
Oblivious randomized rounding

Neal E. Young

April 28, 2008

What would the world be like if...

SAT is hard in the worst case, BUT...

generating hard random instances of SAT is hard? – Lipton, 1993

worst-case versus average-case complexity

1. worst-case complexity

You choose an algorithm.
Adversary chooses input maximizing algorithm’s cost.

2. worst-case expected complexity of randomized algorithm

You choose a randomized algorithm.
Adversary chooses input maximizing expected cost.

3. average-case complexity against hard input distribution

Adversary chooses a hard input distribution.
You choose algorithm to minimize expected cost on random input.

There are hard-to-compute hard input distributions.

For algorithms, the Universal Distribution is hard:
1. worst-case complexity of deterministic algorithms

≈ 2. worst-case expected complexity of randomized algorithms
≈ 3. average-case complexity under Universal Distribution

– Li/Vitányi, FOCS (1989)

For circuits (non-uniform), there exist hard distributions:
1. worst-case complexity for deterministic circuits

≈ 2. worst-case expected complexity for randomized circuits
– Adleman, FOCS (1978)

≈ 3. average-case complexity under hard input distribution
– “Yao’s principle”. Yao, FOCS (1977)

NP-complete problems are (worst-case) hard for circuits.†

†Unless the polynomial hierarchy collapses. – Karp/Lipton, STOC (1980)

What would the world be like if...

SAT is hard in the worst case, BUT...

generating hard random instances of SAT is hard? – Lipton, 1993

Q: Is it hard to generate hard random inputs?

There are hard-to-compute hard input distributions.

For algorithms, the Universal Distribution is hard:
1. worst-case complexity of deterministic algorithms

≈ 2. worst-case expected complexity of randomized algorithms
≈ 3. average-case complexity under Universal Distribution

– Li/Vitányi, FOCS (1989)

For circuits (non-uniform), there exist hard distributions:
1. worst-case complexity for deterministic circuits

≈ 2. worst-case expected complexity for randomized circuits
– Adleman, FOCS (1978)

≈ 3. average-case complexity under hard input distribution
– “Yao’s principle”. Yao, FOCS (1977)

NP-complete problems are (worst-case) hard for circuits.†

†Unless the polynomial hierarchy collapses. – Karp/Lipton, STOC (1980)

the zero-sum game underlying Yao’s principle
max plays from

2n inputs of size n:
x1 x2 · · · xj · · · xN

min
plays from

2nc

circuits
of size nc :

C1

C2

...
Ci

...
CM

payoff for play Ci , xj is
1 if circuit Ci

errs on input xj ;

0 otherwise

mixed strategy for min ≡ a randomized circuit;
mixed strategy for max ≡ a distribution on inputs

worst-case expected complexity of optimal random circuit
= value of game
= average-case complexity of best circuit against hardest distribution

Max can play near-optimally from poly-size set of inputs.
max plays

uniformly† from just O(nc)
of the 2n inputs of size n:

x1 x2 x3 x4 · · · xj xj+1 · · ·

min
plays from

2nc

circuits
of size nc :

C1

C2
...

Ci

...
CM

payoff for play Ci , xj is
1 if circuit Ci

errs on input xj ;

0 otherwise

thm: Max has near-optimal distribution with support size O(nc).
corollary: A poly-size circuit can generate hard random inputs.

– Lipton/Y, STOC (1994)

proof: Probabilistic existence proof, similar to Adleman’s for min (1978).

Similar results for non-zero-sum Nash Eq. – Lipton/Markakis/Mehta (2003)

Q: Is it hard to generate hard random inputs?

A: Poly-size circuits can do it (with coin flips)...

Specifically, a circuit of size O(nc+1) can generate random inputs
that are hard for all circuits of size O(nc).

PART II

APPROXIMATION
ALGORITHMS

Near-optimal distribution, proof of existence

lemma: Let M be any [0, 1] zero-sum matrix game.
Then each player has an ε-optimal mixed strategy x̂ that plays
uniformly from a multiset S of O(log(N)/ε2) pure strategies.
N is the number of opponent’s pure strategies.

proof: Let p∗ be an optimal mixed strategy.

Randomly sample O(log(N)/ε2) times from p∗ (with replacement).

Let S contain the samples. Let mixed strategy x̂ play uniformly from S .

For any pure strategy j of the opponent, by a Chernoff bound,

Pr[Mj x̂ ≥ Mjx
∗ + ε] < 1/N.

This, Mjx
∗ ≤ value(M), and the naive union bound imply the lemma.

What does the method of conditional probabilities give?
A rounding algorithm that does not depend on the fractional opt x∗:

input: matrix M, ε > 0
output: mixed strategy x̂ and multiset S

1. x̂ ← 0. S ← ∅
2. Repeat O(log(N)/ε2) times:

2. Choose i minimizing
∑

j(1 + ε)Mj x̂ .

