On-line End-to-End Congestion Control

Naveen Garg IIT Delhi Neal Young UC Riverside

the Internet

...dynamiclarge

Full Internet map as of 18 Fab 1999 99664 edges, 88107 nodes (42443 leaves)

Hal Burch, Bill Cheswide

Flotted (999-02-23 (-5 2 -s) hits: /www.csbel-labs.com/-chesima.cindex.himi

End-to-end (design principle of Internet)

Routers provide only best-effort packet delivery, other functionality must be implemented at end-points. No communication between different paths.

End-to-end congestion control basics

TCP/IP carries the bulk of Internet traffic. Most connections short-lived. Most bytes carried by long-lived connections.

What can be said about *global* dynamics induced by an end-to-end protocol?

Stability? Efficiency? Fairness? Large body of existing work.

Framework: protocol maximizes some global objective, such as total throughput

Introduction to existing work

Mathematical modeling and control of Internet congestion

Ramesh Johari, SIAM News, volume 33, March 2000.

Internet congestion control: an analytical perspective

Steven H. Low, Fernando Paganini, J. C. Doyle IEEE Control Systems Magazine, February 2002

Mathematical modeling of the Internet

Frank Kelly, Mathematics Unlimited - 2001 and Beyond, Springer-Verlag 2001

typical result: continuous-time analogues of TCP/IP system of differential eqn's \rightarrow convergence in limit

Here: explicit performance guarantees, convergence rates.

Lagrangian-relaxation alg's for packing / covering problems

A numerical method for determination A suggested computation for maximal multicommodity network flo Decomposition principle for linear programs. A linear programming approach to the cutting stock problem. The traveling-salesman problem and minimum spanning trees.	von Neumann 1930 w. Ford, Fulkerson 1958 Dantzig, Wolfe 1960 Gilmore, Gomory 1961 Held, Karp 1971
The maximum concurrent flow problem. Fast approximation algorithms for multicommodity flow	Shahroki, Matula 1990
Leighton, Makedon, Plotkin, Stein,	Tardos, Tragoudas 1993
A simple local-control approximation algorithm A	werbuch, Leighton 1993
Randomized rounding without solving the linear program.	Y. 1995
Game theory, on-line prediction and boosting.	Freund, Schapire 1996
Faster and simpler algorithms for multicommodity flow	Garg, Könemann 1997
On the number of iterations for Dantzig-Wolfe optimization	Klein, Y. 1999
Approximating fractional multicommodity flows	Fleischer 2000 V 2001
Sequential and parallel algorithms for mixed packing and covering	Y. 2002

Global optimization using local information with applications to flow control

Bartal, Byers, Raz 1997

Maximize throughput

Solve it off-line if network is known

Multicommodity flow -- a packing problem.

Network is not known (hidden bottlenecks)

Challenge

- 1. Solve it even with hidden bottlenecks?
 - -- learning about network only via packet loss

2. Solve it using an end-to-end protocol?

Approach

- 1. Solve it even with hidden bottlenecks?
 - View network as "oracle" for testing if a flow is feasible. Use Lagrangian-relaxation algorithm.
- 2. Solve it using an end-to-end protocol?
 - Implement alg using just rate control, packet loss???

Formal network model: dynamic, hidden

Game played in rounds t = 1,2,3,...

- 1. Each path chooses its sending rate for round
- 2. Packets sent induce loads on resources
- 3. Resources may lose packets if capacities violated
- 4. Each path learns its own loss for the round

Rate on a path is determined by loss observed on that path -- "on-line, end-to-end congestion control"

Protocol

Start with arbitrary flow on each path p.

Each round, set sending rate on p to $(1+\epsilon)$ times previous round's receiving rate.

 $sent(p,t+1) = (1+\varepsilon)*received(p,t)$

ε is a global constant.

Equivalent to: sent(p,t+1) = sent(p,t)*(1+ε)*[1-lost(p,t)/sent(p,t)]

25.77

Performance guarantee

THM: Assuming fair and reasonable loss, the total throughput over the first *T* rounds is at least $(1-O(\varepsilon))$ OPT provided

 $T \ge \varepsilon^{-2} \max_{p} \log \frac{\operatorname{capacity}(p)}{\operatorname{sent}(p,1)}.$

OPT = maximum possible throughput, throughput = bytes received

Fair loss, reasonable loss reasonable: loss rate not 55 5 much larger than needed 20% loss **10% loss** 40 55 50 55 fair: path's loss rate close to resource's loss rate

Proof sketch

1. Overall loss rate at most ϵ :

sent – received = ε * received

lost
$$\leq \epsilon^*$$
 received

2. Average loss ratio over time on each path $p \ge \varepsilon - \varepsilon^2$:

The dual linear program

e on p

Fix length(e) ≥ 0 for each edge e. If, for each path p, $\sum \text{length}(e) \geq 1$,

... then ... OPT $\leq T \sum_{e} \operatorname{capacity}(e) \operatorname{length}(e)$.

remark: The problem of finding lengths that give the best bound on OPT is the same as *fractional set cover*.

Define dual soln length(e) = (average loss ratio on e over time) / ϵ '

Feasible? For all paths *p*, total length of *p* at least 1?

Yes, because average loss rate on $p \ge \varepsilon'$ (and fair loss). Dual $\operatorname{SubtionValue}_{e}^{2}(e) \le \sum_{e,t} \operatorname{lost}(e,t)/\varepsilon'T = \operatorname{packets} \operatorname{lost}/\varepsilon'T$

Because cap(e) < entered(e,t) when lost(e,t) > 0,

so (ave loss ratio * cap) < ave loss.

Conclusion:

packets received \geq packets lost / ε \geq dual solution value * ε ' T / ε \geq OPT ε ' / ε = OPT (1- ε).

Generalized protocol

For lossy networks

send(p,t+1) = $(1-\alpha_p)$ send(p,t) + $\alpha_p(1+\varepsilon)$ receive(p,t).

Per-path reactivity control. Works in presence of unreasonable loss if $\alpha_p \le \varepsilon$. Convergence slower by a factor of max_p 1/ α_p .

For quality of service (weighted throughput)

 $send(p,t+1) = (1-\alpha_p) send(p,t) + \alpha_p(1+\varepsilon v_p) receive(p,t).$

Maximizes total value-weighted flow: Σ flow(*p*)**v*_{*p*}

More realistic network model

- · capacities vary with time
- connections start and stop
- round-trip times (packet latency)
- approximate fair loss over time

THM: Total throughput is (1-O(ϵ)) OPT if every connection lasts at least *T* rounds, $T \ge \epsilon^{-3} \max_{p} \log \frac{\operatorname{capacity}(p)}{\operatorname{sent}(p, 1)}$

OPT restricted:

cannot vary rate on a connection while connection is active.

Directions and open questions

- lower bounds on convergence rates in end-to-end model (competitive analysis)
- other objective functions (proportional fairness)
- routing
- other dynamic, hidden-information optimization problems (e.g. min-cost assignment with hidden, varying demands -- one component of Akamai's network-wide load-balancing)

Questions?

Full Internet map as of 18 Feb 1999 99664 edges, 88107 nodes (42443 leaves)

Hal Burch, Bill Cheswid: Plated 1999-03-23 (-5-2 -s.) Nits /www.csb.el-lab.scom/-ches.map.index.html

Interpretation of I.p. duality using tolls: Select edge tolls such that (for each path p) $\sum_{e \text{ on } p} \text{toll}(e) \ge 1...$

