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Balancing Minimum Spanning and Shortest Path Trees 

Samir Khuller’ Balaji Raghavacharit 

Abstract 
Efficient algorithms are known for computing a mini- 
mum spann.ing tree, or a shortest path. tree (with a fixed 
vertex as the root). The weight of a shortest path tree 
can be much more than the weight of a minimum spa,n- 
ning tree. Conversely, the distance bet,ween the root, 
and any vertex in a minimum spanning tree may be 
much more than the distance bet#ween the two vertices 
in the graph. Consider the problem of balancing be- 
tween the two kinds of trees: Does every graph contain 
a tree that is “light” (at most a constant times heavier 
than the minimum spanning t,ree), such that the dis- 
tance from the root to any vertex in t,he tree is no more 
than a constant times the true distance? This paper 
answers the question in the affirmative. It is shown 
that there is a continuous tradeoff between the two pa- 
rameters. For every y > 0, there is a tree in the graph 
whose total weight is at most 1 + $? times the weight 
of a minimum spanning tree, such that the di&nce in 
the tree between the root, and any vertex is at, most 
1 + &y times the true distance. Efficient sequential 
and parallel algorithms achieving these factors are pro- 
vided. The algorithms are shown to be optimal in two 
ways. First, it is shown that no algorithm can achieve 
better factors in all graphs, because there a.re graphs 
that do not have better trees. Second, it is shown that 
even on a per-graph basis, finding trees that achieve 
better factors is NP-hard. 
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1 Introduction 
Let a graph G = (V, E) represent a feasible 
communications network. An edge (a, b) denotes 
the feasibility of adding a link from site o to site 
b. Each edge e has a nonnega.tive weight w(e), 
which represents the distance between the sites. 
The weight is a measure of the cost to add the link, 
and also of the time taken for a message to travel 
along it. The weight of a network is the sum of the 
weights of its edges. A minimum spnning tree, 
T&f, is a spanning subgraph of G whose weight 
is minimum, i.e., the cheapest network that will 
allow the sites to communicate. Fast algorithms 
for computing a minimum spanning tree (MST) in 
a graph are known [9, 10, 12, 151. 

Assume that there is a root vertex T in the 
network from which many messages are sent. We 
would like the messages to be sent along short 
paths from the root to the vertices in the net- 
work, so that the messa.ges reach their destinations 
quickly. A shortest path tree, Ts, is a tree rooted at 
T such that the distance between the root a.nd any 
vertex u in T,y is exa.ctly the same as the length of 
the shortest path between u and T in G. Dijkstra’s 
algorithm can be used for computing T.y [8, 93. 

It is possible that the weight of Ts is signif- 
ica.ntly more tl1a.n the weight of TM. In the ex- 
ample of Fig. 1, in the n-vertex graph, the short- 
est path tree has a weight of n(n”), whereas the 
weight of an MST is only O(n). 

Conversely, certain vertices that are close to 
the root in a gra.ph can be far away from r in TM. 
In the example of Fig. 2, all edges on the cycle 
have a weight of 1, except the edge to the root 
that closes the cycle. The weight of the MST is 
n - 1, but the vertex that is at a distance of 1 + E 
in the graph is at a distance of n - 1 in TM. 
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Figure 1: A Heavy Shortest-Path Tree 

This raises the question of finding a spanning 
tree T whose total weight is not much more thaa 
the weight of TM, and such that the dista.nce from 
the root to any vertex in T is not much more 
than the distance in Ts. More precisely we ask 
the following question: Does every graph conta.in 
a tree that is “light” (at most a constant times 
heavier than the minimum spa.nning tree), such 
that the distance from the root to any vertex in 
the tree is no more tha.n a constant times the 
true distance? We refer to such a tree as a Light 
Approximate Shortest-path Tnze (LAST). 

DEFINITION 1.1. Let G be an arbitrary gmph 
with non-negative edge weights and a root vertex 
r. A tree rooted at r is called an (a,P)-LAST if 
the following conditions are satisfied (a!,/3 2 1): 

1. The distance of every vertex v fern r in T is 
at most Q times the distance between v and r 
in G. 

2. The weight of T is at most p times the weigh,t 
of a MST of G. 

The main result in this paper, given in $3, is 
that for any (Y 2 1 and ,8 > 1 + 5, every gra.ph 
contains an (cr, P)-LAST for any root. Our proof is 
constructive: we give an algorithm that, given the 
n-vertex trees TM and Ts, finds the (a,P)-LAST 
in O(n) time. 

