
On-line End-to-End
Congestion Control

Neal Young
UC Riverside

Naveen Garg
IIT Delhi

the Internet … hard to predict
…dynamic

…large

End-to-end (design principle of Internet)

server
end user

Routers provide only best-effort packet delivery,
other functionality must be implemented at end-points.
No communication between different paths.

End-to-end congestion control basics

 TCP/IP carries the bulk of Internet traffic.
 Most connections short-lived.
 Most bytes carried by long-lived connections.

What can be said about global dynamics
induced by an end-to-end protocol?

 Stability? Efficiency? Fairness?
 Large body of existing work.

 Framework: protocol maximizes some global objective,
 such as total throughput

Introduction to existing work

Mathematical modeling and control of Internet congestion

Ramesh Johari, SIAM News, volume 33, March 2000.

Internet congestion control: an analytical perspective

Steven H. Low, Fernando Paganini, J. C. Doyle

IEEE Control Systems Magazine, February 2002

Mathematical modeling of the Internet

Frank Kelly, Mathematics Unlimited - 2001 and Beyond, Springer-Verlag 2001

typical result: continuous-time analogues of TCP/IP
 system of differential eqn’s convergence in limit

Here: explicit performance guarantees, convergence rates.

Lagrangian-relaxation alg’s for packing / covering problems

A numerical method for determination...
A suggested computation for maximal multicommodity network flow.
Decomposition principle for linear programs.
A linear programming approach to the cutting stock problem.
The traveling-salesman problem and minimum spanning trees.

The maximum concurrent flow problem.
Fast approximation algorithms for multicommodity flow...

A simple local-control approximation algorithm...
Fast approximation algorithms for fractional packing...
Randomized rounding without solving the linear program.

Game theory, on-line prediction and boosting.
Faster and simpler algorithms for multicommodity flow...
On the number of iterations for Dantzig-Wolfe optimization...
Approximating fractional multicommodity flows…
K-medians, facility location, and the Chernoff-Wald bound.
Sequential and parallel algorithms for mixed packing and covering.

Global optimization using local information with applications to flow control

von Neumann 1930
Ford, Fulkerson 1958

Dantzig, Wolfe 1960
Gilmore, Gomory 1961

Held, Karp 1971

Shahroki, Matula 1990

Leighton, Makedon, Plotkin, Stein, Tardos, Tragoudas 1993
Awerbuch, Leighton 1993

Plotkin, Shmoys, Tardos 1995
Y. 1995

Freund, Schapire 1996
Garg, Könemann 1997

 Klein, Y. 1999
Fleischer 2000

Y. 2001
Y. 2002

Bartal, Byers, Raz 1997

Maximize throughput

 90 mbs

162 mbs

 65 mbs

 82 mbs

 0 mbs

 78 mbs

100 mbs

140 mbs

Total: 717 mbs

Find flow(p) ≥ 0 for each path p.
Meet capacity constraints (for each edge e)

 flow(p) ≤ capacity(e).

Maximize total flow flow(p).

Solve it off-line if network is known

Multicommodity flow -- a packing problem.

Network is not known (hidden bottlenecks)

switch (or router port, etc.)1
0
0

Challenge

1. Solve it even with hidden bottlenecks?

-- learning about network only via packet loss

2. Solve it using an end-to-end protocol?

Approach

1. Solve it even with hidden bottlenecks?

 View network as “oracle” for testing if a flow is feasible.

 Use Lagrangian-relaxation algorithm.

2. Solve it using an end-to-end protocol?

 Implement alg using just rate control, packet loss???

Formal network model: dynamic, hidden

Game played in rounds t = 1,2,3,…

1. Each path chooses its sending rate for round

2. Packets sent induce loads on resources

3. Resources may lose packets if capacities violated

4. Each path learns its own loss for the round

Rate on a path is determined by loss observed on that path

-- “on-line, end-to-end congestion control”

Protocol

Start with arbitrary flow on each path p.

Each round, set sending rate on p to (1+ε)

times previous round’s receiving rate.

sent(p,t+1) = (1+ε)*received(p,t)

ε is a global constant.

