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Abstract 1.1 Results 
Koutsoupias and Papadimitriou recently raised the question 
of how well deterministic on-line paging algorithms can 
do against a certain class of adversariallu biased random 
input> [3]. Such an input is given in an on-line fashion; 
the adversary determines the next request probabilistically, 
subject to the constraint that no page may be requested with 
probability more than a fixed 6 > 0. 

In this note, we answer their question by estimating, 
within a factor of two, the optimal competitive ratio of any 
deterministic on-line strategy against this adversary. We fur- 
ther analyze randomized on-line strategies, obtaining upper 
and lower bounds within a factor of two. These estimates 
reveal the qualitative changes as E ranges continuously from 
1 [the standard model) towards 0 (a severely handicauued 
adbersary). Our upper bounds usk an %&rance-b&id” 
charging scheme that reduces the analysis of the expected 
cost on an adversarially biased random input to the analysis 
of the “adjusted” cost of a worst-case input. 

1 Introduction 
Measuring an algorithm by its theoretical worst-case 
performance is often impractically pessimistic. On the 
other hand, measuring an algorithm by its average- 
case performance on a specific input distribution may 
be impractically presumptuous. An approach between 
these two extremes is to assume that something, but 
not everything, is known about the input distribution 
- namely, that the input for an algorithm has been 
generated by a random source that has been somehow 
adversarially biased by an adversary that chooses the 
worst possible bias for the algorithm in question. 

Koutsoupias and Papadimitriou [3] recently studied 
the performance of deterministic on-line algorithms 
against such an adversary. Their adversary, A,, is 
allowed to select the next request only probabilistically, 
with each page being requested with probability at most 
some E > 0. Koutsoupias and Papadimitriou prove 
that the least-recently-used strategy (LRu) is an optimal 
deterministic on-line algorithm against this adversary, 
but they leave open the problem of giving a closed- 
form estimate of the optimal competitive ratio R(A,), 
commenting “It seems difficult to determine . . . the 
exact competitive ratio. . . . In fact . . . the ratio may 
not be expressible as a simple closed form expression.” 
In this note, we estimate this ratio within a factor of 
roughly two for all k and E. 
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k-l 
Define 9(c, k) k 1 + c l/ max{c-’ - a’, 1). 

i=l 

THEOREM 1.1. Fix any integer k > 0 and E E (O,l]. 
The competitive ratio of any deterministic on-line 

algorithm versus the diffuse adversary A, is at least 
qe, k) - 1. 

Conversely, the ratio for any deterministic “mark- 
ing” algorithm (including LRU and first-in-first-out 
FIFO)) is at most 2Q(e, k). 

The upper bound does not hold for flush-when-full 
(FwF). For randomized strategies, the optimal com- 
petitive ratio exhibits a curious behavior. For E below 
the threshold l/k, randomized strategies aren’t much 
better than deterministic ones: For E above this thresh- 
old, randomized strategies don’t do much better than 
against the standard adversary. 

THEOREM 1.2. Fix any integer k > 0 and any E > 0. 
If e-l is an integer greater than k, the lower bound 

in Theorem 1.1 also applies to any randomized on- 
line algorithm. Conversely, the upper bound there also 
applies to the randomized marking algorithm (MARK). 

Fore 2 l/(k + l), the competitive ratio of any ran- 
domized on-line algorithm versus the diguse adversary 
A, is at least @(l/(k + I), k) = H(k) - 1. Conversely, 
the ratio for MARK is at most 2H(k). 

(The last paragraph of the above Theorem essentially 
follows from known results about MARK [2, 6, 71.) The 
above results are summarized in Table 1. Estimates of Cp 
are given in Table 2. Note: H(k) = & + M ln(k + 1). 

That all marking algorithms are within a constant 
factor of optimal might be considered a failing of the 
diffuse-adversary model - in practice, LRU and its 
variants are generally considered to be better than FIFO. 