In $4, we show that for cy > 1 this result is 
optimal: for any o > 1 and 1 5 p < 1+ &, there 
are graphs containing no (o,P)-LAST a.t some 
root, and the problem of deciding whether a given 
graph contains an (a,@-LAST is NP-complete. 

For the remaining case, when Q = 1, the 
problem reduces to finding a shortest-path tree 

Figure 2: An MST with a Long Path 

of at most a certain weight. In fj5, we describe 
how the problem of finding a minimum-weight 
shortest-pa.th tree can be reduced to the problem 
of finding a minimum-weight branching in the 
shortest-path subgraph of G, a,nd how this yields 
an efficient algorithm for finding an optimal (1, /3)- 
LAST. 

In $6, we sketch how the algorithm from $3 
can be parallelized to run in O(logn) time using 
n processors. 

2 Related Work 

Awerbuch, Baratz and Peleg [2] showed that every 
graph has a shallow-light tree, which is a tree 
that is at most a constant times heavier tha.n TM, 
and with the property that the diameter of T 
is at most a constant times the diameter of G. 
They also gave an algorithm to compute such a 
tree efficiently. For any gra,ph, if we fix the root 
arbitra.rily and fix a to be an a.rbitrary constant 
greater tl1a.n one, then every (a, l-l- &)-LAST is 
also a shallow-light tree. Recently, we learned that 
Awerbuch, Baratz and Peleg [3] have extended 
their sha,llow-light-tree algorithm to obta,in an 
(a, 1 + &)-LAST in O(m + nlogn) time. 

For VLSI applications of LAST’s, see [5, 61. 
Considerable research has been done on find- 

ing spanners of small size and weight in arbitrary 
graphs, and in Euclidean graphs (graphs induced 
by points in the plane). A t-spanner is a small 
weight spanning subgraph G’ of G, with the prop- 
erty that the distance between a,ny two vertices in 
G’ is at most t times the distance in G. It is known 
that there are graphs that do not have spa,nners 
that are only a constant times heavier than TM. 
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However, in our case we are looking for a “rooted” 
spanner. For a survey of results on spanners, see 
the recent pa,per by Chandra, Das, Narasimhan 
and Soares [4]. Other papers dealing with spa.n- 
ners are by [l, 131. 

3 The Algorithm 
Notation: Let DT(u, V) be the distance along the 
shortest path between vertices ‘u, and v in T. The 
weight of a subgraph X (such as a path or a tree) 
is denoted by w(X) and is defined as the sum of 
the weights of the edges in X. 

The idea is the following: we start with the 
tree TM, and do a depth-first-search (DFS) of the 
tree, starting at the root. When we encounter a 
vertex for the first time, if its dista,nce from the 
root in the current graph is too large, we bring it 
closer by adding its shortest pa.th (in Ts) to the 
current graph. 

The added paths are not too heavy beca.use 
we do not add a path to a vertex unless the vertex 
is far from T in TM, using a.ny of the previously 
added paths. This allows us to bound the added 
weight by charging it to a path in TM - if we 
add a path to a vertex o, and the last path a.dded 
was to vertex u, then the length of the added 
path is bounded by (DT~(T, u)+D~,,(u, ~))/a. By 
summing these bounds, we bound the net added 
weight. This method is inspired by the shallow- 
light tree algorithm of [2]. The funda,mental 
differences are that we added paths to vertices 
that are too far from the root, ra.ther tha.n the 
last such vertex, and tha.t we obtain a.n O(n)-time 
algorithm. 

3.1 Relaxation. To obtain a simple linea,r-time 
algorithm, we don’t add entire paths, and we don’t 
keep track of exact shortest-pa.th distances in the 
current graph. Instead, using sta.nda.rd shortest- 
path techniques [7, pp. 5181, we maintain for each 
vertex v a &stance estimnte d[v] and a prent 
pointer p[v]. The distance estimate of u is always 
an upper bound on the distance to T from v in the 
current graph via the path (v,p[~],pb[~]], . . . . r). 
This invariant is established by the INITIALIZE 
step and maintained through a sequence of RELAX 
steps: 

