
Chapter 22
Approximate Data Structures with Applications

Yossi Matias* Jeffrey Scott Vitter+ Neal E. Youngt

Abstract

In this paper we introduce the notion of approximate
da2a siruclures, in which a small amount of error is
tolerated in the output. Approximate data structures
trade error of approximation for faster operation, lead-
ing to theoretical and practical speedups for a wide va-
riety of algorithms. We give approximate variants of the
van Emde Boas data structure, which support the same
dynamic operations as the standard van Emde Boas
data structure [28, 201, except that answers to queries
are approximate. The variants support all operations
in constant time provided the error of approximation is
l/polylog(n), and in O(loglog n) time provided the er-
ror is l/polynomial(n), for n elements in the data struc-
ture.

We consider the tolerance of prototypical algo-
rithms to approximate data structures. We study in
particular Prim’s minimumspanning tree algorithm, Di-
jkstra’s single-source shortest paths algorithm, and an
on-line variant of Graham’s convex hull algorithm. To
obtain output which approximates the desired output
with the error of approximation tending to zero, Prim’s
algorithm requires only linear time, Dijkstra’s algorithm
requires O(mloglogn) time, and the on-line variant of
Graham’s algorithm requires constant amortized time
per operation.

1 Introduction

The van Emde Boas data structure (VEB) [28, 201
represents an ordered multiset of integers. The data

‘AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill,
NJ 07974. Entail: matias&esearch.att.com.

tDepartment of Computer Science, Duke University, Box
90129, Durham, N.C. 27708-0129. Part of this research was done
while the author was at Brown University. This research was
supported in part by National Science Foundation grant CCR-
9007851 and by Army Research Office grant DAAL03-91-G-0035.
Email: jsvOcs.duke.edu.

tcomputer Science Department, Princeton University. Part of
this research was done while the author was at UMIACS, Univer-
sity of Maryland, College Park, MD 20742 and was partially sup-
ported by NSF grants CCR-8906949 and CCR-9111348. Email:
ney&s.princeton.edu.

structure supports query operations for the current
minimum and maximum element, the predecessor and
successor of a given element, and the element closest to
a given number, as well as the operations of insertion
and deletion. Each operation requires O(log log U) time,
where the elements are taken from a universe (0, U}.

We give variants of the VEB data structure that are
faster than the original VEB, but only guarantee approx-
imately correct answers. The notion of approximation
is the following: the operations are guaranteed to be
consistent with the behavior of the corresponding exact
data structure that operates on the elements after they
are mapped by a fixed function f. For the multiplica-
tively approximate variant, the function f preserves the
order of any two elements differing by at least a factor
of some 1 + E. For the additively approximate variant,
the function f preserves the order of any two elements
differing additively by at least some A.

Let the elements be taken from a universe [l, U]. On
an arithmetic RAM with b-bit words, the times required
per operation in our approximate data structures are as
follows:

time

multiplicative additive
approx. (1 + 6) approx. A

+J) 0 (loglogb ;)

Under the standard assumption that b = R(logU +
logn), where n is the measure of input size, the time
required is as follows:

6, M-J l/ poWg(nU) l/ exp(polylodn))

time O(l) O(log log n)

The space requirements of our data structures are
O(1ogU-W~) and W/A), respectively. The space can
be reduced to close to linear in the number of ele-
ments by using dynamic hashing. Specifically, the space

187

Proceedings of the Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, 187-194 (1994)

188 MATIAS ET AL.

needed is O(]S] + If(S)] . t), where S is the set of ele-
ments, f is the fixed function mapping the elements
of S (hence, If(S)1 is the number of distinct elements
under the mapping), and t is the time required per op-
eration. The overhead incurred by using dynamic hash-
ing is constant per memory access with high probabil-
ity [6, 51. Thus, if the data structures are implemented
to use nearly linear space, the times given per operation
hold only with high probability.

1.1 Description of the data structure. The ap-
proach is simple to explain, and we illustrate it for the
multiplicative variant with c = 1 and b = 1 + [log U].
Let f(i) = [log,ij (th e index of i’s most significant bit).
The mapping preserves the order of any two elements
differing by more than a factor of two and effectively
reduces the universe size to U’ = 1 + [log UJ. On an
arithmetic RAM with b-size words, a bit-vector for the
mapped elements fits in a single word, so that succes-
sor and predecessor queries can be computed with a few
bitwise and arithmetic operations. The only additional
structures are a linked list of the elements and a dictio-
nary mapping bit indices to list elements.