Our upper bounds use a charging scheme for analyz- 
ing adversarially biased random inputs. The charging 
scheme adjusts the costs of each input in such a way 
that the expected cost of a random input is unchanged, 
but so that, working with the adjusted costs, we can 
show worst-case bounds on each input. This allows us 
to reduce the analysis to a worst-case analysis, while 
still thinking of some of the costs as expected costs. 
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range deterministic deterministic randomized randomized 
lower bound upper bound lower bound upper bound 

.c 5 l/k cP(e’, k) - 1 2@(~, k) 
@(c,k)-1 2@(~, k> 

e 2 l/k H(k) - 1 2H(k) 

Table 1: Upper and lower bounds on the optimal competitive ratio of on-line algorithms with cache size k against 
Koutsoupias and Papadimitriou’s diffuse adversary A,. The upper bounds hold for any deterministic marking 
algorithm (e.g. LRU, FIFO) and for the randomized marking algorithm MARK. In the randomized lower bound, 
6’ = l//l/~]. Note: H(k) = C: l/i = Q(l/(k + l), k) M ln(k + 1). 

range 

E 5 l/k 

exact value of @(c, k) I approximation I 
I 1 

k-l a I I 1 

Table 2: Exact and approximate values of @(c, k) ( see Theorems 1.1 and 1.2). As c varies from 0 to 1, Q(E, k) 
varies from constant to linear in k. Around the threshold c x l/k, @(c, k) is logarithmic in k. 

1.2 Definitions 
The paging problem [5], given an integer k > 0, is to 
dynamically maintain a cache (set) of at most k pages 
in response to a sequence of requests for pages so as to 
minimize the number of page faults. A page fault occurs 
when the requested page is not in the cache, at which 
point the page must be brought into the cache. If there 
are k pages in the cache already, one must be evicted 
(removed) before the requested page is brought in. An 
algorithm for the problem must specify which page to 
evict when a fault occurs. Given an algorithm A and 
a sequence z, we let A(z) denote the cost (number of 
faults) incurred by A in servicing z. If A is a randomized 
algorithm, then A(z) denotes the expected cost (over 
random choices made by the algorithm) on input E. 
The optimal algorithm, OPT [l], evicts the page that 
will be next requested latest. An algorithm is on-line 
if the choice of which page to evict is independent of 
subsequent requests. 

On-line paging strategies considered here include 
the following. Least-recently-used (LRu?) evicts the 
page whose most recent request is the least recent 
among all pages in the cache. First-in-first-out (FIFO) 
evicts the page that has been in the cache the longest. 
The randomized marking algorithm (MARK) operates as 

follows. After a page is requested, it is marked. When 
a page is to be evicted, an unmarked page is chosen 
uniformly at random, with the caveat that if all pages 
in the cache are marked, then all marks are first erased. 
The phrase deterministic marking algorithm (DMARK) 
refers to any deterministic algorithm that maintains 
marks as MARK does and evicts only unmarked pages. 
LRU and FIFO are examples. 

Following Koutsoupias and Papadimitriou [3], given 
a known class of distributions A of the input sequences, 
and an algorithm A, define 

and 
R(A) k mjn R(A, A), 

where A ranges over all deterministic on-line algorithms, 
and 

R,.(A) = mjnR(A, A), 

where A ranges over all randomized on-line algorithms. 
The parameter k is implicit in these definitions.) Kout- 
soup& and Papadimitriou call this the diffuse adver- 
sary model. 
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Any distribution D specifies, for each page p and 
sequence of page requests x, the probability Pro(p]x) 
that the next request is p given that the sequence 
so far is x. Define A, to contain those distributions 
D such that, for any request sequence x and page p, 
PrD(Pb) < 6. We are interested in estimating R(A,) 
and &(A,). 

2 Upper Bound on Deterministic Strategies 
Let DMARK denote any deterministic marking algo- 
rithm. (The reader may wish to consider the example 
of LRU for concreteness.) Fix any distribution D E A,. 
Below, by “a random sequence x”, we mean x is chosen 
randomly according to distribution D. 

For any sequence x, let DMARK(X) denote an 
“adjusted” cost (defined below) of running DMARK on 
x. The key properties of the adjusted cost are: 

1. ED[DMARK(x)] 5 ED[DMARK(x)] for random z. 

2. DMARK(X) 5 c. OPT(X) for any x (for some c). 

These give the desired upper bound via 

E[DMARK(z)] < E[DMARK(x)] 
E[@‘T(x)] - E[OPT(x)I 

< max DMARK(X) 
- z OPT(x) 
5 c. 

