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Given n points in the plane, the degree-K span-

ning tree problem asks for a spanning tree of min-

imum weight in which the degree of each vertex is

at most K. This paper addresses the problem of

computing low- weight degree-K spanning trees for

K >2. It is shown that for an arbitrary collection

of n points in the plane, there exists a spanning

tree of degree three whose weight is at most 1.5

times the weight of a minimum spanning tree. It

is shown that there exists a spanning tree of de-

gree four whose weight is at most 1.25 times the

weight of a minimum spanning tree. These results

solve open problems posed by Papadimitriou and

Vazirani. Moreover, if a minimum spanning tree is

given as part of the input, the trees can be com-

puted in O(n) time.

The results are generalized to points in higher

dimensions. It is shown that for any d 23, an ar-

bitrary collection of points in R~ contains a span-

ning tree of degree three, whose weight is at most

5/3 times the weight of a minimum spanning tree.

This is the first paper that achieves factors better

than two for these problems.
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1 Introduction

Given n points in the plane, how do we find a span-

ning tree of minimum weight among those in which

each vertex has degree at most K? Here the weight

of an edge between two points is defined to be the

Euclidean dist ante between them. This problem

is referred to as the Euclidean degree-K span-

ning tree problem and is a generalization of the

Hamilton Path problem which is known to be NP-

hard [10, 12]. When K = 3, it was shown to be

NP-hard by Papadimitriou and Vazirani [15], who

conjectured that it is NP-hard for K = 4 as well.

When K = 5, the problem can be solved in poly-

nomial time [14].

This paper addresses the problem of computing

low weight degree-K spanning trees for K >2. In

any metric space, it is known that there always ex-

ists a spanning tree of degree 2 whose cost is at

most twice the cost of a minimum spanning tree

(MST). This is shown by taking an Euler tour of

an MST (in which each edge is taken twice) and

producing a Hamilton tour by short-cutting the

Euler tour. In the case of general metric spaces,

it is easy to generate examples in which the ratio

of a shortest Hamilton path to the weight of a min-

imum spanning tree is arbitrarily close to two. But

such examples do not translate to points in 32~.

In view of this, Papadimitriou and Vazirani [15]

posed the problem of obtaining factors better than

two for the Euclidean degree-K spanning tree prob-

lem. It should be noted that in the special case of
K = 2, Christofides [3] gave a simple and elegant

polynomial time approximation algorithm with an

approximation ratio of 1.5 for computing a travel-

ing salesperson tour for points satisfying the trian-

gle inequality (points in a metric space).
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1.1 Our Contributions

In this paper, we show that for an arbitrary collec-

tion of n points in the plane, there exists a degree-3

spanning tree whose weight is at most 1.5 times the

weight of a minimum spanning tree. We also show

that there exists a degree-4 spanning tree whose

weight is at most 1.25 times the weight of a mini-

mum spanning tree. This solves a ten year old open

problem posed by Papadimitriou and Vazirani [15].

Moreover, if a minimum spanning tree is given

as part of the input, the trees can be computed

in O(n) time. Note that our bound of 1.5 for the

degree-3 spanning tree problem is an “absolute”

guarantee (based on the weight of an MST) as op-

posed to a “relative” guarantee for the degree-2

spanning tree obtained by Christofides [3] (based

on the weight of an optimal solution).

We also generalize our results to points in higher

dimensions. We show that for any d >2, an arbi-

trary collection of points in $?d contains a degree-3

spanning tree whose weight is at most 5/3 times

the weight of a minimum spanning tree. This is

the first paper that achieves factors better than

two for these problems.

1.2 Significance of Our Results

Many approximation algorithms make use of the

triangle inequality to obtain approximate solutions

to NP-hard problems. These algorithms typically

involve a “short-cutting” step where the triangle in-

equality is used to bound the cost of the obtained

solution. Examples include Christofides’ heuristic

for the traveling salesperson problem [3], bicon-

nectivity augmentation [8], approximate weighted

matching [11], prize-collecting traveling salesper-

son [2], and bounded-degree subgraphs which have

low weight and small bottleneck cost [16].

A question of general interest is how to obtain

improved approximation algorithms for such prob-

lems when the points come from a Euclidean, as

opposed to arbitrary, metric space. This requires

making use of more than just the triangle inequal-

ity. Surprisingly, for most problems, improved al-

gorithms are not known. (A notable exception is
the famous Euclidean Steiner tree problem [5, 6].)

