Oblivious randomized rounding

Neal E. Young

April 28, 2008

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

What would the world be like if...

SAT is hard in the worst case, BUT ...

generating hard random instances of SAT is hard? - Lipton, 1993

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

worst-case versus average-case complexity

1. worst-case complexity

You choose an algorithm. Adversary chooses input maximizing algorithm's cost.

2. worst-case expected complexity of randomized algorithm

You choose a randomized algorithm. Adversary chooses input maximizing expected cost.

3. average-case complexity against hard input distribution

Adversary chooses a hard input distribution. You choose algorithm to minimize expected cost on random input.

There are hard-to-compute hard input distributions.

For algorithms, the Universal Distribution is hard:

- 1. worst-case complexity of deterministic algorithms
- pprox 2. worst-case expected complexity of randomized algorithms
- pprox 3. average-case complexity under Universal Distribution

– Li/Vitányi, FOCS (1989)

For circuits (non-uniform), there *exist* hard distributions:

- 1. worst-case complexity for deterministic circuits
- \approx 2. worst-case expected complexity for randomized circuits

- Adleman, FOCS (1978)

 \approx 3. average-case complexity under hard input distribution - "Yao's principle". Yao, FOCS (1977)

NP-complete problems are (worst-case) hard for circuits.[†] †*Unless the polynomial hierarchy collapses.* – Karp/Lipton, *STOC* (1980) What would the world be like if ...

SAT is hard in the worst case, BUT...

generating hard random instances of SAT is hard? - Lipton, 1993

Q: Is it hard to generate hard random inputs?

There are hard-to-compute hard input distributions.

For algorithms, the Universal Distribution is hard:

- 1. worst-case complexity of deterministic algorithms
- $pprox\,$ 2. worst-case expected complexity of randomized algorithms
- pprox 3. average-case complexity under Universal Distribution

- Li/Vitányi, FOCS (1989)

For circuits (non-uniform), there *exist* hard distributions:

- 1. worst-case complexity for deterministic circuits
- \approx 2. worst-case expected complexity for randomized circuits

- Adleman, FOCS (1978)

 \approx 3. average-case complexity under hard input distribution - "Yao's principle". Yao, FOCS (1977)

NP-complete problems are (worst-case) hard for circuits.[†] †*Unless the polynomial hierarchy collapses.* – Karp/Lipton, *STOC* (1980)

the zero-sum game underlying Yao's principle

mixed strategy for min \equiv a randomized circuit; mixed strategy for max \equiv a distribution on inputs

- worst-case expected complexity of optimal random circuit
- = value of game
- = average-case complexity of best circuit against hardest distribution

thm: Max has near-optimal distribution with support size $O(n^c)$. **corollary:** A poly-size circuit can generate hard random inputs. - Lipton/Y, *STOC* (1994)

proof: Probabilistic existence proof, similar to Adleman's for min (1978). Similar results for non-zero-sum Nash Eq. – Lipton/Markakis/Mehta (2003) Q: Is it hard to generate hard random inputs? A: Poly-size circuits can do it (with coin flips)... Specifically, a circuit of size $O(n^{c+1})$ can generate random inputs that are hard for all circuits of size $O(n^c)$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

PART II

APPROXIMATION ALGORITHMS

Near-optimal distribution, proof of existence

lemma: Let M be any [0, 1] zero-sum matrix game. Then each player has an ε -optimal mixed strategy \hat{x} that plays uniformly from a multiset S of $O(\log(N)/\varepsilon^2)$ pure strategies. N is the number of opponent's pure strategies.

proof: Let p^* be an optimal mixed strategy.

Randomly sample $O(\log(N)/\varepsilon^2)$ times from p^* (with replacement).

Let S contain the samples. Let mixed strategy \hat{x} play uniformly from S.

For any pure strategy j of the opponent, by a Chernoff bound,

 $\Pr[M_j \hat{x} \geq M_j x^* + \varepsilon] < 1/N.$

This, $M_i x^* \leq \text{value}(M)$, and the naive union bound imply the lemma.

What does the method of conditional probabilities give?

A rounding algorithm that does not depend on the fractional opt x^* :

input: matrix M, $\varepsilon > 0$ **output:** mixed strategy \hat{x} and multiset S

- 1. $\hat{x} \leftarrow 0$. $S \leftarrow \emptyset$
- 2. Repeat $O(\log(N)/\varepsilon^2)$ times:
- 2. Choose *i* minimizing $\sum_{j} (1 + \varepsilon)^{M_j \hat{x}}$.
- 3. Add *i* to *S* and increment \hat{x}_i .