Equivalent to:

 sent(p,t+1) = sent(p,t)*(1+ε)*[1-lost(p,t)/sent(p,t)]

a

b b

c c

a100 100

Example

50

50 50

50 50

50100 100

Round 1 (ε = 0.1)

55

55 48

55 53

46100 10048

6% loss
16% loss14% loss

4% loss

Round 2

51

53 50

58 53

44100 10049

5% loss

Round 3

10% loss

0

105 95

108 98

0100 100

10% loss
10% loss

Limit

Bandwidth test of AOL-DTC

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%
T

h
ro

u
g

h
p

u
t

(M
b

p
s
)

L
o

s
s
 (%

)

Time (seconds)

Performance guarantee

THM: Assuming fair and reasonable loss,

the total throughput over the first T rounds

is at least (1-O(ε)) OPT provided

 OPT = maximum possible throughput,

throughput = bytes received

T � !�2maxp log
capacity(p)
sent(p,1) .

55

55 50

55

100 10050

fair: path’s loss rate close to
resource’s loss rate

10% loss

45

40

reasonable:
loss rate not
much larger
than needed

20% loss

Fair loss, reasonable loss

Proof sketch

 1. Conservative overall:

 packets lost ≤ ε * packets received

 2. Aggressive on each path:

 on each path, average loss ratio over time ≥ ε− ε2.

 3. These two properties, and fair loss, imply

 total throughput ≥ (1-O(ε)) OPT.

immediate from protocol

exp. growth of send rate

Linear-programing duality.
(dual solution implicitly
defined by loss at edges)

1. Overall loss rate at most ε:

 want: packets lost ≤ ε packets received

easy: sent = (1+ε)*received

sent – received = ε * received

lost ≤ ε * received

2. Average loss ratio over time on each path p ≥ ε − ε2 :

want:

assuming reasonable loss

have:

T

!
t=1

lost(p, t)
sent(p, t)

�"T � "2T

T

!
t=1

lost(p, t)
sent(p, t)

� "T � "2T

sent(p, t+1)
sent(p, t)

= (1+ ")
⇣
1� lost(p, t)

sent(p, t)

⌘

⇡ exp
⇣
"� lost(p, t)

sent(p, t)

⌘

exp
⇣
"T �

T

!
t=1

lost(p, t)
sent(p, t)

⌘
⇡ sent(p,T)
sent(p,1)

⇡ exp("2T) ... when T � "�2 log
sent(p,T)
sent(p,1)

The dual linear program

remark: The problem of finding lengths that give the
best bound on OPT is the same as fractional set cover.

Fix length(e) ≥ 0 for each edge e.

If, for each path p,

!
e on p

length(e) � 1,

... then ... OPT T!
e

capacity(e)length(e).

Define dual soln length(e) = (average loss ratio on e over time) / ε’

Feasible? For all paths p, total length of p at least 1?

Yes, because average loss rate on p ≥ ε’ (and fair loss).

Dual solution value?

 Because cap(e) < entered(e,t) when lost(e,t) > 0,

 so (ave loss ratio * cap) < ave loss.

Conclusion:

 packets received ≥ packets lost / ε

 ≥ dual solution value * ε’ T / ε

 ≥ OPT ε’ / ε = OPT (1-ε).

!
e

length(e)cap(e) !
e,t

lost(e, t)/"0T = packets lost /"0T

Generalized protocol

For lossy networks

send(p,t+1) = (1-αp) send(p,t) + αp(1+ε) receive(p,t).

 Per-path reactivity control.
 Works in presence of unreasonable loss if αp ≤ ε.

 Convergence slower by a factor of maxp 1/αp.

For quality of service (weighted throughput)

send(p,t+1) = (1-αp) send(p,t) + αp(1+ε vp) receive(p,t).

 Maximizes total value-weighted flow: Σ flow(p)*vp

More realistic network model

THM: Total throughput is (1-O(ε)) OPT if

every connection lasts at least T rounds,

• capacities vary with time
• connections start and stop
• round-trip times (packet latency)
• approximate fair loss over time

OPT restricted:
 cannot vary rate on a connection while connection is active.

T � !�3max
p
log
capacity(p)
sent(p,1)

Directions and open questions

• lower bounds on convergence rates
in end-to-end model (competitive analysis)

• other objective functions (proportional fairness)

• routing

• other dynamic, hidden-information optimization problems
 (e.g. min-cost assignment with hidden, varying demands
 -- one component of Akamai’s network-wide load-balancing)

Questions?

Interpretation of l.p. duality using tolls:

TOLL

?
per packet

TOLL

?
per packet

TOLL

?
per packet

MAX CAP

packets
30

MAX CAP

packets
10

MAX CAP

packets
20

OPT ≤ total $collected ≤ Σr toll(r)*cap(r)

≤ $3 collected

≤ $6.50

collected
≤ $6 collected packet taking this

path pays 10+65+30
= $1.05

TOLL

10¢
per packet

TOLL

65¢
per packet

TOLL

30¢
per packet