In general, each of the approximate problems with
universe size U reduces to the exact problem with a
smaller universe size U’: For the case of multiplicative
approximation we have size

u’ = 2 logs(U)/c = O(log,+, U))

and for the case of additive approximation

U’=U/A.

Each reduction is effectively reversible, yielding an
equivalence between each approximate problem and the
exact problem with a smaller universe. The equivalence
holds generally for any numeric data type whose seman-
tics depend only on the ordering of the elements. The
equivalence has an alternate interpretation: each ap-
proximate problem is equivalent to the exact problem on
a machine with larger words. Thus, it precludes faster
approximate variants that don’t take advantage of fast
operations on words.

For universe sizes bigger than the number of bits
in a word, we apply the recursive divide-and-conquer
approach from the original VEB data structure. Each
operation on a universe of size U’ reduces to a single
operation on a universe of size 0 plus a few constant
time operations. When the universe size is b, only
a small constant number of arithmetic and bitwise
operations are required. This gives a running time
of O(log log* U’), where UI is the effective universe
size after applying the universe reduction from the
approximate to the exact problem.

1.2 Outline. In the next section we motivate our
development of approximate VEB data structures by
demonstrating how they can be used in three well-
known algorithms: Prim’s algorithm for minimum span-
ning trees, Dijkstra’s shortest paths algorithm, and an
on-line version of the Graham scan for finding convex
hulls. Related work is discussed in Section 3. Our model
of computation is defined in Section 4. In Section 5, we
show how to construct our approximate VEB data struc-
tures and we analyze their characteristics. We make
concluding remarks in Section 6.

2 Applications

We consider three prototypical applications: to min-
imum spanning trees, to single-source shortest paths,
and to semi-dynamic on-line convex hulls. Our approx-
imate minimum spanning tree algorithm runs in lin-
ear time and is arguably simpler and more practical
than the two known linear-time MST algorithms. Our
approximate single-source shortest paths algorithm is
faster than any known algorithm on sparse graphs. Our
on-line convex hull algorithm is also the fastest known
in its class; previously known techniques require pre-
processing and thus are not suitable for on-line or dy-
namic problems. The first two applications are obtained
by substituting our data structures into standard, well-
known algorithms. The third is obtained by a straight-
forward adaptation of an existing algorithm to the on-
line case. These examples are considered mainly as pro-
totypical applications. In general, approximate data
structures can be used in place of any exact counter-
part.

Our results below assume a RAM with a logarithmic
word size as our model of computation, described in
more detail in Section 4. The proofs are simple and are
given in the full paper.

2.1 Minimum spanning trees. For the minimum
spanning tree problem, we show the following result
about the performance of Prim’s algorithm [16, 25, 71
when our approximate VEB data structure is used to
implement the priority queue:

THEOREM 2.1. Given a graph with edge weights
in (0, .., U), Prim’s algon’thm, when implemented with
our approximate VEB with multiplicative error (1 + c),
finds a (1 + e)-approximate minimum spanning tree
in an n-node, m-edge graph in O((n + m)log(l +
(log 9)/ log log nU)) time.

For l/c 5 polylog(nU), Theorem 2.1 gives a linear-
time algorithm. This algorithm is arguably simpler
and more practical than the two known linear-time
MST algorithms. This application is a prototypical

APPROXIMATE DATA STRUCTURES WITH APPLICATIONS 189

example for which the use of an approximate data
structure is equivalent to slightly perturbing the input.
Approximate data structures can be “plugged in” to
such algorithms without modifying the algorithm.

2.2 Shortest paths. For the single-source shortest
paths problem, we get the following result by using an
approximate VEB data structure as a priority queue in
Dijkstra’s algorithm (see, e.g., [27, Thm 7.61):

THEOREM 2.2. Given a graph with edge weights in
(0, .“, w and any 0 < e 5 2, Dijkstra’s algorithm,
when implemented with our approximate VEB with mul-
liplica2ive error (1 + e/(2n)), computes single-source
shortest path distances within a factor of (1 + 6) in
O((n + m)log(log~/loglogU)) time.

If log(l/c) 5 polylog(n)loglogU, the algorithm
runs in O((n + m) log log n) time - faster than any
known algorithm on sparse graphs - and is simpler
than theoretically competitive algorithms. This is a
prototypical example of an algorithm for which the
error increases by the multiplicative factor at each step.
If such an algorithm runs in polynomial time, then
O(loglogn) time per VEB operation can be obtained
with insignificant net error. Again, this speed-up can be
obtained with no adaptation of the original algorithm.