INITIALIZEO 
Initialize distance estimates, parent pointers. 
1 for v E V - {r} do p[v] * r; d[v] +- co 
2 d[r] + 0 
RELAX(U, w) 
Check for shorter path to v through u. 
1 if d[v] > d[u] + w(u,w) 
2 then d[v] + n[u] + W(U, w) 
3 PM + u 
If during a sequence of relaxa.tion steps, a path 
P = (r = WO,Tl~,O2 )...) V) has been relaxed (i.e., 
rela.xations have been done in order on the pairs 
{(w;, ~i+r)}, possibly interspersed with other re- 
laxations), then a[~] is at most w(P). Thus, for in- 
stance, if P is a shortest path, then d[v] must equal 
w(P), a.nd the path (v,p[v],p[p[v]], . . . . r) must be 
a shortest path. 

3.2 A Relaxing DFS. For our algorithm, we 
do a simple sequence of relaxation steps, and we 
use d[v] to decide whether to add the shortest 
pa.th to V. As we traverse TM, we relax each 
edge (u, V) when we traverse it - once when we 
explore v from u (executing RELAX(U, v)), and 
la.ter when we return from exploring w (executing 
RELAX(W,U)). When we first visit a vertex w, if 
44 > a &s(r, 4, th en we “add the path” from r 
to w (in T,q) by relaxing enough edges on the path 
to lower d[w] sufficiently. 

When we finish the traversal, each distance 
estimate d[w] is bounded by cr DT~(T, w), and so 
the tree T formed by the edges {(w,p[w])} meets 
the cy constraint. If during the traversal, we add 
the shortest path to a vertex w, then we know that 
the weight of the pa,th is bounded by (DT~(T, u) + 
DT~(u, ~))/a, because the corresponding path 
(from r to u via the edges in Ts, and then from 
u to w via the edges in TM) was relaxed. Thus 
we can bound the weight of the added edges as 
described earlier. 

The algorithm is given in Fig. 3. 

3.3 Analysis of the Algorithm. We now 
prove that T has the desired properties: the 
distance from T to any vertex w in T is not 
increased by more than a factor of cy, and w(T) 
is no more thaa (1 + &)“(TM). 
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FIND-LAST(TM,TS,T,O) 
Return an (Q, 1 + -&>-LAST. 
1 INITIALIZE() 
2 DFS(r) 
3 return tree T = {(v,p[w]) 1 v E V - {r)) 

DFS(u) 
Traverse the subtree of TM rooted at u, relaxing 
edges as they are traversed, and adding paths from 
Ts as needed. 
1 if d[u] > cx DT~(T, u) 
2 then ADD-PATH(U) 
3 for each child v .of u in TM 
4 do RELAX(U,O) 
5 DFS(v) 
6 RELAX(D,U) 
ADD-PATH(D) 
Relax edges along path from r to v in Ts. 
1 if d[v] > DT~(T,~)) 
2 then ADD-PATH(pa.rentTs(v)) 
3 RELAX(parentTS(w),w) 

Figure 3: Algorithm to Compute a LAST 

LEMMA 3.1. The distance of each vertex v 
from T in T is at most cr times the distance in 
Ts, i.e., 

DT(r,v) 5 aD~~(r,v), for all 2, E V 

Proof. Clearly the series of relaxation steps 
done by the algorithm guarantees that once a ver- 
tex o has been visited, d[v] 5 a DT~(T, v). Subse- 
quently, d[v] d oes not increase, and, as desc.ribed 
above, the weight of the path (v,p[~],p[p[v]], . . . . T) 
is always at most d[v]. When the algorithm ter- 
minates, this is the path from VI to r in T. II 

LEMMA 3.2. The weight of T is at most ( 1+ 

2 a-l > times the weight of a minimum spanning 
tree, i.e., 

w(T) 5 (1 + A) I 
Proof. Let ve = r and let (or, ~2, . . . . Q) be the 

list of vertices that caused shortest paths to be 

a.dded during the traversal, in the order they were 
encountered. When V; is encountered, the weight 
of the newly a.dded edges is at most DT~(T, wi). 
We will bound C; DT~(T, ui) as follows. 