We use rudimentary geometric techniques to obtain

an improved algorithm for the Euclidean degree-K

spanning tree problem.

The key to our method is to give short-cutting

steps that are provably better than implied by

the triangle inequality alone. Lemma 3.3, which

bounds the perimeter of an arbitrary triangle in

terms of distances to its vertices from any point, is

typical of the techniques that we use to get better

bounds.

1.3 Related Work

Papadimitriou and Vazirani showed that any MST

whose vertices have integer co-ordinates has maxi-

mum degree at most five [15], Monma and Suri [14]

showed that for every set of points in the plane,

there exists a degree-5 MST.

Many recent works have given algorithms to find

subgraphs of bounded degree that simultaneously

satisfy other given constraints. An algorithm to

find a spanning tree or a Steiner tree of a given

subset of vertices in a graph, with degree at most

one more than minimum was given by Furer and

Raghavachari [9]. This was extended to weighted

graphs by Fischer [7]. He shows how to find mini-

mum spanning trees whose degree is within a con-

st ant multiplicative factor plus an additive O (log n)

of the optimal degree. The degree bound is im-

proved further in the case when the number of

different edge weights is bounded by a constant.

Ravi, Marathe, Ravi, Rosenkrantz and Hunt [16]

consider the problem of computing bounded-degree

subgraphs satisfying given connectivity properties

in a graph whose edge weights satisfy the trian-

gle inequaMy. They give efficient algorithms for

computing subgraphs which have low weight and

small bottleneck cost. Salowe [18], and Das and

Heffernan [4] consider the problem of computing

bounded-degree graph spanners and provide algo-

rithms for computing them. Robins and Salowe

[17] study the maximum degrees of minimum span-

ning trees under various metrics.

2 Preliminaries

Let V = {v, , . . . . vm} be a set of n points in the

plane. Let G be the complete graph induced by

V, where the weight of an edge is the Euclidean

distance between its endpoints. We use the terms
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points and vertices interchangeably. Let ~ be the

Euclidean distance between vertices u and v. Let

~. be a minimum spanning tree (MST) of theT

points in V. Let w(T) denote the total weight of

a spanning tree T. Let Tk denote a spanning tree

in which every vertex has degree at most k. Let

deg~(v) be the degree of a vertex v in the tree T.

Let AABC denote the triangle formed by points

A, B and C. Let lABC denote the angle formed

at B between line segments AB and .BC. Let ABC

denote the perimeter of AABC.

In this paper we prove the followin~: for an ar-

bitrary set of points in 9?2,

3T3 : W(T3) < 1.5 x w(TtiJ

3T4 : W(T4) < 1.25 X w(TrniJ

For an arbitrary set of points in Rd (d>

IT3 : W(T3) < ; x w(l-dn)

3 Points in the plane

(1)

(2)

2),

(3)

We first consider the case of %2 – points in the

plane. We first note some useful properties of min-

imum spanning trees in Rd.

Proposition 3.1 ([15]) Let AB and BC be two

edges incident to a point B in a minimum spanning

tme of a set of points in Y?d. Then 1 ABC is a

laqest angle in AABC.

Corollary 3.2 Let AB and BC’ be two edges inci-

dent to a point B in a minimum spanning tree of

a set of points in !Rd. Then

● [ABC >60°

● LBAC, .LBCA <90°.

3.1 An upper bound on the perimeter

of a triangle

We now prove an upper bound on the perimeter of

an arbitrary triangle in terms of distances to its ver-

tices from an arbitrary point. This lemma is useful

in proving the performances of our algorithms. The

lemma is also interesting in its own right and we

believe that it and the associated techniques will

be useful in other geometrical problems.

Lemma 3.3 Let X, A, B, and C be points in !Rd_—
with ~ < XB, XC. Then

ABC < (3fi – 4)XA + 2(XB + ~). (4)

Note that 3W – 4 x 1.2. Recall that ~ is the

perimeter of the triangle and XY is the distance

from X to Y.