2.1 Adjusted Cost: Terms and Motivation 
We now motivate the adjusted cost DMARK(x). Fix 

any sequence 2. Partition x into a sequence of contigu- 
ous subsequences, called phases, as follows. The first 
phase starts with the first request. In general, when 
each phase starts, DMARK has Ic unmarked pages in 
its cache. As requests occur, DMARK evicts unmarked 
pages (as necessary) and brings in requested pages (as 
necessary) and marks them. Once a page is requested, 
it remains marked and in the cache for the rest of the 
phase. The phase ends when all pages remaining in the 
cache are marked and the next request is not to one of 
those pages. This causes DMARK to unmark the pages. 

This action - unmarking the pages - begins the 
next phase. Thus, DMARK starts each phase with the k: 
pages requested in the previous phase unmarked in the 
cache. It immediately evicts one of them in response to 
the first request of the phase. 

Within each phase, classify the requests as follows: 
New - a request to a page that was not requested 

the previous phase. The first request of the phase 
is always new. 

Worrisome - a request to a page that was re- 
quested in the previous phase, but nonetheless 

causes DMARK to fault (because DMARK has 
evicted the page previously during the phase). 

Redundant - a request to an already marked page. 

New and worrisome requests are the only requests that 
cause DMARK to fault. 

It was previously observed [2, 6, 71 that in a phase 
with m new requests, OPT incurs at least m/2 faults 
(amortized over the sequence). Briefly, this is because 
in two consecutive phases, if the second has m new 
requests, then k + m distinct pages are requested. Since 
OPT has a cache of size k, it must incur at least m faults 
during the two phases. 

On the other hand, OPT incurs at most m faults in 
the phase (again amortized over the sequence). Briefly, 
this is because OPT has the option of starting the phase 
with the k pages from last phase and then evicting just 
m of these pages - those that won’t be requested this 
phase. 

Thus, the new requests are not a problem - OPT 
is also paying for those. The worrisome requests are the 
problem - they are the only other requests that cause 
DMARK to fault. We want to use the phase structure 
of a sequence to give a competitive analysis. On the 
other hand, we can only hope to bound the cost of the 
worrisome requests in the expected sense for a random 
sequence - this is where our analysis needs to take 
into account the limitations of the diffuse adversary. 
We cannot condition the random sequence on having 
a particular phase structure - the limitation on the 
diffuse adversary does not extend to conditioned random 
inputs. 

2.2 Adjusted Cost: Definition 
Instead, we work with adjusted costs, as mentioned 
above. On any sequence x, define DMARK(~) to be 
the number of new requests in x plus the total of 
the insurance premiums for x. There is an insurance 
premium for each non-redundant request p in x. The 
premium equals the probability that the next non- 
redundant request would be a worrisome request if the 
remaining requests (subsequent to p) were generated 
randomly according to the distribution D. In effect, 
DMARK pays directly for new requests, but instead of 
paying for worrisome requests, it buys “insurance” in 
advance. Because the cost of the insurance equals the 
expected savings when the next non-redundant request 
occurs, we have: 

LEMMA 2.1. For any D E A,, 

ED[DMARK(x)]< ED [DMARK(x)]. 
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2.3 Worst-Case Bound 
We have now reduced the problem to giving a worst- 
case bound on the adjusted cost of any sequence in 
terms of the cost OPT incurs on that sequence. Fix any 
sequence x and consider a phase within the sequence. 
Let m denote the number of new requests in the phase. 
The main task is bounding the cost of the insurance 
premiums paid during the phase; the only other cost 
charged to DMARK is m for new requests, for which. 
OPT also pays m/2. We bound the cost of the premiums 
in terms of m. 

Insurance premiums are paid following each of the k 
non-redundant requests in the phase. Let, p be any non- 
redundant request in the phase. Consider the requests 
in the phase up to and including p. Let i be the number 
of non-redundant requests so far (1 < i 5 k; for the first 
request in the phase, i = 1). 

There are at most m pages that, if requested next, 
would result in a worrisome request (of the k pages 
requested in the previous phase, at most m are not 
in the cache). There are at most i pages that, if 
requested next, would result in a redundant request (the 
i distinct pages requested so far). If any other page 
were requested next, it would either be a new request 
or a non-worrisome, non-redundant request (to a page 
in DMARK’S cache). Thus, the only way that the next 
non-redundant request could be a worrisome request is 
if the upcoming sequence of requests were to consist 
of some sequence of the i possible redundant requests 
followed by a request to one of the at most m possible 
worrisome requests. 

