf node � in T a weight of m(�),
and 0 to the non-leaf nodes. We call this the “non-hierarchical”
model, comparison w.r.t this model helps in quantifying the gain
achieved by using the hierarchy. Figure 1(c) shows a non-hierarchical
assignment for the trees T1 and T2 shown in Figures 1(a) and (b),
respectively. The leaf-level nodes encircled boldly have non-zero
assigned weights. Using trees T1 and T2, we construct a third
tree as in Figure 1(c) such that the value associated with a leaf
is log of the ratio of the correspoding leaf counts. Assuming the
existence of a rollup operator that aggregates values of children
to the parent, another possible assignment is top-down, which re-
cursively assigns weights from the root down such that m(�) =
W (n) =

P
u∈P(n) w(u), for all leaves and intermediate nodes n.

Figure 2(a) provides an example where values at each snapshot are
rolled up using the sum operator. Both of these assignments satisfy
the equations of hierarchical change explanation but are not neces-
sarily parsimonious: the former ignores all opportunities to group
leaves with equal differences in the same subtree whereas the latter
is too greedy in that it groups unequal leaf differences.

A node weight w(n) = 0 implies no change to node n relative
to p(n) and does not need to be reported in an explanation. Thus,
the explanation size is the number of non-zero weights in the expla-
nation. Applying Occam’s Razor, we prefer an explanation of the

8

Research Track Paper

2010 30 20 40

402010

30

120

90

50

California

Victorville
Los Angeles

Los Angeles

San Bernardino

Pasadena

91101900029000191729

Fontana

92334 (a)
T1

30 40

40

6030 40

7030 60

90 110

200

California

San Bernardino

Los Angeles

Victorville
Los Angeles

Pasadena

91729 9110190001 90002

Fontana

92334 (b)
T2

0 0

0log(2)0

0

0

0

0

0

log(3) log(3)

92334 91729 90001 90002 91101

California

Los Angeles

Los Angeles Pasadena
Fontana Victorville

San Bernardino

(c)
non-hierarchical assignment

Figure 1: Each distinct ZIP code appears as a leaf in the tree along with its associated population counts (shown inside the node).
The population count for internal nodes is the sum of the population counts from the leaves in its subtree. (a) and (b) give trees gives
two snapshots T1 and T2, of hierarchy T respectively; (c) shows a non-hierarchical weight assignment

log(63/65)0 0

log(9/5)

log(5/3)

log(11/15)

0 log(5/7)0 log(10/7)

log(9/11)

0

California

San Bernardino Los Angeles

Los Angeles
Fontana

90002900019172992334 91101

Pasadena
Victorville

(a)
top-down

0 0

0 0 0

log(3)

log(2)0

0

0

0

0

92334 91729 90001 90002 91101

California

San Bernardino Los Angeles

Los AngelesFontana Victorville Pasadena

(b)
optimal (ε = 0)

0

0

0

0

0

0 0 0

0 0 0 0

California

San Bernardino Los Angeles

Fontana Victorville
PasadenaLos Angeles

92334 91729 90001 90002 91101 (c)
optimal (ε ≥ log(3))

Figure 2: Weight assignment based on top-down and optimal assignments.

smallest size. Therefore, we define a parsimonious explanation of
hierarchical change as one with the smallest explanation size, that
is, the minimum number of weights not equal to zero. Consider
Figure 2(b), which is able to explain the changes using only 2 non-
zero weights compared to 3 for the non-hierarchical strategy and 7
for the top-down one; in fact, it is optimal. We describe the algo-
rithms which lead to assignments in Figure 2(b)-(c) in Section 4.

However, this explanation model has certain shortcomings. Of-
ten one wants to compare a snapshot with expected values; large
deviations from these values can be reported as anomalies. Statis-
tical forecasting models (e.g., based on moving averages) typically
yield confidence intervals based on a supplied confidence level. An
important shortcoming of the current model is that it does not work
with such a forecasting model because its formulation does not deal
with ranges of possible values. In addition, the model is sensitive to
noise. Intuitively, we would like to capture similar changes among
related leaves which may not have exactly equal differences but are
roughly the same. For example, if two sibling leaves have differ-
ences of 1.98 and 2.02, we may wish to describe this at the parent
using a difference of 2. Since the deviations from this description
at the leaves are small (1%), we may tolerate this error as being a
good enough approximation to report only significant changes and
to avoid overfitting the data. Our original description above, which
only allows exact matches, does not allow this.

In order to ameliorate this, we extend the definition to allow a tol-
erance parameter ε on the values of the leaves. We allow weights

on the nodes that result in differences of at most ε between two
leaves in the snapshots. We assume that in practice this tolerance
parameter will be provided by the confidence interval of the pre-
diction model, which can be different from leaf to leaf, so the
model allows different tolerances ε(�) at each �. Specifically, we
assign weights such that |m(�) − W (�)| ≤ ε(�) for each �, where
W (�) =

P
u∈P(�) w(u).