Figure 1: Shrinking to obtain canonical form

Prcwf: Let B’ and C’ be points on XB and XC’——
respectively such that XA = XB’ = XC’ (see

Fig. 1). First we observe that the lemma is true

if it is true for the points X, A, B’ and C’. This

follows because by triangle inequality,
— —

ABC < AB’C’ + 2BB’ + 2CC’.

By our assumption,
—.

_ < (3fi – 4)~ + 2(XB’ + XC’).—

Combining the two inequalities yields the desired

result. Therefore in the rest of the proof, we show

that the lemma is true when the ‘(arms” ~, ~

and X(? are equal.

It is not very difficult to see that to maximize

the perimeter of the triangle, X will be in the plane

defined by A, B’ and C’, and thus X is at the center

of a circle passing through A, B’ and C’.
By scaling, it suffices to consider the case when

the circle has unit radius. In this case, the right-

hand side of (4) is exactly 3fi. Thus, it suffices

to show that the maximum perimeter achieved by

any triangle whose vertices lie on a unit circle is

3~. This is easily proved [13]. •1

Note that in an arbitrary metric space it is pos-

sible to have an (equilateral) triangle of perimeter

six and a point X at dlst ante one from each vertex.
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3.2 Spanning trees of degree three

We now assume that we are given a Euclidean min-

imum spanning tree T of degree at most five. We

show how to convert T into a tree of degree at most

three. The weight of the resulting tree is at most

1.5 times the weight of T.

High Level Description: The tree T is rooted

at an arbitrary leaf vertex. Since T is a degree-5

tree, once it is rooted at a leaf, each vertex has at

most four children. For each vertex v, the shortest

path PV starting at v and visiting every child of v is

computed. The final tree T3 consists of the union of

the paths {PV}. Fig. 2 gives the above algorithm.

In analyzing the algorithm, we think of each vertex

v as replacing its edges from its children with the

path P..

TREE-3 (V, T) — Find a degree 3 tree of V.

1 Root the MST T at a leaf vertex ~.

2 For each vertex v c V do

3 Compute Po, the shortest path starting

at v and visiting all the children of v.

4 Return T3, the tree formed by the union

of the paths {PV}.

Figure 2: Algorithm to find a degree 3 tree.

Note: Typically, the initial MST has very few

nodes with degree greater than three [1]. In prac-

tice, it is worth modifying the algorithm to scan the

vertices in preorder, maintaining the partial tree T3

of edges added so far, and to add paths to T3 as

follows. When considering a vertex v, if the degree

of v in the partial T3 is two, add the path PV as

described in the algorithm. Otherwise its degree is

one and, in this case, relax the requirement that

the added path must start at v. That is, add the

shortest path that visits v and all of v’s children

to T3 (see $3.3). This modification will never in-

crease the cost of the resulting tree, but may offer

substantially lighter trees in practice.

Lemma 3.4 The algorithm in Fig. 2 outputs a

spanning twe of degwe thwe.

Proof: An easy proof by induction shows that the
union of the paths forms a tree. Each vertex v is

on at most two paths and is an interior vertex of

at most one path. •1

Lemma 3.5 Let v be a vertex in an MST T of a

set of points in R 2. Let PV be a shortest path visit-

ing {v} U chddT(v) with v as one of its endpoints.

W(PV) < 1.5 x E ~.

vi c child~(~)

By the above lemma, each path P,, has weight at

most 1.5 times the weight of the edges it replaces.

Thus,

Theorem 3.6 Let T be a minimum spanning tree

of a set of points in $?2. Let T3 be the spanning tree

output by the algorithm in Fig. 2.

W(T3) <1.5 X w(T).

Proof of Lemma 3.5. We consider the various

cases that arise depending on the number of chil-

dren of v. The cases when v has no children or

exactly one child are trivial.

Case 1: v has 2 children, VI, V2. There are two

possible paths for P., namely PI = [v, VI, VZ] and

Pz = [v, VZ.,vi]. Clearly,

W(PV) =

<

=

<

Case 2: v has 3

min(zu(P~), w(Pz))

W(P1) + W(P2:!

2
~“
~+y + V=

1.5 (W+m;l.

children, VI, vz, vs. Let

VI be the child that is nearest to v. Consider

the following four paths (see Fig. 3): PI =

[V, V1, V2, V3], P2 = [V, VI, V3, V2], P3 “ [V>V2, V1, V3]

and P4 = [v, v3, VI, V2].