Observe that, when VU; is encountered, 
cy DT~(T, vi) < d[v;]. As described earlier, the path 
P, composed of the path from T to TI;-~ in TS fol- 
lowed by the path from vi-1 to o; in TM, had been 
relaxed. Thus d[v;] < w(P), and 

Q DT&, vi) < d[v;] 
I w(P) 
= DT&, WI) + DT&L~, v;) 

Summing over i gives 

i=l i=l 
and therefore 

The DFS traversal traverses each edge exa.ctly 
twice, a.nd hence the sum on the right-hand side 
is a.t most twice the weight of TM, i.e., 

k c DT&L-~, vi) L 2 I. 
i=l 

Thus, if any paths are added, their net weight 
is less than &~(TM). The remaining edges are 
from TM, thus giving the result. II 

THEOREM 3.1. (CORRECTNESS) 
The algorithm finds a (1 + A-y, 1 + $)-LAST 
for any y > 0. 

Proof. Let cr = 1 + &y . Then by Lemmas 3.2 
and 3.1 we get 

w(T) < 

DT(~‘) I (I+ x’%) &.(v) 

for all v E V. Hence the tree generated by the 
algorithm is a. (1 + fir, 1 + $)-LAST. 0 
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Notice that these also imply a.n upper bound on 
the diameter of T of 2( l+&) times the dia.meter 
of G. 

We now establish the running time of the 
algorithm. 

THEOREM 3.2. (RUNNING TIME) 
The algorithm runs in O(n) time. Consequently, 
an (a,/?)-LAST can be found in an arbitrary n- 
vertez, m-edge graph in O(m + n log n) time. 

Proof. The number of steps is proportional 
to the number of relaxations. Clearly at most 
2n relaxations occur in DFS, and at most n 
occur in ADD-PATH. TM a.nd Ts can be found 
in O(m + nlogn) time using existing algorithms 
[9, 101. Cl 

Observe that for Euclidean graphs (graphs 
induced by points in the plane) the running time 
is only O(n log n) since the MST can be computed 
in O(nlogn.) time [14]. The rest of the processing 
can be done in linear time. 
Observation 1: Note that Thf and Ts can be 
arbitrary rooted trees - our algorithm will still 
compute a tree spanning the vertices of TM of 
weight at most (1 + 5) w(TM), a,nd in which 
the distance from T to each v is bounded by 
Q h&, v>. Thus, if trees approximating the 
minimum weight and shortest paths are known or 
can be found quickly, a LAST ca.n also be found 
quickly, although the weight and distance blow- 
up may increase by the additional approximation 
factors. 
Observation 2: The algorithm can be used to 
solve the “multiple-root” problem, where there are 
multiple roots, and each vertex is required to be 
close to some root in T rela.tive to its dista.nce to 
its closest root in Ts. 

4 Optimality of the Algorithm 
In this section we show tha.t the algorithm is 
optimal in the following sense. We show that 
for any CY > 1 and 1 5 p < 1 + 5 there is a 
graph such that the graph does not contain an 
(a,P)-LAST, and that the problem of deciding 
whether a given graph conta.ins a.n (a,P)-LAST 
is NP-complete. 

Figure 4: A graph with no (a,P)-LAST for ,0 < 
l+&. (A=a+l,B=a+E-landC=2.) 

4.1 Non-Existence of a LAST. Consider the 
graph shown in Fig. 4. The structure of the graph 
is as follows. The root T is connected to a central 
vertex c by a path of weight A of edges of weight 
some small 6. The central vertex is connected 
through simi1a.r paths of weight B to the 1 lea.ves. 
The root is connected to each leaf with an edge 
of weight C. Let A = a + 1, B = cr + E - 1 aad 
C = 2, where E is an a,rbitra.rily small constant. 
The MST is formed by using all edges except those 
of weight C. 

Any (a,P)-LAST is forced to have all of the 
cost C edges. Since the length of the shortest 
path from the root to any leaf is 2, we cannot 
afford to add the path going through the center 
vertex (which is of length A + B = 2a + E). The 
path to a leaf through some other leaf is of length 
2 + 2B = ~(CV + E), which is also too long. Thus 
we are forced to add the edges from the root to 
every leaf. In addition, all but 4! of the remaining 
edges a.re present. Therefore the weight of any 
(a,P)-LAST is 21+ TM - !?6. More formally, 

THEOREM 4.1. For any a > 1 and /3,1 5 ,B < 
l+ &, there exists a rooted gmph containing no 
(a, P)-LAST. 