To see the connection with a forecasting model, we assume m(�) =
d(m1(�), m2(�)) = m2(�) − m1(�). In fact, rewriting this equa-
tion m2(�)− (m1(�)+ ε(�)) ≤ W (�) ≤ m2(�)− (m1(�)− ε(�))
and denoting m1(�)+ε(�) and m1(�)−ε(�) by UB(�) and LB(�),
respectively, clearly shows how to use output from a forecasting
model in our framework. LB(�) and UB(�) are lower and up-
per confidence bounds that are obtained from the estimated fore-
casting distribution. One possibility which works for symmetric
distributions is to choose m1(�) as the predicted mean and ε(�)
to be proportional to the predicted standard deviation, the constant
of proportionality depending on the desired coverage of the con-
fidence interval. For instance, a choice of 1.96 under a Gaussian
assumption on the statistical distribution of our node values guar-
antees 95% coverage. In general, our method is agnostic to the
particular choice of forecasting model; the only requirement is the
availability of LB(�) and UB(�). This makes it a highly general
purpose method with wide applicability in anomaly detection prob-
lems involving hierarchical data where changes are expected to be
spatially clustered in subregions of the hierarchy.

9

Research Track Paper

Figure 3: Computing an optimal node weighting (k = 0, ε = 1).

We now define our parsimonious explanation model, which al-
locates a tolerance budget along each path that can be distributed
among the individual path nodes in any fashion while maintaining
the constraint |m(�) − P

n∈P(�) w(n)| ≤ ε(�).

DEFINITION 3.2. Hierarchical Parsimonious explanation:
Given a set of leaf changes m(�) and a tolerance budget ε(�) ≥ 0
on the total sum of weights along the path to � for all leaves �, a
hierarchical parsimonious explanation of change finds the smallest
explanation size, that is, minimum number of node weights w(n)
s.t. w(n) �∈ [−k, k]; k ≥ 0.

In definition 3.2, for positive tolerances, only k = 0 is of interest
to us in practice. However, to facilitate comparison with DIFF al-
gorithm, extended definition which allows thresholding on positive
values of k is necessary as we shall see later in section 5.

4. ALGORITHMS
In this section, we describe an algorithm to compute optimal

weight assignments (that is, minimizing the explanation size), for
the problem defined in Section 3 (Definition 3.2). The algorithm
presented here generalizes this problem by allowing any supplied
error tolerances for the leaves as well as intermediate nodes of the
hierarchy.

The problem with ε = 0 is a special case of the following prob-
lem: Given real matrix A and vector b, find x such that Ax =
b minimizing the number of non-zero xi’s. That problem is not

only NP-hard, but is not approximable within 2log1−δ n for any
δ > 0 (in polynomial time, assuming NP is not contained in quasi-
polynomial time) [2, 3]. For the special case studied here we give a
fast and exact algorithm. We first describe the algorithm intuitively,
and then present it formally.

The algorithm makes two passes over the tree: the first bottom-
up and the second top-down. In the first pass the algorithm com-
putes a tentative set of “best” incoming partial sums for each node,
using dynamic programming. We prove that the best partial sums
for a node are those that allow the node to incur no cost for its
own weight and, simultaneously, to provide best partial sums for
the maximum number of children. This set of best partial sums for
a node is a union of closed intervals, at most one for each leaf.

In the second pass the algorithm works down from the root to
assign weights. Each node chooses its own weight so as to benefit
the maximum number of its children. If the incoming partial sum
for a node is one of the best for the node, it can do this without
incurring a cost at the node. Otherwise, the node incurs a cost
of 1 for its own weight, which it chooses to benefit the maximum
number of its children. We illustrate this process in Fig. 3 for the
case ε = 1.

Note that instead of taking k > 0, one may add k|P(�)| to each
ε(�), then take k = 0. This expands the set of feasible weightings.

We present the algorithm for the general case k > 0 for compati-
bility with [21], which we shall compare against in Section 5.

DEFINITION 4.1. For any subtree T ′ and real value x, define
cost(x, T ′) to be the minimum cost of any feasible labeling of T ′,
given that the partial sum coming into the root of T ′ from above
is x. (Formally, this is the minimum cost of any feasible labeling
of the tree T ′ in isolation, where each leaf change m(�) has been
decreased by x.)

Define bestcost(T ′) = minx cost(x, T ′) and bestsums(T ′) =
{x : cost(x, T ′) = bestcost(T ′)}.

We start with the observation that a bad incoming partial sum
increases the cost of T ′ by only 1.