The path P. is at most as heavy as the lightest

of {Pl, PZ, l?3, P4}. The weight of the lightest of
these paths is at most any convex combination of

the weights of the paths. Specifically,

W(PV) < min(w(Pl), w(Pz), w(P3), w(P4))

< W(P1) W(P2) W(P3) W(P4)
y+y+~–+y.

We will now prove that

W(P1) W(P2)
— —

3 + 3+

W(P3) + y(P4)— —
6 6

m+ z@.
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V3 V3

AAv v

‘q
F’1 ‘2 ‘1 P2 ‘2

V3 V3

U_v

v

?)1
P3 ‘2 ‘1 P4 ‘2

Figure 3: T3, three children

This simplifies to

which follows from Lemma 3.3.

Case 3: v has 4 childnm, VI, UZ,v3, v4. Let v’

be the point of intersection of the diagonals 7EZi

and ~2~4. Note that the diagonals do intersect be-

cause the polygon vl vzvsvA is convex (follows from

Corollary 3.2).

Let V3 be the point that is furthest from v’,
among{VI, V2,V3, V4}. Consider the following two

paths (see Fig. 4): Pl = [v, v4, VI, v2, v3], P2 =

[v, v2, v~, V4, v3].

Clearly,

W(PJ W(P2)
W(PV) < min(w(Pl), W(PZ)) s ~ + ~.

“-52v4
V3 V3

PI P2

Figure 4: T3, four children

We will first prove that

—— —.
~lvzvsvA+(~+~) < 3(v’~1 +?J%s)+2(W’UZ+U’UA) .

(6)

Once we prove (6), by triangle inequality we can
—— —

conclude that (5) is true. (Since Vvl +VV3 > V1V3 =—. —— —
V’V1 + V’V3 and VV2 + VV4 > V2V4 = V’V2 +–=.)

We prove (6) by contradiction. Suppose there

exists a set of points which does not satisfy (6).

Suppose we shrink V’V3 by 6. The left side of the

above inequality decreases by at most 26, whereas

the right side of the inequality decreases by ex-

actly 38. Therefore as we shrink V’V3, the inequality

stays violated. Suppose V’V3 shrinks and becomes

equal to another edge v’v~ for some i 6 {1,2,4}.

We now shrink both V’V3 and V’V; simultaneously

at the same rate. Again it is easy to show that the

inequality continues to be violated as V’V3 and v’v~

shrink. Hence we reach a configuration where three

of the edges are equal.

Without loss of generality, the length of the three

edges is 1 and the length of the fourth edge is some

6 <1.

There are two cases to consider. The first is when

V’vl = c and the second is when V’V2 = c. (The case

when V’V4 = c is the same as the second case.)

Case 3a. V’V1 = c We wish to prove that
We will show that

——
vlvzvsvA + (~l~z + vlv4) < 7 + 36.

;OJ@l) + W(P2)) s 1.5(7m+m+m+ m).

We want to show that the function F(c) =

This simplifies to
——

vlvzv@A + (~l~z + vlv4) – i’ – 36 is non-positive

in the range O < e < 1. Simplifying, we get
—. —— —.

vlvzvzvd+(vlvz+vlvA) < S(VV1+VV3)+Z(VV2 +VV4).

(5) F(c) = 2V1VZ + VZV3+ v3v4 + 2v1v4 – 7 – 36.
—— ——
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Each of ~ in the definition of .F is a convex

function of c due to the following reason. Let p

be the point closest to Vj on the line connecting

v; and v’. Observe that as v; moves towards

v’, ~ decreases if vi is moving towards p and

increases otherwise. Since F is a sum of convex

functions minus a linear function, it is a convex

function of ~. Therefore it is maximized at

either c = O or 6 = 1.

When c = 1, all four points are at the same

distance from v’. If angle I! V4V’V1 = a then F

can be written as a function of a single vari-

able a and it can be verified that 1’ reaches a

maximum value of 10@ – 10, which is non-

positive.

When c = O, V1V2 = V1V4 = 1. Simplifying we
——

get F = V2V3 + V3V4– 3, and it reaches a max-
——

imum value of 2W – 3, which is non-positive

(when c = O, note that VI is the midpoint of

the line segment V2V4).