4. Let
$$\hat{x} \leftarrow \hat{x} / \sum_{i} \hat{x}_{i}$$

5. Return \hat{x} .

lemma: Let M be any [0,1] zero-sum matrix game. The algorithm computes an ε -optimal mixed strategy \hat{x} that plays uniformly from a multiset S of $O(\log(N)/\varepsilon^2)$ pure strategies. (N is the number of opponent's pure strategies.)

the sample-and-increment rounding scheme

- for packing and covering linear programs

input: fractional solution $x^* \in \mathbb{R}^n_+$ **output:** integer solution \hat{x}

- 1. Let probability distribution $p \doteq x^* / \sum_j x_j^*$.
- 2. Let $\hat{x} \leftarrow \mathbf{0}$.
- 3. Repeat until no \hat{x}_j can be incremented:
- 4. Sample index *j* randomly from *p*.
- 5. Increment x̂_j, unless doing so would either
 (a) cause x̂ to violate a constraint of the linear program,
 (b) or not reduce the slack of any unsatisfied constraint.
- 6. Return \hat{x} .

applying the method of conditional probabilities gives gradient-descent algorithms with penalty functions from conditional expectations greedy algorithms (primal-dual), e.g.: H_{Δ} -approximation ratio for set cover and variants – Lovasz, Johnson, Chvatal, etc. (1970) 2-approximation for vertex cover (via dual) – Bar Yehuda/Even, Hochbaum (1981-2) Improved approx. for non-metric facility location – Y (2000)

multiplicative-weights algorithms (primal-dual), e.g.: $(1 + \varepsilon)$ -approx. for integer/fractional packing/covering variants (e.g. multi-commodity flow, fractional set cover, frac. Steiner forest,...) - LMSPTT, PST, GK, GK, F, etc. (1985-now) A very interesting class of algorithms...

randomized-rounding algorithms, e.g.: Improved approximation for non-metric *k*-medians - Y, ACMY (2000,2004) a fast packing/covering alg. (shameless self-promotion)

Inputs: non-negative matrix A; vectors b, c; $\varepsilon > 0$ fractional covering: minimize $c \cdot x : Ax \ge b$; $x \ge 0$ fractional packing: maximize $c \cdot x : Ax \le b$; $x \ge 0$

theorem: For fractional packing/covering, $(1 \pm \varepsilon)$ -approximate solutions can be found in time

$$O\Big(\#\text{non-zeros} + \frac{(\#\text{rows} + \#\text{cols})\log n}{\varepsilon^2}\Big).$$

"Beating simplex for fractional packing and covering linear programs", – Koufogiannakis/Young FOCS (2007)

Thank you.

a fractional set cover x^*

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

sample and increment for set cover

sample and increment:

- 1. Let $x^* \in \mathbf{R}^n_+$ be a fractional solution.
- 2. Let $|x^*|$ denote $\sum_s x_s^*$.
- 3. Define distribution p by $p_s \doteq x_s^*/|x^*|$.
- 4. Repeat until all elements are covered:
- 5. Sample random set *s* according to *p*.
- 6. Add *s* if it contains not-yet-covered elements.
- 7. Return the added sets.
 - ▶ For any element *e*, with each sample, $Pr[e \text{ is covered}] = \sum_{s \ni e} x_s^* / |x^*| \ge 1 / |x^*|.$

・ロット (日) (日) (日) (日) (日)

existence proof for set cover

theorem: With positive probability, after $T = \lceil \ln(n) |x^*| \rceil$ samples, the added sets form a cover.

proof: For any element e:

- ▶ With each sample, $\Pr[e \text{ is covered}] = \sum_{s \ni e} x_s^* / |x^*| \ge 1 / |x^*|.$
- After T samples, $\Pr[e \text{ is not covered}] \leq (1 - 1/|x^*|)^T < 1/n.$

So, expected number of uncovered elements is less than 1.

corollary: There exists a set cover of size at most $\lceil \ln(n) | x^* \rceil$.

method of conditional probabilities

algorithm:

- 1. Let $x^* \ge 0$ be a fractional solution.
- 2. Repeat until all elements are covered:
- 3. Add a set *s*, where *s* is chosen to keep conditional E[# of elements not covered after T rounds] < 1.
- 4. Return the added sets.

Given first t samples, expected number of elements not covered after T - t more rounds is at most

$$\Phi_t \doteq \sum (1-1/|x^*|)^{T-t}$$

e not yet covered

algorithm

the greedy set-cover algorithm

algorithm:

- 1. Repeat until all elements are covered:
- 2. Choose a set s to minimize Φ_t .

- \equiv Choose *s* to cover the most not-yet-covered elements.
- 3. Return the chosen sets.

(No fractional solution needed!)

corollary: The greedy algorithm returns a cover of size at most $\lceil \ln(n) \min_{x^*} |x^*| \rceil$. – Johnson, Lovasz,... (1974)

also gives $H(\max_{s} |s|)$ -approximation for weighted-set-cover - Chvatal (1979) Thank you.