Let [x �∈ S] denote 0 if x ∈ S and 1 otherwise.

LEMMA 4.2. For any subtree T ′ and real x, cost(x, T ′) =
bestcost(T ′) + [x �∈ bestsums(T ′)]

PROOF. Since the costs are integers, it’s enough to prove that
cost(x, T ′) ≤ bestcost(T ′) + [x �∈ bestsums(T ′)].

Let x′ be a partial sum achieving bestcost(T ′), and let w be a
corresponding min-cost weighting of T ′ for partial sum x′. Adding
x′ −x to the weight of the root of T ′ gives a feasible weighting for
T ′ with partial sum x, and increases the cost of w by at most 1.

Next we prove a recurrence which will be the basis for the algo-
rithm. Let A ⊕ B denote {a + b : a ∈ A, b ∈ B}.

THEOREM 4.3. Let T ′ be any subtree with immediate subtrees
T ′

1, T
′
2, . . . , T

′
c. Then bestsums(T ′) equals

[−k, k] ⊕ ˘
z : z minimizes |{i : z �∈ bestsums(T ′

i)}|
¯
.

PROOF. Let kiddiff(z, T ′) denote |{i : z �∈ bestsums(T ′
i)}|.

Let bestkiddiff(T ′) denote minz kiddiff(z, T ′). Fix x and T ′. By
definition, cost(x, T ′) equals

min
y

[y �∈ [−k, k]] +
X

i

cost(x + y, T ′
i)

(y is the weight given to the root of T ′). By lemma 4.2, this is
` X

i

bestcost(T ′
i)

´
+ min

y
[y �∈ [−k, k]] + kiddiff(x + y, T ′).

The term on the left is independent of x, while the miny . . . term on
the right will equal bestkiddiff(T ′) for some x (e.g. when y = 0
and x minimizes kiddiff(x, T ′)).

Thus, x ∈ bestsums(T ′) (that is, x minimizes cost(x, T ′)) iff

∃y ∈ [−k, k] : kiddiff(x + y, T ′) = bestkiddiff(T ′).

Taking z = x + y, this condition is equivalent to

x ∈ [−k, k] ⊕ {z : kiddiff(z, T ′) = bestkiddiff(T ′)}.

10

Research Track Paper

Theorem (4.3) gives a recurrence relation for bestsums(). Us-
ing this recurrence, computeDS(T, d) (Algorithm 1) uses dynamic
programming to compute, for all subtrees T ′, bestsums(T ′) and
kidopt(T ′) =

˘
z : z minimizes |{i :x �∈ bestsums(T ′

i)}|
¯

.

Algorithm 1 computeDS(subtree T ′, leaf values m)

1: If T ′ is a leaf (a single node �):
2: let kidopt(T ′) ← {m(�)} ⊕ [−ε(�), ε(�)]
3: else:
4: for each subtree T ′

i of T ′: computeDS(T ′
i , m)

5: kidopt(T ′) ← {z minimizing |{i : x �∈ bestsums(T ′
i)}|}

6: bestsums(T ′) ← kidopt(T ′) ⊕ [−k, k]

The algorithm first calls computeDS(T, m) to compute kidopt(T ′)
and bestsums(T ′) for all subtrees T ′. It then weights T by calling
weightTree(0, T) (Algorithm 2).

Algorithm 2 weightTree(partial sum x, subtree T ′)

1: if x ∈ bestsums(T ′):
2: pick y ∈ [−k, k] s.t. x + y ∈ kidopt(T ′)
3: else: let y ← x′ − x for any x′ ∈ kidopt(T ′)
4: give the root of T ′ weight y
5: for each subtree T ′

i of T ′: weightTree(x + y, T ′
i)

LEMMA 4.4. weightTree(x, T ′) finds a feasible weighting of
T ′ (assuming incoming partial sum x) of optimal cost cost(x, T ′).

PROOF. From Theorem 4.3, computeDS correctly computes kidopt
and bestsums. Theorem 4.3 assures that y exists in the second
line of weightTree(). A standard proof by induction shows that
the weighting is feasible. To finish we consider the cost. By in-
spection weightTree(x, T ′) chooses a root weight y so x + y ∈
kidopt(T ′). Thus (assuming by induction that the subtrees are
weighted optimally), the total weight for nodes in the subtrees {T ′

i}
is bestcost(T ′). In addition, at the root we pay [y �∈ [−k, k]]. By
inspection of weightTree(), this equals [x �∈ bestsums(T ′)]. Thus,
the total cost of our weighting is bestcost(T ′)+[x �∈ bestsums(T ′)].
By Lemma 4.2, this is best possible.

LEMMA 4.5. The running time of the algorithm is O(hN log N),
where h is the height of the tree and N is the number of leaves.