Case 3b. V’V2 = E. We wish to prove that

——
vlV2v3v4 + (Vlv2 + V1V4) <8 + 26.

We want to show that the function F’(c) =
——

vlvzvsvA + (VIV2 + V1V4) – 8 – 26 is non-positive

in the range O < c < 1.

As a function of c, function F’ is a sum of

convex functions minus a linear function, and

thus is convex. Therefore it is maximized at

either c = O or 6 = 1.

The case c = 1 leads to the same configuration

as in Case 3a.

Whenc= — —O, V1V2 = V2V3 = 1. Here F’ =

ZV1V4 + V3V4 – 5. If angle ZV4V’V1 = a, then F’
——

can be written as a function of a single vari-

able a and it can be verified that F’ reaches

a maximum value of 5~ – 5, which is non-

positive.

This concludes the proof of Lemma 3.5. ❑

The example in Fig, 5 shows that the 1.5 fac-

tor is tight for the algorithm. Each curved arc

shown in Fig. 5 is actually a straight line, and has

been drawn curved for convenience. The vertex

that is the child of the root has three children, and

is forced to drop one child. In doing so, the degree

of its child goes to four, and it in turn. drops one of

its children. The algorithm could mabke choices in

such a way that the changes propagate through the

tree and the tree T3 output by the algorithm may

be as shown in the figure. The ratio of the cost of

the final solution to the cost of the MST can be

made arbitrarily close to 1.5. The same example

shows that a factor of 1.5 is tight for the modified

algorithm too (although the output tree is slightly

different).

Root Root

MST T3

Figure 5: Bad example for algorithm in Fig. 2.

3.3 Spanning trees of degree four

We now assume that we are given a Euclidean min-

imum spanning tree in which every vertex has de-

gree at most 5. We show how to convert this tree to

a tree in which every vertex has degree at most 4.

High Level Description: The basic idea is the

same as in the previous algorithm.

The difference is that we don’t insist that each

path P. start at v. The tree is rootedl at an arbi-

trary leaf. For each vertex v, the minimum weight

path P. visiting v and all of v’s children (not nec-
essarily starting at v) is computed. The final tree

T4 consists of the union of the paths {Po}. Again,

for the analysis we think of each path .PVreplacing

the edges between v and its children in T.
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TREE-4 (V, T) — Find a degree J tree of V.

1 Root the MST T at a leaf vertex r.

2 For each vertex v c V do

3 Compute the shortest path Pv

visiting v and all its children.

4 Return T4, the tree formed by the union

of the paths {P.}.

Figure 6: Algorithm to find a degree 4 tree.

Lemma 3.7 The algorithm in Fig. 6 returns a

degwe-~ spanning tree of the given set of points V.

Pnwf: A proof by induction shows that T4 is a tree.

Each vertex v occurs in at most two paths and thus

has degree at most four. ❑

Lemma 3.t3 Let v be a vertex in an MST T for

a set of points in R2. Let Pu be the shortest path

visiting {v} U child~(v).

W(PV) <1.25 X E vv~.

qechilk(v)

From the above lemma, each path P. weighs at

most 1.25 times the net weight of the edges it re-

places. Thus,

Theorem 3.9 Let T be a minimum spanning tree

of a set of points in $?2. Let Td be the spanning tree

output by the algorithm in Fig. 6.

W(T4) <1.25 X W(T).

Proof of Lemma 3.8. The proof is similar to the

proof of Lemma 3.5. As before, we consider cases

depending on the number of children of v. The

cases when v has no children, one child, or two

children are trivial.

Case 1: v has 3 childnm, VI, VZ, vs. Let VI be

the point that is closest to v, among its children.
Consider the following four paths (see Fig. 7): F1 =

[vz,v~,~,v&~2 = [Wz,v,vl, v3], P3 = [’vi, v,v2, v3]

and P4 = [VI, v, v3, VZ].

Clearly,

W(P1)
W(PV) <

W(P2) W(P3) W(P4)
~+~+y+~.