Analysis. The proof of Theorem 2.2 follows the proof
of the exact shortest paths algorithm (see, e.g., [27,
Thm 7.61). The crux of the proof is an inductive claim,
saying that any vertex w that becomes labeled during or
after the scanning of a vertex v also satisfies dist(w) 1
dist(v), where dist(w) is a so-called tentative distance
from the source to w. When using a (l+c)-approximate
VEB data structure to implement the priority queue, the
inductive claim is replaced by

dist(w) 2 dist(v)/(l + e/(2n))’ ,

where vertex v is the ith vertex to be scanned. Thus,
the accumulated multiplicative error is bounded by

(1 + ~/(2n))~ 5 e+ 5 (1 + e) .

We leave the details to the full paper, and only note that
it is not difficult to devise an example where the error
is actually accumulated exponentially at each iteration.

2.3 On-line convex hull. Finally, we consider the
semi-dynamic on-line convex hull problem. In this
problem, a set of planar points is processed in sequence.
After each point is processed, the convex hull of the
points given so far must be computed. Queries of the
form “is z in the current hull?” can also be given at any
time. For the approximate version, the hull computed

and the answers given must be consistent with a (l+A)-
approximate hull, which is contained within the true
convex hull such that the distance of any point on the
true hull to the approximate hull is O(A) times the
diameter.

We show the following result about the Graham
scan algorithm [12] h w en run using our approximate
VEB data structure:

THEOREM 2.3. The on-line (1 + A)-approximate
convex hull can be computed by a Graham scan in
constant amortized time per update if A 2 logmen for
any fixed c > 0, and in O(loglog n) amortized time per
update if A 2 n-‘.

This represents the first constant-amortized-time-
per-query approximation algorithm for the on-line prob-
lem. This example demonstrates the usefulness of ap-
proximate data structures for dynamic/on-line prob-
lems. Related approximate sorting techniques require
preprocessing, which precludes their use for on-line
problems.

Analysis. Graham’s scan algorithm is based on scan-
ning the points according to an order determined by
their polar representation, relative to a point that is in
the convex hull, and maintaining the convex hull via
local corrections. We adapt Graham’s scan to obtain
our on-line algorithm, as sketched below. As an invari-
ant, we have a set of points that are in the intermediate
convex hull, stored in an approximate VEB according to
their angular coordinates. The universe is [0,2x] with a
A additive error, which can be interpreted as the per-
turbation error of points in their angular coordinate,
without changing their values in the distance coordi-
nates. This results in point displacements of at most
(1 + A) times the diameter of the convex hull.

Given a new point, its successor and predecessor
in the VEB are found, and the operations required to
check the convex hull and, if necessary, to correct it
are carried on, as in Graham’s algorithm [12]. These
operations may include the insertion of the new point
into the VEB (if the point is on the convex hull) and the
possible deletion of other points. Since each point can
only be deleted once from the convex hull, the amortized
number of VEB operations per point is constant.

3 Related work
Our work was inspired by and improves upon data
structures developed for use in dynamic random variate
generation by Matias, Vitter, and Ni [19].

Approximation techniques such as rounding and
bucketing have been widely used in algorithm design.

190

This is the first work we know of that gives a general-
purpose approximate data structure.

Finite precision arithmetic. The sensitivity of
algorithms to approximate data structures is related
in spirit to the challenging problems that arise from
various types of error in numeric computations. Such
errors has been studied, for example, in the context of
computational geometry [8, 9, 13, 14, 21, 22, 231. We
discuss this further in Section 6.

Approximate sorting. Bern, Karloff, Raghavan, and
Schieber [3] introduced approximate sorting and applied
it to several geometric problems. Their results include
an O((n log log n)/c)-t ime algorithm that finds a (1 +c)-
approximate Euclidean minimum spanning tree. They
also gave an O(n)-time algorithm that finds a (1 + A)-
approximate convex hull for any A 2 l/polynomial.

In a loose sense, approximate VEB data structures
generalize approximate sorting. The advantages of an
approximate VEB are the following. An approximate
VEB bounds the error for each element individually.
Thus, an approximate VEB is applicable for problems
such as the general minimum spanning tree problem,
for which the answer depends on only a subset of the
elements. The approximate sort of Bern et al. bounds
the net error, which is not sufficient for such problems.
More importantly, a VEB is dynamic, so is applicable
to dynamic problems such as on-line convex hull and
in algorithms such as Dijkstra’s algorithm in which
the elements to be ordered are not known in advance.
Sorting requires precomputation, so is not applicable to
such problems.