Proof. The minimum spanning tree TAG has a 
weight of (a + 1) + ~(CX - l-l- E). Any (a, ,B)-LAST 
ha.s weight ~!!+TM -f%. The ratio of the weight of 
such a tree a.nd TAG tends to 1-t & a.s E, S + 0 and 
f? + 00. Hence, for every fixed p < 1 + &, there 
is a gra.ph tha.t does not have an (a,@-LAST. II 
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4.2 NP-Completeness of LAST Queries. 
We have shown that in general, no algorithm can 
guarantee a.nything better tha.n a.n (a, 1 + -&)- 
LAST, once (Y is fixed. Our proof was based on 
certain graphs having no such trees. An obvious 
question to ask is whether one can do better 
in graphs that do have the required tree as a 
subgraph. Suppose for fixed para.meters (Y a.nd p, 
with (Y > 1 and 1 2 /l < 1 + 5, we ask whether 
a given gra.ph has an (a,P)-LAST. We show that 
this problem is NP-complete. 

THEOREM 4.2. For any (Y > 1, and 1 < /3 < 
1 + 5, the following problem is NP-complete: 
“Given G, and a root r, does G contain an (cY,/~)- 
LAST?” 

Clearly, the problem is in NP. The proof of 
NP-hardness is in two parts. We first show tl1a.t 
for any (Y, and /3 = 1, the problem is NP-complete. 
We then show how to do a reduction from the 
(cr, l)-LAST problem to the (CU, /?)-LAST problem 
for the specified range of /3. 

LEMMA 4.1. The (cy, 1)-LASTproblem is NP- 
hard. 

Proof. We prove this by a reduction from 3- 
SAT. Let F be 3-SAT formula in conjunctive nor- 
mal form - each clause is a subset of three litera.ls 
from the sets (21,. . .,z,} a.nd (31,. . .,Zn}. We 
build a graph in which the (a, l)-LAST’s corre- 
spond to satisfying assignments of F. 

There will be a root vertex R. For each vari- 
able x; we will build the following “ga.dget” to sim- 
ulate the setting of a variable to be true or false. 
There is a “triangle” S, X;, xi corresponding to 
each variable z; (see Fig. 5). 

The weight of the edges (S, X;) and (S, xi) 
is A. There is a path connecting X; and x; of 
length E. There is also a path connecting R to S 
of length D. These paths a,re formed with small 
enough edges to ensure tha.t the edges are in any 
MST. 

For each clause cj there is a vertex Cj, with an 
edge from R to Cj of weight IV. If X; E cj then we 
add an edge from X; to Cj of weight B. If 5; E cj 
then we add an edge from xi to Cj of weight B. 

Observe in this construction that, if A < 
B < W, the minimum spanning trees are exactly 

characterized by the following. The paths [R,S] 
a.nd [X;,xi] belong to the MST. For each variable 
xi, exactly one of the two edges {(S, X;), (S,Xi)} 
is in the MST. For each clause cj, exactly one edge 
of the form (X;, cj) or (x;, cj) for some i is in the 
MST. No other edges are in the MST. 

Next, we use the a constraint to ensure that 
the MST is a,n (cy, l)-LAST iff the path to each 
clause vertex comes from some variable vertex 
X; or T; that has an edge directly to S. If 
we can do this, then we are done - the (o,l)- 
LAST’s will correspond to satisfying assignments 
in the original formula via the following. For each 
variable xi, choose the edge (S,Xi) iff xi is true, 
otherwise choose the edge (S,xi); for each clause 
cj, choose the edge (Xi, cj) (or (X;, cj)), where X; 
(or Zi) is a va.riable (or nega.ted va.riable) satisfying 
Cje 

To ensure this, it suffices that the weights 
A, B, D, E, IV are picked so that they satisfy the 
following constra.ints: 

A+D+E<amin{A+D,B+W} 

A+B+D 5 amin{A+B+D,W} < A+B+D+E. 
For instance, ta.ke A = 1, B = GY, D = 2~3, 
E = (a - 1)(2cv + l), andW=1+2a+i. 0 

We now provide the proof of Theorem 4.2. 
Proof. We now reduce the (o, l)-LAST prob- 

lem to the (cz,P)-LAST problem (for CY > 1, 
lIPat&). 

