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What would the world be like if...

SAT is hard in the worst case, BUT...

generating hard random instances of SAT is hard? – Lipton, 1993



worst-case versus average-case complexity

1. worst-case complexity

You choose an algorithm.
Adversary chooses input maximizing algorithm’s cost.

2. worst-case expected complexity of randomized algorithm

You choose a randomized algorithm.
Adversary chooses input maximizing expected cost.

3. average-case complexity against hard input distribution

Adversary chooses a hard input distribution.
You choose algorithm to minimize expected cost on random input.



There are hard-to-compute hard input distributions.

For algorithms, the Universal Distribution is hard:
1. worst-case complexity of deterministic algorithms

≈ 2. worst-case expected complexity of randomized algorithms
≈ 3. average-case complexity under Universal Distribution

– Li/Vitányi, FOCS (1989)

For circuits (non-uniform), there exist hard distributions:
1. worst-case complexity for deterministic circuits

≈ 2. worst-case expected complexity for randomized circuits
– Adleman, FOCS (1978)

≈ 3. average-case complexity under hard input distribution
– “Yao’s principle”. Yao, FOCS (1977)

NP-complete problems are (worst-case) hard for circuits.†

†Unless the polynomial hierarchy collapses. – Karp/Lipton, STOC (1980)



What would the world be like if...

SAT is hard in the worst case, BUT...

generating hard random instances of SAT is hard? – Lipton, 1993

Q: Is it hard to generate hard random inputs?



There are hard-to-compute hard input distributions.

For algorithms, the Universal Distribution is hard:
1. worst-case complexity of deterministic algorithms

≈ 2. worst-case expected complexity of randomized algorithms
≈ 3. average-case complexity under Universal Distribution
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the zero-sum game underlying Yao’s principle
max plays from

2n inputs of size n:
x1 x2 · · · xj · · · xN

min
plays from

2nc

circuits
of size nc :

C1

C2

...
Ci

...
CM

payoff for play Ci , xj is
1 if circuit Ci

errs on input xj ;

0 otherwise

mixed strategy for min ≡ a randomized circuit;
mixed strategy for max ≡ a distribution on inputs

worst-case expected complexity of optimal random circuit
= value of game
= average-case complexity of best circuit against hardest distribution



Max can play near-optimally from poly-size set of inputs.
max plays

uniformly† from just O(nc)
of the 2n inputs of size n:

x1 x2 x3 x4 · · · xj xj+1 · · ·

min
plays from

2nc

circuits
of size nc :

C1

C2
...

Ci

...
CM

payoff for play Ci , xj is
1 if circuit Ci

errs on input xj ;

0 otherwise

thm: Max has near-optimal distribution with support size O(nc).
corollary: A poly-size circuit can generate hard random inputs.

– Lipton/Y, STOC (1994)

proof: Probabilistic existence proof, similar to Adleman’s for min (1978).

Similar results for non-zero-sum Nash Eq. – Lipton/Markakis/Mehta (2003)



Q: Is it hard to generate hard random inputs?

A: Poly-size circuits can do it (with coin flips)...

Specifically, a circuit of size O(nc+1) can generate random inputs
that are hard for all circuits of size O(nc).



PART II

APPROXIMATION
ALGORITHMS



Near-optimal distribution, proof of existence

lemma: Let M be any [0, 1] zero-sum matrix game.
Then each player has an ε-optimal mixed strategy x̂ that plays
uniformly from a multiset S of O(log(N)/ε2) pure strategies.
N is the number of opponent’s pure strategies.

proof: Let p∗ be an optimal mixed strategy.

Randomly sample O(log(N)/ε2) times from p∗ (with replacement).

Let S contain the samples. Let mixed strategy x̂ play uniformly from S .

For any pure strategy j of the opponent, by a Chernoff bound,

Pr[ Mj x̂ ≥ Mjx
∗ + ε ] < 1/N.

This, Mjx
∗ ≤ value(M), and the naive union bound imply the lemma.



What does the method of conditional probabilities give?
A rounding algorithm that does not depend on the fractional opt x∗:

input: matrix M, ε > 0
output: mixed strategy x̂ and multiset S

1. x̂ ← 0. S ← ∅
2. Repeat O(log(N)/ε2) times:

2. Choose i minimizing
∑

j(1 + ε)Mj x̂ .

3. Add i to S and increment x̂i .

4. Let x̂ ← x̂/
∑

i x̂i .