Convex hull algorithms. There are several relevant
works for the on-line convex hull problem. Shamos (see,
e.g., [26]) gave an on-line algorithm for (exact) convex
hull that takes O(log n) amortized time per update step.
Preparata [24] gave a real-time on-line (exact) convex
hull algorithm with O(logn)-time worst-case time per
update step. Bentley, Faust, and Preparata [2] give
an O(n + l/A)-t ime algorithm that finds a (1 + A)-
approximate convex hull. Their result was superseded
by the result of Bern et al. mentioned above. Janardan
[15] gave an algorithm maintaining a fully dynamic
(1 + A)-approximate convex hull (allowing deletion of
points) in O(log(n)/A) time per request. Our on-line
approximation algorithm is based on Graham’s scan
algorithm [12] and can be viewed as a combination of
the algorithms by Shamos and by Bentley et al., with
the replacement of an exact VEB data structure by an
approximate variant.

Computation with large words. Kirkpatrick and
5 Fast approximate data structures
This section gives the details of our approximate VEB
data structure. First we eive the relevant semantics Reich [17] considered exact sorting with large words, --..-. ~~

MATIAS ET AL.

giving upper and lower bounds. Their interest was
theoretical, but Lemma 5.11, which in some sense says
that maintaining an approximate VEB data structure
is equivalent to maintaining an exact counterpart us-
ing larger words, suggests that lower bounds on com-
putations with large words are relevant to approximate
sorting and data structures.

Exploiting the power of RAM. Fredman and
Willard have considered a number of data structures
taking advantage of arithmetic and bitwise operations
on words of size O(logU). In [lo], they presented the
fusion tree data structure. Briefly, fusion trees im-
plement the VEB data type in time O(logn/loglogn).
They also presented an atomic heap data structure [ll]
based on their fusion tree and used it to obtain a linear-
time minimum spanning tree algorithm and an O(m +
n log n/ log log n)-time single-source shortest paths algo
rithm. Willard [29] also considered similar applications
to related geometric and searching problems. Generally,
these works assume a machine model similar to ours and
demonstrate remarkable theoretical consequences of the
model. On the other hand, they are more complicated
and involve larger constants.

Subsequent to our work Klein and Tarjan recently
announced a randomized minimum spanning tree algo-
rithm that requires only expected linear time [18]. Ar-
guably, our algorithm is simpler and more practical.

4 Model of computation
The model of computation assumed in this paper is
a modernized version of the random access machine
(RAM). Many RAM models of a similar nature have
been defined in the literature, dating back to the
early 1960s [l]. Our RAM model is a realistic variant
of the logarithmic-cost RAM [l]: the model assumes
constant-time exact binary integer arithmetic (+, -,
x, div), bitwise operations (left-shift, right-shift,
bitwise-xor, bitwise-and), and addressing operations
on words of size b. Put another way, the word size
of the RAM is b. We assume that numbers are of
the form i + j/2*, where i and j are integers with
0 5 i, j < 2*, and that the numbers are represented with
two words, the first holding i and the second holding
i. For simplicity of exposition, we use the “most-
significant-bit” function MSB(z) =]logzz]; it can be
implemented in small constant time via the previously
mentioned operations and has lower circuit complexity
than, e.g., division.

APPROXIMATE DATA STRUCTURES WITH APPLICATIONS 191

and notations. The operations supported are:

N c INsERT(z,~),
DELETE(N),
N c SEARCH(Z),
N t MINIMUM(),
N c MAXIMUM(),
N +PREDECESSOR(N),
N+SUCCESSOR(N),
d + DATA(N), and
3: +ELEMENT(N).

The INSERT operation and the query operations return
the name N of the element in question. The name is
just a pointer into the data structure allowing constant-
time access to the element. Subsequent operations on
the element are passed this pointer so they can access
the element in constant time. INSERT takes an addi-
tional parameter d, an arbitrary auxiliary data item.
SEARCH(Z), where z is a real number (but not neces-
sarily an element), returns the name of the largest el-
ement less than or equal to Z. For the approximate
variants, the query operations are approximate in that
the element returned by the query is within a (1 + c)
relative factor or a A absolute amount of the correct
value. Operations ELEMENT(N) and DATA(N), given
an element’s name N, return the element and its data
item, respectively.

The universe (specified by V) and, for the approx-
imate variants, the error of approximation (c or A) are
specified when the data structure is instantiated.