PROOF. (Sketch) The running time of the algorithm is domi-
nated by the time it takes to compute the optimal shift for each
node. We note that the total size of the optimal shifts for a node is
bounded by the number of leaves in the subtree rooted at that node.
Computing the optimal shifts of a parent node from the labeling of
its children nodes requires sorting and merging of the children node
labels.

For any tree, assume that at depth d there are c(d) nodes. A node
vi at depth d will have lv(vi) leaves in its subtree, but

Pc(d)
1 lv(vi) =

N where N is the number of leaves. This bounds the size of the
labeling at that node. The cost of sorting and merging M nodes is
M log M . So the total processing time at level d is given by

c(d)X

1

lv(vi) log lv(vi) ≤ N log N

Hence, total time of processing over the entire tree is

hX

d=0

N log N = O(hN log N)

5. EVALUATION
In this section, we investigate both the effectiveness and the effi-

ciency of the proposed algorithms and the outputs they generate us-
ing real data. We evaluate the effectiveness of our proposed change
detection model according to its ability to capture interesting hier-
archical changes as well as the robustness and stability of the output
under small perturbations of error tolerance.

5.1 Experimental Setup
We define stability to measure the sensitivity of the set of expla-

nation weights as a function of confidence level c. Let Sc
l be the set

of nodes at level l where “explanations” occur. Then the stability
of the output at level l, given a change in tolerance parameter from

c −Δc to c, is given by Sc =
|Sc−Δc

l
∩Sc

l |
|Sc

l
| , where c −Δc refers to

the previous value of c.
We used the following two real data sets: Census, which gives

population counts for a geographical hierarchy given by state/county/
city/zip_code [5]; and WorldCup, which is a Web log over a dura-
tion of several months of URL accesses to files having a maximum
path length of 7 [25]. Note that the hierarchy induced by the URL
file paths are not homogeneous, that is, the nodes have different
fanouts and the paths have different depths. The Census data has
approximately 81,000 leaf nodes and 130,000 total nodes in the
tree. The maximum height of the tree is 5 (including the root which
stands for the whole country). The World Cup datasets have about
4300 leaf nodes and around 4500 total number of nodes. In the
non-homogeneous World Cup datasets, the maximum height of the
tree is 8 including the root.

All experiments were run on a Pentium(R) machine with 4 CPU
and clock speed 2.66GHz.

5.2 Forecasting Model
We provide a description of the models that were used in our ex-

perimental evaluation on real data. We do not claim any novelty
here and use the popular exponentially weighted moving average
(EWMA) for both our datasets. In our analysis, we assume a Gaus-
sian distribution for the node values. Although this may not be a
reasonable assumption for count data on the original scale, it is of-
ten a good approximation on a transformed scale (log and squared-
root are widely used for count data). For our example datasets, we
consider an exponentially weighted moving average (EWMA) to
model the transformed leaf counts. We use a single smoothing pa-
rameter for all our leaf nodes, the value being selected to minimize
the average predictive squared-error loss on a tuning set across all
nodes. We assume there is no seasonality in our time series. This
is the case for both the data sets analyzed in this paper. Consider a
single leaf node and let x̂t denote predicted value at time t based
on data until time t − 1.

For EWMA, x̂t = mt−1; and

m̂t = λxt + (1 − λ)mt−1; (4)

where λ ∈ (0, 1) is a smoothing constant with higher values giving
less weight to historical observations. Equation 4 can be shown to
be a steady state model obtained form a simple random walk model
given by

xt = mt + εt (5)

mt = mt−1 + γt (6)

where xt is observed value at time t, mt may be thought of as
the truth, εt and γt are uncorrelated random variables with zero
means and variances V (ε) and V (γ) [19]. At steady state, the

11

Research Track Paper

EWMA EWMA with Cluster Harmonic Mean of Variances
node weight node weight
Illinois/Lake/LibertyVille/27923 1.10083 Illinois/Lake/66027/27923 1.06641
Texas/Parker/FortWorth 1.00523 Texas/Parker/FortWorth 1.00523
Illinois/St. Clair/47423/69550 0.870329 Illinois/Kankakee/Bourbonnais/46513 0.815077
Minnesota/Le Seur/0/Mankato City/ 0.868159 Texas/Hays/Austin 0.654658
Texas/Hays/Austin 0.654658 Illinois/Lake/LibertyVille/27923 0.564962

Table 1: Top 5 explanation nodes in the Census data sets in the descending order of relative error using the prediction model for 95%
confidence values