Since the adversary can assign a probability of at 
most 6 to any page, the probability that the next non- 
redundant request would be worrisome is bounded by 

(or 1 if the quantity on the right-hand side is negative 
or more than 1). Above e is the number of redundant 
requests before the next non-redundant request. This 
is our upper bound on the insurance payment paid by 
DMARK after request p. Summing all the payments and 
dividing by m/2 (our lower bound on the amortized cost 
of OPT), and appealing to Lemma 2.1 gives: 

LEMMA 2.2. For any diffuse adversary D E A,, the 
expected cost of any deterministic marking algorithm 
DMARK on a random sequence from D, divided by the 
expected cost of OPT on a random sequence, is at most 

k-l 

l+Cl/max{c-‘-i,l} 
> 

k 2@(c, k). 
i=l 

(The “1” is for the m new requests. Note that after 
the kth non-redundant request, the insurance payment 
is 0 because the next non-redundant request is the 
new request starting the next phase.) This gives the 
deterministic upper bound stated in Theorem 1.1. 

3 Lower Bound on Deterministic Strategies 
In this section we show that for any deterministic on- 
line strategy A, there is a distribution D in A, such 
that the expected cost of the strategy divided by the 
expected cost of OPT is at least @(c, k) - 1. 

3.1 The Adversary 
We describe D by describing an adversary that requests 
pages probabilistically subject to the limitations of A,. 
Fix E > 0 and k > 0. Assume E > 1/2k (otherwise 
the sought lower bound (a(~, k) - 1 is trivially satisfied 
- it is at most @(1/2k, k) - 1, less than 1). Fix 
m = max{l, [c-l1 - k}. 

The adversary requests the pages in an on-line 
fashion, phase by phase. In the first part of each 
phase, the adversary makes m new requests by assigning 
probability only to pages not previously requested. 

After the first m requests, there are k+m pages that 
were requested in the previous phase or in this phase so 
far. Below we restrict our attention to just these pages. 

For each remaining request, the adversary assigns 
a probability to each page as follows. First priority is 
given to pages that are not in the cache. We call any 
such page, or a request to it, worrisome. Second priority 
is given to pages that are in the cache and have already 
been requested. We call any such page, or a request to 
it, redundant. Lowest priority is given to pages that are 
in the cache and have not yet been requested. We call 
any such page, or a request to it, benign. 

Pages are selected in order of priority and assigned 
as much probability as possible, subject to the con- 
straint that no page is assigned probability more than 
c and the total probability assigned is 1. By the choice 
of m, we have (k + m)c 2 1, so all three kinds of pages 
suffice for all probability to be assigned. 

The adversary follows this strategy until k distinct 
pages have been requested, at which point the adversary 
begins a new phase. This defines the distribution D E 
A,. 

3.2 Lower Bound on Expected On-Line Cost 
Next we bound from below the expected cost incurred 
by A within each phase of a random sequence I. We 
will compare this bound to the expected amortized cost 
incurred by OPT within the phase to obtain our final 
lower bound on the competitive ratio. 

Consider any phase. Consider those requests that 
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are to pages that have not been requested before during 
the phase. For each i such that 1 5 i 5 k, let pi denote 
the ith such request. Partition the phase into k runs 
according to the pi’s: the first run is the single request 
pl, and in general, the ith run starts after the i - 1st 
run ends and continues through request pi. 

The first m runs are simply the first m single 
requests to new pages. Each causes A to fault. We 
next give a lower bound on the expected cost of each 
remaining run. 

For any ith run, where m + 1 5 i < k, let W’ 
denote the event that the first non-redundant request is 
worrisome. Then m + ‘&,,+i Pr[W’] is a lower bound 
on the expected cost of the phase. Fix a particular ith 
run; we will bound Pr[Wi]. 

Let Wj, and Bj denote the events that the jth 
request in the run is worrisome or benign, respectively. 
Then 

Pr[Wi] = c Pr[W; U Bj] Pr[Wj ] Wi U Bj] 
i 

2 mjinPr[Wi ] WiUBj]. 

This means that it suffices to bound, for each request in 
the run, the probability that the request is worrisome, 
conditioned on the request being worrisome or benign. 
We do this next. 