5.1 Equivalence of various approximations.
The lemma below assumes a logarithmic word-size RAM.
The notion of equivalence between data structures is
that, given one of the data structures, the other can be
simulated with constant-time overhead per operation.

LEMMA 5.1. The problem of representing a multi-
plicatively (I+ c)-approzimate VEB OS universe [l, U] is
equivalent to the problem of representing an exact VEB
on universe (0, 1, U(log,+, U)).

The problem of representing an additively A-
approximate VEB on universe [0, U] is equivalent to
the problem of representing an exact VEB on universe
(0, 1, . . . > NJlA>l-

Proof. Assume we have a data structure for the
exact data type on the specified universe. To simulate
the multiplicatively approximate data structure, the
natural mapping to apply to the elements (as discussed
previously) is z H [log,+, z]. Instead, we map x to
approximately &(10gi+~ Z) M (log, z)/c and we use a
mapping that is faster to compute: Let k = [log, $1, let

x = i + j/2”, and let L = MSB(i). We use the mapping
f that maps x to

e left-shift(k)
bitwise-or (i right-shift (e - k))
bitwise-xor (1 left-shift k)
bitwise-or (j right-shift (b + .f - k)) .

If 1< k, then to right-shift by (e- k) means to left-shift
by (k - e). Note that in this case the fractional part of
x is shifted in.

This mapping effectively maps x to the lexicograph-
ically ordered pair (MSB(x), y), where y represents the
bits with indices (.f - 1) though (e - Ic) in x. The first
part of the tuple distinguishes between any two x values
that differ in their most significant bit. If two x values
have MSB(c) = e, then it suffices to distinguish them
if they differ additively by 21sk. The second part of the
tuple suffices for this.

Note that f(1) = 0 and f(U) < 2k+’ log, U =
O(log,+, U). This shows one direction of the first part.
The other direction of the first part is easily shown by
essentially inverting the above mapping, so that distinct
elements map to elements that differ by at least a factor
of 1+ E. Finally, the second part follows by taking the
mapping (x c-) x div A) and its inverse.

5.2 Implementations. Lemma 5.1 reduces the ap-
proximate problems to the exact problem with smaller
universe size. This section gives an appropriate solu-
tion to the exact problem. If an approximate variant
is to be implemented, we assume the elements have al-
ready been mapped by the constant-time function f in
Lemma 5.1. The model of computation is a RAM with
b-bit words.

A dictionary data structure supports update oper-
ations SET(key, value) and UNSET(key) and query op-
eration LOOK-UP(key) (returning the value, if any, as-
sociated with the key). It is well known how to imple-
ment a dictionary by hashing in space proportional to
the number of elements in the dictionary or in an array
of size proportional to the key space. In either case,
all dictionary operations require only constant time. In
the former case, the time is constant with high prob-
ability [6, 51; in the latter case, a well-known trick is
required to instantiate the dictionary in constant time.

Each instance of our data structure will have a
doubly-linked list of element/datum pairs. The list is
ordered by the ordering induced by the elements. The
name of each element is a pointer to its record in this
list.

If the set to be stored is a multiset, as will generally
be the case in simulating an approximate variant, then

192 MATIAS ET AL.

the elements will be replaced by buckets, which are
doubly-linked lists holding the multiple occurrences of
an element. Each occurrence holds a pointer to its
bucket. In this case the name of each element is a
pointer to its record within its bucket.

Each instance will also have a dictionary mapping
each element in the set to its name. If the set is
a multiset, it will map each element to its bucket.
In general, the universe, determined when the data
structure is instantiated, is of the form {L, U). Each
instance records the appropriate L and U values and
subtracts L from each element, so that the effective
universe is (0, U - L).

The ordered list and the dictionary suffice to
support constant-time PREDECESSOR, SUCCESSOR,
MINIMUM, and MAXIMUM operations. The other oper-
ations use the list and dictionary as follows. INSERT(~)
finds the predecessor-to-be of i by calling SEARCH(~),
inserts i into the list after the predecessor, and updates
the dictionary. If S is a multiset, i is inserted instead
into its bucket and the dictionary is updated only if the
bucket didn’t previously exist. DELETE(N) deletes the
element from the list (or from its bucket) and updates
the dictionary appropriately.

How SEARCH works depends on the size of the uni-
verse. The remainder of this section describes SEARCH
queries and how INSERT and DELETE maintain the ad-
ditional structure needed to support SEARCH queries.