EWMA EWMA with Har. Mean of Cluster Var.
node weight node weight
/images/jersey_arg_res.gif 41.0524 /english/playing/download/download_memo.html 42.9246
/images/jersey_arg_off.gif 35.8748 /images/f98dnld_memo_sc2.gif 40.2364
/images/jersey_nor_off.gif 32.2865 /images/f98dnld_memo_sc3.gif 39.7132
/images/jersey_nor_res.gif 32.2618 /images/f98dnld_memo_sc1.gif 39.3961
/images/11189.jpg 10.0186 /images/f98dnld_memo_sc5.gif 38.8777

Table 2: Top 5 explanation nodes in the World cup datasets in the descending order of relative error using the prediction model for
95% confidence values

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5

F
ra

ct
io

n
of

 e
xp

la
na

tio
ns

level

ewma95%
ewma99%

ewma,clHM95%
ewma,clHM99%
ewma,glHM95%
ewma,glHM99%

(a) Below, Census Data

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7

F
ra

ct
io

n
of

 e
xp

la
na

tio
ns

level

ewma95%
ewma99%

ewma,clHM95%
ewma,clHM99%
ewma,glHM95%
ewma,glHM99%

(b) Below, World Cup Data

Figure 4: The fraction of explanation nodes at level l which have ancestors and descendants in the explanation, for Census and World
Cup data. clHM refers to Harmonic Mean of Cluster Variances; glHM refers to Harmonic Mean of Global Variances; subscripts
denote the confidence values.

optimal prediction obtained through Equation 5 reduces to Equa-
tion 4 with an optimal value of λ given by (

p
(1 + 4R) − 1)/2R;

R = V (ε)/V (γ) and the predictive variance at time t based on
data up to time t − 1 is given as V = V (ε)/(1 − λ). Thus, es-
timators which give more weight to historical data achieve more
smoothing and have lower predictive variance.

In our scenario, we are dealing with N > 1 time series cor-
responding to the leaf nodes giving rise to pairs (λi, Vi(ε)) to be
estimated. For simplicity, we assume λi = λ for all i and estimate
the optimal value by minimizing squared-error predictive loss on
a tuning set (see [24] for an example of such an estimator). For
Vi(ε), we test the following variations: a) separate parameter for
each series; b) one parameter for a set of sibling leaf nodes (nodes
sharing same parent); c) one parameter for all the time series. We
select the best model as the one that minimizes average predictive
log-likelihood on the tuning set; this captures both the mean and
variance properties of the predictive distribution.

We analyzed two datasets: Census and WorldCup. The Census
data have yearly population numbers from 2000 − 2004. We used

2000 − 2003 as our training period and 2004 as our test period
on which we detect anomalies. We have approximately 81K leaf
nodes on the test period. Since all number are positive (a count
of 0 is interpreted as missing data), we modeled the data using a
EWMA of 4 time points on the log scale. days on the log scale.

We considered daily counts for the World Cup data and used 32
time points.The 31st time point is used as a tuning set to select the
smoothing parameter λ and the variances. The last time point is
used as our test set. The optimal value of λ in this case was 0.8 and
the model with separate variances for each node also turned out to
be the best one for this data. Unlike the Census data, the World
Cup hierarchy is not homogeneous, i.e., the nodes have different
fanouts and paths have different depths. Also, the structure of the
tree is dynamic with new nodes appearing and some old nodes be-
coming inactive over time. We restrict ourselves only to nodes that
occurred at least twice in the last 10 time points. This removes
nodes that have a small mean and are not of interest, providing a
set of approximately 5.5K leaf nodes to be monitored. Since zero
counts are common in these time series, a log transform to achieve

12

Research Track Paper

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 95 95.5 96 96.5 97 97.5 98 98.5 99 99.5

E

xp
la

na
tio

ns

Confidence Level

non-hierarchical, ewma
non-hierarchical,ewma (cluster harmonic mean)
non-hierarchical, ewma (global harmonic mean)

parsimonious, ewma
parsimonious, ewma (cluster harmonic mean)
parsimonious, ewma (global harmonic mean)

(a) Census Data, Parsimony

 0

 0.2

 0.4

 0.6

 0.8

 1

 95 95.5 96 96.5 97 97.5 98 98.5 99 99.5

S
ta

bi
lit

y

Confidence Level

parsimonious, EWMA
parsimonious, EWMA, Cluster Harmonic Mean
parsimonious, EWMA, Global Harmonic Mean

(b) Census Data, Stability

Figure 5: (a) Number of explanations; and (b) Stability as function of confidence value for non-hierarchical and parsimonious
algorithm on Census data

 100

 1000

 10000

 100000

 1 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08

 #
 E

xp
la

na
tio

ns

k

Parsimonious, 2003-2004
DIFF, 2003-2004

(a) Census Data

2000

2500

3000

3500

4000

4500

5000

5500

 1 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08

 #
 E

xp
la

na
tio

ns

k

Parsimonious, May 26-27
DIFF, May 26-27

(b) World Cup Data

Figure 6: Comparison with related work DIFF operator in terms of number of explanations on (a) Census data (b) World Cup data.
k is per-node tolerance and is in linear-scale (not log).

symmetry is not an option here. Instead, we use a squared-root
transformation which, for count data, is known to stabilize vari-
ance, achieve approximate symmetry and makes the assumption of
a Gaussian distribution reasonable.