Let G* be the graph for which we want to solve 
the (a, l)-LAST problem. By Theorem 4.1, there 
exists a graph G’ with no (o,/3)-LAST. Assume 
without loss of generality that the MST of G* 
has weight 1 and the MST of G’ is of weight c (a 
constant to be determined later). Define the graph 
G to be the union of G* and G’ by identifying their 
roots into a single root T. 

Let /?’ be the minimum such that G’ has an 
(a, ,f3’&AST. Define p* analogously for G*. Take 
c = p-p. 

The weight of the MST in G is 1 + c, similarly 
the lightest tree in G meeting the (Y requirement 
is of weight p* + /3’ c. Thus G has an (a,/?)-LAST 
iff p* + /3’c 2 /?(l + c). By our choice of c, this is 
equivalent to ,f3* 2 1. Thus G has an (a,&)-LAST 
iff G* has a.n (o, l)-LAST. II 
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Figure 5: R.eduction from 3-S.4T 

5 Minimum-Weight Shortest-Path Trees 
Finally, we consider what happens when (Y = 1. 
Here, an (a, P)-LAST is a shortest-path tree from 
the root, of weight at most ,0 times the weight of 
the minimum spanning tree. In this section, we 
give an efficient method for finding the minimum- 
weight shortest-path tree. 

The shortest-path subgmph in a rooted, 
weighted, directed graph is obtained from the 
graph by removing those edges (u, V) not on any 
shortest path from the root - those for which 
DT~(T, u) + 2o(u, V) > DT~(T, v). It is easily shown 
that paths from T in the shortest-pa,th subgra.ph 
correspond to shortest paths from T in the original 
graph, and vice versa. 

A bmnching in a rooted, directed graph is 
a spanning tree with all edges directed away 
from the root,. Efficient algorithms for finding 
minimum-weight branchings are known [lo]. 

Thus, finding a minimum-weight shortest pa.th 
tree in a directed graph reduces to finding a 
minimum-weight branching in the shortest-path 
subgraph. To find the minimum-weight shortest 

path tree in an undirected gra.ph, simply direct 
it: duplica.te each edge, directing one copy to 
each endpoint. Shortest-path trees in the original 
gra.ph, directed a.ppropriately, then correspond to 
shortest-pa.th trees in the directed graph. 

6 Parallelizing the LAST Algorithm 

In this section we sketch how the LAST algorithm 
can be parallelized. The parallel algorithm runs 
in O(logn) time using n processors on a CREW 
PRAM. We give details in the full paper. 

Briefly, repla.ce each edge {u,v} in TM with 
the two directed edges (u,v) and (v, u). Let 
C = (el,ez,..., e271--2) be the edges of an Euler 
tour representing a, DFS traversal of TM, sta.rting 
at the root. Let ei = (ui,ui+l). Abusing notation, 
let Dc(i,j) denote C:=i w(ek). For i < j, define 
the relation m(i, j) to be true if and only if 

For fixed j, the relation m(i,j) is monotone in 
i. We show that this is sufficient to compute the 
function M(i) = min(j > i : m(i,j)} in O(logn) 
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time and n processors. Intuitively, UM(~) is the 
next vertex that will have to have its shortest path 
added if u; does. 

We construct the LAST tree T as follows. Let 
PS(V) denote the parent of vertex 2, in Ts. Let 
PM(V) denote the parent of v in TM. Let Q be the 
smallest set containing 0 and closed under M(m). 
Let R be the smallest set containing {u; : i E Q} 
and closed under PS(.). Assign p[v] t PS(V) for 
v E R, and p[v] t PM(O) otherwise. Take the tree 
T to consist of the edges {(v,p[v])}. 

7 Conclusions 
We have demonstrated that every graph contains 
trees that offer a continuous tradeoff between 
minimum spa.nning trees and shortest path trees. 
Our proof is constructive and yields a simple and 
efficient algorithm . 

As a corollary of our result, we can approxi- 
mate the case when we need to compute light trees 
in which the sum of distances from the root to each 
vertex is minimum. The quality of the approxima- 
tion is the same as in our problem. Is it possible 
to do better? What about a tree with summation 
of all pairs distances or with a fixed set of roots? 

One could pose the same question for di- 
graphs, and ask for the existence of a branching 
(with a root T), with the property tha.t the dis- 
tance from T to any vertex is a.t most a constant 
time the true distance, and the weight is not much 
more than the minimum weight branching. It is 
not difficult to see that there are graphs for which 
a branching with this property does not exist. 
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