5.3 Bit-vectors. For a universe of size b, the
additional structure required is a single b-bit word w.
As described in Section 1.1, the word represents a bit
vector; the ith bit is 1 iff the dictionary contains an
element i. INSERT sets this bit; DELETE unsets it if no
occurrences of i remain in the set. Setting or unsetting
bits can be done with a few constant time operations.

The SEARCH(~) operation is implemented as follows.
If the list is empty or i is less than the minimumelement,
return nil. Otherwise, let

of the original van Emde Boas data structure. For
those not familiar with the original data structure, we
first give an intermediate data structure that is con-
ceptually simpler as a stepping stone. The additional
data structures to support SEARCH(~) for a universe
{O,l, d - 1) are as follows.

Divide the problem into b + 1 subproblems: if the
current set of elements is S, let Sk denote the set
{i E S : i div bi- 1 = k). Inductively maintain a VEB
data structure for each non-empty set Sk. Note that
the universe size for each Sk is bi-‘. Each Sk can be a
multiset only if S is.

Let T denote the set {Ic : Sk not empty }. Induc-
tively maintain a VEB data structure for the set T. The
datum for each element k is the data structure for 4.
Note that the universe size for T is b. Note also that T
need not support multi-elements.

Implement SEARCH(~) as follows. If i is in the
dictionary, return i’s name. Otherwise, determine k
such that i would be in Sk if i were in S. Recursively
search in T for the largest element 6’ less than or equal
to k. If k’ < k or i is less than the minimum element
of Sk, return the maximum element of Sk!. Otherwise,
recursively search for the largest element less than or
equal to i in Sk and return it.

INSERT and DELETE maintain the additional data
structures as follows. INSERT(~) inserts i recursively
into the appropriate Sk. If Sk was previously empty, it
creates the data structure for Sk and recursively inserts
k into T. DELETE(N) recursively deletes the element
from the appropriate Sk. If Sk becomes empty, it deletes
k from T.

Analysis. Because the universe of the set T is of
size b, all operations maintaining T take constant time.
Thus, each SEARCH, INSERT, and DELETE for a set
with universe of size U = bi requires a few constant-
time operations and possibly one recursive call on a
universe of size hi-l. Thus, each such operation requires

j c MSB(w bitwise-and((l left-shift i) - 1)) , O(j) = O(logb V) time.

i.e., let j be the index of the most significant l-bit in w
that is at most as significant as the ith bit. Return j’s
name from the dictionary.

Analysis. On universes of size b, all operations require
only a few constant-time operations. If hashing is used
to implement the dictionary, the total space (number
of words) required at any time is proportional to the
number of elements currently in the set.

5.4 Intermediate data structure. The fully re-
cursive data structure is a straightforward modification

To analyze the space requirement, note that the size
of the data structure depends only on the elements in
the current set. Assuming hashing is used to implement
the dictionaries, the space required is proportional to
the number of elements in the current set plus the space
that would have been required if the distinct elements
of the current set had simply been inserted into the
data structure. The latter space would be at worst
proportional to the time taken for the insertions. Thus,
the total space required is proportional to the number
of elements plus O(log, V) times the number of distinct
elements.

5.5 Full recursion. We exponentially decrease the erwise, each set Sk and Sk, was already of size one, so
above time by balancing the subdivision of the problem only the deletion of the second element from T took
exactly as is done in the original van Emde Boas data more than constant time.
structure.

The first modification is to balance the universe
Analysis. With the two modifications, each SEARCH,

sizes of the set T, and the sets {Sk}. Assume the
INSERT, and DELETE for a universe of size U = b2’

universe size is b2’. Note that b2’ = b2’-’ x b2je1.
requires at most one non-constant-time recursive call,

Define Sk = {i E S : i div b2jw1 = k} and define
on a set with universe size b2’-‘ . Thus, the time required

T = {k: : Sk is not empty}. Note that the universe size
for each operation is O(j) = O(loglogb U). As for the

of each Sk and of T is b2je1.
intermediate data structure, the total space is at worst
proportional to the number of elements, plus the time

With this modification, SEARCH, INSERT, and per operation (now O(loglogb U)) times the number of
DELETE are still well defined. Inspection of SEARCH distinct elements.
shows that if SEARCH finds k in T, it does so in con-
stant time, and otherwise it does not search recursively 6 Conclusions
in Sk. Thus, only one non-constant-time recursion is
required, into a universe of size b2’-‘. Thus, SEARCH