5.3 Goodness of Explanation Model
For illustrative purposes, we present the top 5 nodes in result-

ing explanations based on absolute magnitude (difference of the
weights from 0). Table 1 shows the 5 nodes in the Census datasets
which are explanations and whose absolute relative error is among
the Top 5. We show the lists for two different prediction mod-
els: a superior EWMA model, with a separate variance component
for each leaf and an inferior EWMA model with a separate but
fixed variance for each leaf in a cluster (nodes under same parent)
which is set to the harmonic mean of the individual leaf variances in
the cluster. Note that some nodes are common explanation nodes
under both the models such as Illinois/Lake/Libertyville/27923,
Texas/Parker/ForthWorth and Taxas/Hays/Austin. Similar exam-
ples are shown for World Cup datasets in Table 2.

Figure 4 considers hierarchical relationships among the explana-
tion nodes. If many nodes in the explanation set have descendant
nodes that are also part of the explanation, then this indicates the

importance of hierarchical explanations, as descendant nodes are
needed to explain trends that are different from the ancestors in the
explanation; these could be stronger trends or counter-trends com-
pared to the ancestor node. Thus, for each node in the explanation
set, we counted how many descendants below it are also part of the
explanation. Let V (l) be the number of explanation nodes at level
l and V (l)B be the number of explanations nodes at level l which
have at least one explanation node as descendant. Then we compute
V (l)B/V (l). In these plots, level 0 indicates the root. We observe
that significant number of counties (> 25%) have cities which have
different trends in population under all prediction models.

5.4 Parsimony
In Figure 5 we compare the parsimonious explanations against

those obtained by the naive non-hierarchical approach. We use
three different prediction models in which the mean of prediction
is given by the EWMA model but the variances V (ε) are different
– EWMA with a separate variance per leaf, same variance for each
element in a cluster, set to the harmonic mean of cluster variances
(leaves belonging to same parent), single variance for each leaf, set
to the harmonic mean of the global variances. Note that the lat-
ter two estimates underestimate variability for a large fraction of

13

Research Track Paper

 0

 200

 400

 600

 800

 1000

 1200

 1400

 95 95.5 96 96.5 97 97.5 98 98.5 99 99.5

E

xp
la

na
tio

ns

Confidence Level

non-hierarchical, ewma
non-hierarchical, emwa (cluster harmonic mean)
non-hierarchical, ewma (global harmonic mean)

parsimonious, ewma
parsimonious, ewma (cluster harmonic mean)
parsimonious, ewma (global harmonic mean)

(a) World Cup, Parsimony

 0

 0.2

 0.4

 0.6

 0.8

 1

 95 95.5 96 96.5 97 97.5 98 98.5 99 99.5

S
ta

bi
lit

y

Confidence Level

parsimonious, EWMA
parsimonious, EWMA, Cluster Harmonic Mean
parsimonious, EWMA, Global Harmonic Mean

(b) World Cup, Stability

Figure 7: (a) Number of explanations; and (b) Stability as function of confidence for non-hierarchical and parsimonious algorithms
World Cup data.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 70000 50000 30000 10000 0

R
un

ni
ng

 T
im

e
(s

ec
)

Number of Leaves

parsimonious, ewma, 95%
parsimonious, ewma (cluster HM),95%
parsimonious, ewma (global HM), 95%

parsimonious, ewma,97.5%
parsimonious, ewma (cluster HM), 97.5%
parsimonious, ewma (global HM), 97.5%

(a) Time vs. N

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 2.1

 95 95.5 96 96.5 97 97.5 98 98.5 99 99.5

R
un

ni
ng

 T
im

e
(s

ec
)

Confidence Level

parsimonious, ewma
parsimonious, ewma (cluster harmonic mean)
parsimonious, ewma (global harmonic mean)

(b) Time vs. Confidence

 0

 1

 2

 3

 4

 5

 6

 7

US State
County

City
Zip

A
ve

ra
ge

 #
In

te
rv

al
s

pe
r

Le
ve

l

ewma
ewma,cluster harmonic mean
ewma,global harmonic mean

(c) Avg. # intervals per level

Figure 8: Running time (in sec) of parsimonious algorithm as a function of (a) number of leaves, N and (b) confidence levels on
Census data. (c) shows the average number of intervals per level on Census data.

nodes; we choose them to study the effect of inferior prediction
model on our algorithms.