5. Return x̂ .

lemma: Let M be any [0, 1] zero-sum matrix game.
The algorithm computes an ε-optimal mixed strategy x̂ that plays
uniformly from a multiset S of O(log(N)/ε2) pure strategies.
(N is the number of opponent’s pure strategies.)



the sample-and-increment rounding scheme
— for packing and covering linear programs

input: fractional solution x∗ ∈ IRn
+

output: integer solution x̂

1. Let probability distribution p
.

= x∗/
∑

j x∗j .

2. Let x̂ ← 0.

3. Repeat until no x̂j can be incremented:

4. Sample index j randomly from p.

5. Increment x̂j , unless doing so would either
(a) cause x̂ to violate a constraint of the linear program,
(b) or not reduce the slack of any unsatisfied constraint.

6. Return x̂ .

ˆ
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x
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applying the method of conditional probabilities gives
gradient-descent algorithms with penalty functions from conditional expectations

greedy algorithms (primal-dual), e.g.:
H∆-approximation ratio for set cover and variants

– Lovasz, Johnson, Chvatal, etc. (1970)

2-approximation for vertex cover (via dual)
– Bar Yehuda/Even, Hochbaum (1981-2)

Improved approx. for non-metric facility location – Y (2000)

multiplicative-weights algorithms (primal-dual), e.g.:
(1 + ε)-approx. for integer/fractional packing/covering variants

(e.g. multi-commodity flow, fractional set cover, frac. Steiner forest,...)

– LMSPTT, PST, GK, GK, F, etc. (1985-now)

A very interesting class of algorithms...

randomized-rounding algorithms, e.g.:
Improved approximation for non-metric k-medians

– Y, ACMY (2000,2004)



a fast packing/covering alg. (shameless self-promotion)

Inputs: non-negative matrix A; vectors b, c ; ε > 0

fractional covering: minimize c · x : Ax ≥ b; x ≥ 0

fractional packing: maximize c · x : Ax ≤ b; x ≥ 0

theorem: For fractional packing/covering, (1± ε)-approximate
solutions can be found in time

O
(

#non-zeros +
(#rows + #cols) log n

ε2

)
.

“Beating simplex for fractional packing and covering linear programs”,
– Koufogiannakis/Young FOCS (2007)



Thank you.



a fractional set cover x∗

edcba

c,eb,d,ea,c,da,b,c

.3.7.7.3

11.41.311

sets

elements



sample and increment for set cover

sample and increment:

1. Let x∗ ∈ IRn
+ be a fractional solution.

2. Let |x∗| denote
∑

s x∗s .

3. Define distribution p by ps
.

= x∗s /|x∗|.
4. Repeat until all elements are covered:

5. Sample random set s according to p.
6. Add s if it contains not-yet-covered elements.

7. Return the added sets.

I For any element e, with each sample,
Pr[e is covered] =

∑
s3e x∗s /|x∗| ≥ 1/|x∗|.

ˆ
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existence proof for set cover

theorem: With positive probability,
after T = dln(n)|x∗|e samples,
the added sets form a cover.

proof: For any element e:

I With each sample,
Pr[e is covered] =

∑
s3e x∗s /|x∗| ≥ 1/|x∗|.

I After T samples,
Pr[e is not covered] ≤ (1− 1/|x∗|)T < 1/n.

So, expected number of uncovered elements is less than 1.

corollary: There exists a set cover of size at most dln(n)|x∗|e.

ˆ
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method of conditional probabilities

algorithm:

1. Let x∗ ≥ 0 be a fractional solution.

2. Repeat until all elements are covered:
3. Add a set s, where s is chosen to keep conditional

E[# of elements not covered after T rounds] < 1.

4. Return the added sets.

Given first t samples, expected number of elements not covered
after T − t more rounds is at most

Φt
.

=
∑

e not yet

covered

(1− 1/|x∗|)T−t .

ˆ

1
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x

t = 0
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algorithm
the greedy set-cover algorithm

algorithm:

1. Repeat until all elements are covered:
2. Choose a set s to minimize Φt .

≡ Choose s to cover the most not-yet-covered elements.

3. Return the chosen sets.

(No fractional solution needed!)

corollary: The greedy algorithm returns a cover
of size at most dln(n) minx∗ |x∗|e. – Johnson, Lovasz,... (1974)

also gives H(maxs |s|)-approximation for weighted-set-cover
– Chvatal (1979)

ˆ
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Thank you.
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