The approximate data structures described in this pa-

requires O(j) time.
per are simple and efficient. No large constants are hid-
den in the asymptotic notations-in fact, a “back of the

INSERT and DELETE, however, do not quite have envelope” calculation indicates significant speed-up in
this nice property. In the event that Sk was previously comparison to the standard van Emde Boas data struc-
empty, INSERT descends recursively into both Sk and T. ture. The degree of speed-up in practice will depend
Similarly, when Sk becomes empty, DELETE descends upon the machines on which they are implemented.
recursively into both Sk and T. Machines on which binary arithmetic and bitwise op-

The following modification to the data structure erations on words are nearly as fast as, say, compari-
fixes this problem, just as in the original van Emde Boas son between two words will obtain the most speed-up.
data structure. Note that INSERT only updates T when Practically, our results encourage the development of
an element is inserted into an empty Sk. Similarly, machines which support fast binary arithmetic and bit-
DELETE only updates T when the last element is deleted wise operations on large words. Theoretically, our re-
from the set Sk. Modify the data structure (and all sults suggest the need for a model of computation that
recursive data structures) so that the recursive data more accurately measures the cost of operations that
structures exist only when IS] 2 2. When (S(= 1, the are considered to require constant time in traditional
single element is simply held in the list. Thus, insertion models.
into an empty set and deletion from a set of one element The applicability of approximate data structures to
require only constant time. This insures that if INSERT specific algorithms depends on the robustness of such
or DELETE spends more than constant time in T, it will algorithms to inaccurate intermediate computations.
require only constant time in Sk. In this sense, the use of approximate data structures

This modification requires that when S has one ele- has an effect similar to computational errors that arise
ment and a new element is inserted, INSERT instantiates from the use of finite precision arithmetic. In recent
the recursive data structures and inserts both elements years there has been an increasing interest in studying
appropriately. The first element inserted will bring both the effect of such errors on algorithms. Of particular
T and some Sk to size one; this requires constant time. interest were algorithms in computational geometry.
If the second element is inserted into the same set Sk as Frameworks such as the “epsilon geometry” of Guibas,
the first element, T is unchanged. Otherwise, the inser- Salesin and Stolfi [14] may be therefore relevant in our
tion into its newly created set Ski requires only constant context. The “robust algorithms” described by Fortune
time. In either case, only one non-constant-time recur- and Milenkovic [8, 9, 21, 22, 231 are natural candidates
sion is required. for approximate data structures.

Similarly, when S has two elements and one of Expanding the range of applications of approximate
them is deleted, after the appropriate recursive dele- data structures is a fruitful area for further research.
tions, DELETE destroys the recursive data structures Other possible candidates include algorithms in com-
and leaves the data structure holding just the single re- putational geometry that use the well-known sweeping
maining element. If the two elements were in the same technique, provided that they are appropriately robust.
set Sk, then T was already of size one, so only the dele- For instance, in the sweeping algorithm for the line ar-
tion from Sk requires more than constant time. Oth- rangement problem with approximate arithmetic, pre-

APPROXIMATE DATA STRUCTURES WITH APPLICATIONS 193

194

sented by Fortune and Milenkovic [9], the priority queue
can be replaced by an approximate priority queue with
minor adjustments, to obtain an output with similar
accuracy. If the sweeping algorithm of Chew and For-
tune [4] can be shown to be appropriately robust then
the use of the van Emde Boas priority queue there can
be replaced by an approximate variant; an improved
running time may imply better performance for algo-
rithms described in [3].