As the confidence level increases, the precision decreases and
therefore, all the curves show decreasing trends monotonically. In
Figure 5(a) we observe that the parsimonious model with EWMA
offers the best parsimony with the smallest number of explanations,
followed by non-hierarchical on EWMA model, thus showing the
advantage of parsimonious algorithm. As expected, the perfor-
mance of EWMA model with global harmonic mean of the vari-
ances perform worst in terms of parsimony.

We show the parsimony of our algorithm by comparing with the
DIFF operator [21]. Since the technique in [21] puts constraints on
the intermediate nodes, we have to modify our algorithm so that we
have a tolerance parameter k in each node, and we use this model
in this comparison shown in Figure 6. We compare two different
snapshots - year 2003 and 2004 from Census data; and May 26 and
27 from World Cup data. It is to be noted that x-axis in Figure 6 is
per-node tolerance, k > 0 and it is not in log-scale.

The improvement in the number of explanations when using our
model is significant, up to two orders of magnitude. The improve-
ment is more evident in the Census data, which exhibit hierarchical
trends, compared to the World Cup data.

Figure 5 (b) show the average stability across all levels for both
non-hierarchical and parsimonious algorithms. We observe that
with increase in confidence level, the stability decreases since the
set of nodes which are explanations changes. Since Census data is
homogeneous with 4 levels, we observe almost monotonic change

in stability with increase in confidence level except for the parsi-
monious algorithm with the best EWMA model at confidence level
97. Similarly, we observe parsimony and stability on World Cup
datasets in Figure 7.

5.5 Efficiency
In Figures 8 (a)-(b), we show the runtime of the parsimonious

model on Census data (minimum time over 5 runs) as function of
the number of leaves, N and confidence level respectively (using
all three models). First, the increase in running time with N follows
O(hN log(N)) growth. Second, we observe that all the algorithms
show a decreasing trends (prominently in Census data) in running
time with increase in confidence level (increasing error) leading
to a small number of intervals in the non-leaf nodes. Third, we
observe that the parsimonious algorithm with EWMA model has
least running time complexity. That means, variances in individual
leaves can summarize changes well whereas the algorithm which
uses harmonic mean of variances cannot summarize the changes
that well and thus leads to many explanations (and intervals) up in
the trees. To vary the number of leaves, we sample each leaf with
some probability to be included in the tree. We also show it for two
different values of confidence levels.

In Figure 8(c), we show the space complexity of the 3 parsimo-
nious algorithms on Census (similar trend on World Cup data but
better), averaged over all nodes per level. We observe that the aver-
age number of intervals per node is very close to 1 except for par-
simonious algorithm using EWMA model with same variance per

14

Research Track Paper

leaf node (estimated by the Harmonic Mean of the individual leaf
Variances). Furthermore, we observe that the same parsimonious
algorithm has higher running time and larger number of average
intervals at different levels.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we proposed a natural model for explaining changes

in hierarchical data and formulated two problem variants for find-
ing a parsimonious explanation in this model. Our model makes ef-
fective use of the hierarchy and describes changes at the leaf nodes
as a composition of node weights along each path of each root-to-
leaf path in the hierarchy. We designed algorithms to minimize the
explanation size for both problem variants. Despite the fact that
assigning node weights optimally is an under-constrained problem,
we have shown that it is not NP-hard and that our algorithms re-
quire time proportional to the product of the number of leaves and
the depth of the dimension hierarchy.

We evaluated our approach on real data to demonstrate both its
efficiency and effectiveness. In practice, the performance and space
usage of our algorithms are much less than the worst-case bounds.
On population census data, the explanations discovered (counter)
trends, mainly at the city-level. We made similar observations
when we analyzed HTTP traffic logs from the FIFA World Cup
hosting site. Our approach can also be used to reveal “interesting”
anomalies in hierarchical data when used in conjunction with a sta-
tistically sound predictive model that forecasts values within con-
fidence intervals. These anomalies were explained more parsimo-
niously using our algorithm compared to the leaf-level anomalies
that the predictive model detects.

We are currently extending our approach to multiple dimensions,
which presents several non-trivial challenges due to the existence
of multiple parents in the hierarchy. Another natural extension we
have considered for future work is where there is a global budget on
error tolerance for the entire tree. Although we have found a poly-
nomial solution, its complexity appears to be significantly higher
than the problems studied in this paper, and its feasibility on mas-
sive data sets remains to be shown.

Acknowlegments
We thank the anonymous reviewers for excellent comments on

the paper. The work of the third author is supported by NSF awards
0330481 and 0534781.

7. REFERENCES
[1] On change diagnosis in evolving data streams. IEEE TKDE,

17(5):587–600, 2005. Charu C. Aggarwal.
[2] E. Amaldi and V. Kann. On the Approximability of

Minimizing Nonzero Variables or Unsatisfied Relations in
Linear Systems. TCS, 209(1-2):237–260, 1998.