Before a particular jth request in the ith run, 
let the number of worrisome pages be w. Assume 
for the moment that the adversary assigns a non- 
zero probability to some benign page (otherwise the 
conditional probability is 1). Then the probability that 
the request is worrisome is EW. Further, the probability 
that the request is benign is at most 1 -c(i- l), because 
each of the i-l pages that has been previously requested 
in the phase is either worrisome or redundant. Thus, 
the probability that the request will be worrisome, 
conditioned on it being worrisome or benign, is at least 

EW W m 
1 - E(i - 1) + cw = 

> 
c-l-i+l+w-c-l-i+l+m 

(because w 2 m). Thus, Pr[W’] > m/max{c-‘-i+l+ 
m,m}. (With the “max”, this bound holds even if the 
adversary assigns no probability to the benign pages.) 
Thus, the expected cost incurred by A during the entire 
phase is at least 

k 
m 

l-i+l+m,m) 

k-m-l m = m+ c i=. max{e-l - i, ml 

’ kg max{c-:L-- -i,m} 
k-l 

= 

(The last step follows because the choice of m guar- 
antees that either m = 1 or 6-r - i is at least m for 
i < k - 1.) 

3.3 Comparison to Optimal Cost 
Since the amortized cost for OPT during the phase is at 
most m (see the discussion in 5 2.1), we have: 

LEMMA 3.1. On a random sequence from the adversary 
D E A, described above the expected cost for any deter- 
ministic online algorithm A, divided by the expected cost 
for OPT, is at least 

‘2 l/ ma{e-’ - i, 1) & @(c, k) - I. 
i=l 

This gives the lower bound stated in Theorem 1.1. 

4 Randomized Strategies 
In this section we extend the lower bound above to 
randomized strategies. Very little work is required to 
get lower bounds that match the best possible upper 
bounds within a factor of roughly two. 

Fix E > 0 and k > 0. For simplicity we make the 
following technical assumption: 6-l is an integer and 
6 I l/(k + 1). 

Consider the adversary described in the previous 
section for deterministic strategies. Within a phase, 
that adversary makes requests to m new pages, followed 
by requests restricted to a set of k + m pages, where 
m = max{l,c-l - k}. We make the following key 
observation about this adversary: 

Under the technical assumption, the adver- 
sary’s actions are independent of the determin- 
istic on-line algorithm A. 

The reason: the technical assumption implies that 
e(k+m) equals 1. In this case, for each non-new request, 
the adversary assigns probability c uniformly to each of 
the k + m pages. In other words, each phase consists 
of requests to m new pages, followed by a sequence of 
requests to the k+m pages, where each request is chosen 
uniformly at random from those pages, until a total of 
k distinct pages have been requested, after which the 
next phase begins. 

This case turns out to be a generalization of a lower 
bound on the competitive ratio of randomized on-line 
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strategies against the standard adversary [4, Thm. 13.21. 
That lower bound (equivalent to our case m = 1) uses 
the following principle: against any input distribution 
D, any randomized algorithm R satisfies 

ED [R(z)] L mF ED [A(z)] . 

Here z is a random input from D, and A ranges over 
all deterministic strategies. Recall that R(x) and A(x) 
denote the cost of algorithms R and A respectively on 
input z. This principle follows from the fact that R may 
be viewed as a probability distribution over the class of 
deterministic algorithms. 

This is the point of the key observation made 
above: under our technical assumption, the distribution 
D defined in the previous section turns out to be 
independent of the on-line algorithm A. Thus, under 
the technical assumption, the lower bound extends to 
randomized algorithms: 

LEMMA 4.1. Fix any e > 0 such that e-l is an integer 
greater than h. 

Then the lower bound on the competitive ratio es- 
tablished for deterministic strategies in Lemma 3.1 also 
applies to randomized strategies. Namely, on a random 
input from the adversary D E Ab described in the previ- 
ous section, the expected cost for any randomized online 
algorithm, divided by the expected cost for OPT, is at 
least 

k-l 

C l/ max{c-’ - a’, 1) - @(E, k) - 1. 
i=l 

This gives the first lower bound stated in Theorem 1.2. 
The second lower bound follows from the fact that 
decreasing c only weakens the adversary, so that for 
c < l/(k: + l), the ratio is at most Q(l/(k + l), h) - 1, 
which equals H(lc) - 1. 

The upper bounds follow from ‘the known upper 
bound of 2H(k) on the competitive ratio of MARK 
against the standard adversary [2, 6, 71, and from the 
fact that Lemma 2.2 also applies to MARK (since the 
upper bound applies to any deterministic marking algo- 
rithm, i.e., any conditioning of MARK on a particular 
outcome of its random choices). 
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