3. Add i to S and increment x̂i .

4. Let x̂ ← x̂/
∑

i x̂i .

5. Return x̂ .

lemma: Let M be any [0, 1] zero-sum matrix game.
The algorithm computes an ε-optimal mixed strategy x̂ that plays
uniformly from a multiset S of O(log(N)/ε2) pure strategies.
(N is the number of opponent’s pure strategies.)

the sample-and-increment rounding scheme
— for packing and covering linear programs

input: fractional solution x∗ ∈ IRn
+

output: integer solution x̂

1. Let probability distribution p
.

= x∗/
∑

j x∗j .

2. Let x̂ ← 0.

3. Repeat until no x̂j can be incremented:

4. Sample index j randomly from p.

5. Increment x̂j , unless doing so would either
(a) cause x̂ to violate a constraint of the linear program,
(b) or not reduce the slack of any unsatisfied constraint.

6. Return x̂ .

ˆ

1

x*

x

t = 0

 7

6543

2

 8 9

applying the method of conditional probabilities gives
gradient-descent algorithms with penalty functions from conditional expectations

greedy algorithms (primal-dual), e.g.:
H∆-approximation ratio for set cover and variants

– Lovasz, Johnson, Chvatal, etc. (1970)

2-approximation for vertex cover (via dual)
– Bar Yehuda/Even, Hochbaum (1981-2)

Improved approx. for non-metric facility location – Y (2000)

multiplicative-weights algorithms (primal-dual), e.g.:
(1 + ε)-approx. for integer/fractional packing/covering variants

(e.g. multi-commodity flow, fractional set cover, frac. Steiner forest,...)

– LMSPTT, PST, GK, GK, F, etc. (1985-now)

A very interesting class of algorithms...

randomized-rounding algorithms, e.g.:
Improved approximation for non-metric k-medians

– Y, ACMY (2000,2004)

a fast packing/covering alg. (shameless self-promotion)

Inputs: non-negative matrix A; vectors b, c ; ε > 0

fractional covering: minimize c · x : Ax ≥ b; x ≥ 0

fractional packing: maximize c · x : Ax ≤ b; x ≥ 0

theorem: For fractional packing/covering, (1± ε)-approximate
solutions can be found in time

O
(

#non-zeros +
(#rows + #cols) log n

ε2

)
.

“Beating simplex for fractional packing and covering linear programs”,
– Koufogiannakis/Young FOCS (2007)

Thank you.

a fractional set cover x∗

edcba

c,eb,d,ea,c,da,b,c

.3.7.7.3

11.41.311

sets

elements

sample and increment for set cover

sample and increment:

1. Let x∗ ∈ IRn
+ be a fractional solution.

2. Let |x∗| denote
∑

s x∗s .

3. Define distribution p by ps
.

= x∗s /|x∗|.
4. Repeat until all elements are covered:

5. Sample random set s according to p.
6. Add s if it contains not-yet-covered elements.

7. Return the added sets.

I For any element e, with each sample,
Pr[e is covered] =

∑
s3e x∗s /|x∗| ≥ 1/|x∗|.

ˆ

1

x*

x

t = 0

 7

6543

2

 8 9

existence proof for set cover

theorem: With positive probability,
after T = dln(n)|x∗|e samples,
the added sets form a cover.

proof: For any element e:

I With each sample,
Pr[e is covered] =

∑
s3e x∗s /|x∗| ≥ 1/|x∗|.

I After T samples,
Pr[e is not covered] ≤ (1− 1/|x∗|)T < 1/n.

So, expected number of uncovered elements is less than 1.

corollary: There exists a set cover of size at most dln(n)|x∗|e.

ˆ

1

x*

x

t = 0

 7

6543

2

 8 9

method of conditional probabilities

algorithm:

1. Let x∗ ≥ 0 be a fractional solution.

2. Repeat until all elements are covered:
3. Add a set s, where s is chosen to keep conditional

E[# of elements not covered after T rounds] < 1.

4. Return the added sets.

Given first t samples, expected number of elements not covered
after T − t more rounds is at most

Φt
.

=
∑

e not yet

covered

(1− 1/|x∗|)T−t .

ˆ

1

x*

x

t = 0

 7

6543

2

 8 9

algorithm
the greedy set-cover algorithm

algorithm:

1. Repeat until all elements are covered:
2. Choose a set s to minimize Φt .

≡ Choose s to cover the most not-yet-covered elements.

3. Return the chosen sets.

(No fractional solution needed!)

corollary: The greedy algorithm returns a cover
of size at most dln(n) minx∗ |x∗|e. – Johnson, Lovasz,... (1974)

also gives H(maxs |s|)-approximation for weighted-set-cover
– Chvatal (1979)

ˆ

1

x*

x

t = 0

 7

6543

2

 8 9

Thank you.

	generating hard random inputs
	Oblivious randomized rounding
	set cover
	existence proof
	method of conditional probabilities
	algorithm