[3] Sanjeev Arora, László; Babai, Jacques Stern, and
Z. Sweedyk. The hardness of approximate optima in lattices,
codes, and systems of linear equations. J. Comput. Syst. Sci.,
54(2):317–331, 1997.

[4] Dhiman Barman, Flip Korn, Divesh Srivastava, Dimitris
Gunopulos, Neal E. Young, and Deepak Agarwal.
Parsimonious Explanations of Change in Hierarchical Data.
In Proc. of ICDE 2007.

[5] Census (population vs. location), 2000-2004. http:
//www.census.gov/popest/datasets.htm.

[6] Surajit Chaudhuri and Umeshwar Dayal. An overview of
data warehousing and olap technology. SIGMOD Record,
26(1):65–74, 1997.

[7] Graham Cormode, Flip Korn, S. Muthukrishnan, and Divesh
Srivastava. Finding Hierarchical Heavy Hitters in Data
Streams. In Proc. of VLDB, pages 464–475, 2003.

[8] Graham Cormode and S. Muthukrishnan. What’s new:
Finding significant differences in network data streams. In
Proc. of IEEE INFOCOM, pages 1534–1545, 2004.

[9] Cristian Estan, Stefan Savage, and George Varghese.
Automatically inferring patterns of resource consumption in
network traffic. In ACM SIGCOMM, pages 137–148, 2003.

[10] Min Fang, Narayanan Shivakumar, Hector Garcia-Molina,
Rajeev Motwani, and Jeffrey D. Ullman. Computing iceberg
queries efficiently. In Proc. of VLDB, pages 299–310, NY,
NY, August 24-27 1998.

[11] Sudipto Guha. Space Efficiency in Synopsis Construction
Algorithms. In Proc. of VLDB, pages 409–420, 2005.

[12] Sudipto Guha and Boulos Harb. Approximation algorithms
for wavelet transform coding of data streams. In Proc. of
SODA, pages 273–279, 2006.

[13] Panagiotis Karras and Nikos Mamoulis. The Haar+ Tree: a
Refined Synopsis Data Structure. In Proc. of the IEEE 23rd
ICDE, April 2007.

[14] Daniel Kifer, Shai Ben-David, and Johannes Gehrke.
Detecting changes in data streams. In Proc. of VLDB, 2004.

[15] Jon Kleinberg. Bursty and hierarchical structure in streams.
In Proc. of the 8th ACM SIGKDD, 2002.

[16] Laks V. S. Lakshmanan, Raymond T. Ng, Christine Xing
Wang, Xiaodong Zhou, and Theodore Johnson. The
generalized mdl approach for summarization. In VLDB,
pages 766–777, 2002.

[17] Yossi Matias, J.S. Vitter, and M. Wang. Wavelet-Based
Histograms for Selectivity Estimation. In Proc. of ACM
SIGMOD’98, 1998.

[18] S. Muthukrishnan. Subquadratic algorithms for
workload-aware Haar wavelet synopses. In Proc. of FSTTCS,
2005.

[19] P.J.Harrison. Exponential smoothing and short-term sales
forecasting. Management Science, 13(11):821–842, 1967.

[20] Frederick Reiss, Minos Garafalakis, and Joseph Hellerstein.
Compact Histograms for Hierarchical Identifiers. In Proc. of
VLDB, 2006.

[21] Sunita Sarawagi. Explaining differences in multidimensional
aggregates. In The VLDB Journal, pages 42–53, 1999.

[22] Sunita Sarawagi, Rakesh Agrawal, and Nimrod Megiddo.
Discovery-driven exploration of olap data cubes. In Proc. of
EDBT, pages 168–182, March 1998.

[23] Sudarshan S.Chawathe. Differencing data streams. In Proc.
of the Database Engineering and Applications Symposium
(IDEAS), Montreal,Canada, July 2005.

[24] S.Hill, D.Agarwal, R.Bell, and C.Volinsky. Building an
effective representation for dynamic graphs. Journal of
Computational and Graphical Statistics, 15:584–608, 2006.

[25] WorldCup 1998. http://ita.ee.lbl.gov/html/
contrib/WorldCup.html.

[26] Yin Zhang, Sumeet Singh, Subhabrata Sen, Nick Duffield,
and Carsten Lund. Online identification of hierarchical heavy
hitters: Algorithms, evaluation and applications. In Proc. of
ACM IMC’04, October 2004.

[27] Yunyue Zhu and Dennis Shasha. Efficient elastic burst
detection in data streams. In Proc. of ACM SIGKDD’03,
pages 336–345, New York, NY, 2003.

15

Research Track Paper

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