References

PI

PI

[31

PI

PI

[61

PI

PI

PI

WI

Pll

D4

t131

A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The De-
sign and Analysis of Computer Algorithms. Addison-
Wesley Publishing Company, Inc., Reading, Mas-
sachusetts, 1974.
J. L. Bentley, M. G. Faust, and F. P. Preparata. Ap-
proximation algorithms for convex hulls. Communica-
tions of the ACM, 25(1):64-68, 1982.
M. W. Bern, H. J. Karloff, P. Raghavan, and B.
Schieber. Fast geometric approximation techniques
and geometric embedding problems. Theoretical Com-
puter Science, 106:265-281, 1992.
L. P. Chew and S. Fortune. Sorting helps for Voronoi
diagrams. In 13th Symp. on Mathematical Program-
ming, Japan, 1988.
M. Dietzfelbinger, J. Gil, Y. Matias, and N. Pippenger.
Polynomial Hash Functions are Reliable. Proc. of 19th
International Colloquium on Automata Languages and
Programming, Springer LNCS 623, 235-246, 1992.
M. Dietzfelbinger and F. Meyer auf der Heide. A
New Universal Class of Hash Functions and Dynamic
Hashing in Real Time, In Proc. of 17th International
Colloquium on Automata Languages and Programming,
Springer LNCS 443: 6-19, 1990.
E. W. Dijkstra. A note on two problems in connexion
with graphs. Numerische Mathematik, 1:269-271,
1959.
S. Fortune. Stable maintenance of point-set triangula-
tion in two dimensions. In Proc. of the 30th IEEE An-
nual Symp. on Foundation of Computer Science, 1989.
S. Fortune and V. Milenkovic. Numerical stability of
algorithms for line arrangements. In Proc. of the 7th
Annual Symposium on Computational Geometry, pages
334-341, 1991.
M. L. Fredman and D. E. Willard. Blasting through
the information theoretic barrier with fusion trees. In
Proc. of the 2tnd Ann. ACM Symp. on Theory of
Computing, pages l-7, 1990.
M. L. Fredman and D. E. Willard. Trans-dichotomous
algorithms for minimum spanning trees and shortest
paths. In Proc. of the 31st IEEE Annual Symp. on
Foundation of Computer Science, pages 719-725, 1990.
R. L. Graham. An efficient algorithm for determining
the convex hull of a finite planar set. Information
Processing Letters, 1:132-133, 1972.
D. H. Greene and F. F. Yao. Finite-resolution com-
putational geometry. Proc. of the 27th IEEE Annual

1141

PI

WI

El71

b31

WI

P4
WI

P4

[23l

[24l

[25l

@I

[271

[281

WI

MATIAS ET AL.

Symp. on Foundation of Computer Science, pages 143-
152, 1986.
L. I. Guibas, D. Salesin, and J. Stolfi. Epsilon geom-
etry: Building robust algorithms from imprecise com-
putations. In Proc. of the 5th Annual Symposium on
Computational Geometry, pages 208-217, 1989.
R. Janardan. On maintaining the width and diameter
of a planar point-set online. In Proc. 2nd International
Symposium on Algorithms, volume 557 of Lecture Notes
in Computer Science, pages 137-149. Springer-Verlag,
1991. To appear in International Journal of Computa-
tional Geometry & Applications.
V. Jar&k. 0 jistdm probEmu minim&lmn:m. Prdca
Moravske’ Pr/rodovedeckd Spolecnosti, 6:57-63, 1930.
(In Czech).
D. Kirkpatrick and S. Reisch. Upper bounds for sort-
ing integers on random access machines. Theoretical
Computer Science, 28:263-276, 1984.
P. N. Klein and R. E. Tarjan. A linear-time algorithm
for minimum spanning tree. Personal communication,
August, 1993.
Y. Matias, J. S. Vitter, and W.-C. Ni. Dynamic gener-
ation of random variates. In Proc. of the Fourth Annual
ACM-SIAM Symposium on Discrete Algorithms, pages
361-370, 1993.
K. Mehlhorn. Data Structures and Algorithms.
Springer-Verlag, Berlin, Heidelberg, 1984.
V. Milenkovic. Verijiable Implementations of Geomet-
ric Algorithms using Finite Precision Arithmetic. PhD
thesis, Carnegie-Mellon University, 1988.
V. Milenkovic. Calculating approximate curve arrange-
ments using rounded arithmetic. In Proc. of the 5th
Annual Symposium on Computational Geometry, pages
197-207, 1989.
V. Milenkovic. Double precision geometry: A general
technique for calculating line and segment intersections
using rounded arithmetic. In Proc. of the 30th IEEE
Annual Symp. on Foundation of Computer Science,
1989.
F. P. Preparata. An optimal real-time algorithm for
planar convex hulls. Communications of the ACM,
22(7):402-405, 1979.
R. C. Prim. Shortest connection networks and some
generalizations. Bell System Tech. J., 36:1389-1401,
1957.
F. P. Preparata and M. I. Shamos. Computational
Geometry, Springer-Verlag, New York, 1985.
R. E. Tarjan. Data Structures and Network Algo-
rithms. SIAM, Philadelphia, 1983.
P. van Emde Boas, R. Kaas, and E. Zijlstra. Design
and implementation of an efficient priority queue.
Math. Systems Theory, 10:99-127, 1977.
D. E. Willard. Applications of the fusion tree method
to computational geometry and searching. In Proc. of
the Third Annual ACM-SIAM Symposium on Discrete
Algorithms, 1992.