We will show that

W(P1) + W(P2) W(P3) W(P4)

3
y+~+~

V3 V3

LA

v
v

VI
PI ‘2 ‘1 P2 ‘2
V3 V3

AA

v

v

‘q
P~ ‘2 ‘1 P4 ‘2

Figure 7: T4, three children

This proves the three-child case because + ap.

proximately equals 1.244 and is less than 1.25. This

simplifies to

—— — ——
VIV2 + vIv3 + v2v3 _ V’q + VV3

3
+V’q+ z

which further simplifies to

Since V1 is the closest point to v, applying

Lemma 3.3, we get

—— —
V1V2V3 < (3fi – 4)VV1 + 2(’VVZ + VV3).

and hence

‘q V2V3 < (W – l)VV1 + (2fi – 3)W

+2(W + ~)

s (W – l)W + (W+ ;)(VV2 + v~3).
——

This proves (7).
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Case 2: v has J childwn, VI, V2, V3, V4. As-

sume that VI is the point that is closest to v,

among its children. Let the order of the points

be VI, V2, V3, V4, when we scan the plane c~ockwise

from v, starting from an arbitrary direction.

There are two cases, depending on whether V4 or

V3 is the point that is furthest from v among its

children. We first address the case when V4 is the

furthest point. (The proof for the case when V2 is

the point furthest from v is symmetric to the case

when V4 is the furthest point. )

Consider the following paths (see Fig. 8): PI =

[vz, v,, v,vz, vs] and P2 = [V4, v3, v,vl, v2].

Figure 8: T4, four children

The path P. added by the algorithm is at most as

heavy as the lighter of the paths PI and P2. Hence

w(PV) < min(l’1, P2) <
W(P1) + ID(P2)

2“

We will show that

W(P1) + W(P2)
< 1.25(~+ vvz + VV3 + VVq).

—— —

2

Simplifying, we need to show that

Further simplifying, we get:

‘?)l’?)2V3V4< ;~+ ;~+ ;(~+~).
Note that if it happens that V3 was the farthest

point from v, among its children, we get a similar

equation with V3 and V4 being exchpnged in r.h.s

of the equation. By symmetry, the case when V2 is

furthest is similar to V4 being farthest.

Without loss of generality, m 2 lm. The proof

now proceeds in a manner similar to the proof of

Lemma 3.3. If there is a configuration of points for

which this equation is not true (the 1.11.sexceeds the

r.h.s) then we can move V4, V3 closer to v until m =

~ = m. In doing this, we decrease the l.h.s by at
——

most 2(vv4 – VV2) + 2(W – w). Clearly, the r.h.s

decreases by exactly 4(~ – m) + 4(vv3 – VV2).
——

This ensures that the l.h.s is still greater than the

r.h.s. Hence without loss of generality, if there is

a configuration for which our equation is not true

then there is a configuration with the property that

VV4 = VV3 = ~. We now show that when this
——

property is true there is no counter-example.

By scaling, we may assume that VVA = VV3 =
——

VV2 = 1, and m = e, where c < 1.

Note that (by Corollary 3.2) v was originally

within the convex hull of its four children. Also

(by Corollary 3.2), every child is on th~econvex hull.

These properties are both maintained by the above

shrinking steps.

We now wish to prove that vlvzvsvd < $ + ~e.
—.

It is easily shown using elementary calculus that

for any c such that VI is on the convex hull of the

points {VI,. . . }, V4 , rotating VI and V3 around v

until 1V1VV2 = 1V1VV4 (see Fig. 9) and LV2VV3 =

1V4VV3 does not decrease the perimeter. Also, it

maintains that VI is on the convex hull. Assume

the two pairs of angles are equal, and define F(c) =

V1V2V3V4 – E/2 – 11/2. We will show F is non-

positive over the range of possible e.

V2

Figure 9: Figure to illustrate degree four case.

As a function of c, function F is absum of con-
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vex functions minus a linear function, and thus is

convex. Therefore, .F is maximized either when

w = 1 or when VI is the midpoint of edge ~

(since VI is on the convex hull, VI can not cross

the edge, hence this interval contains all possible

values for 6).

In the first case, all four points lie on a unit cir-

cle with center at v. For any four such points, it is

easily proven using calculus that vl ‘vzvsWAis max-

imized when the four points are the vertices of a

square at 4@ x 5.66. Thus, F’(l) <0.

In the second CaSe, vlvzvs~A = vzvsvA. As noted

previously, this is at most 3W x 5.2. Thus,

F(c) <0.

We now deal with the case when V3 is the fur-

thest point. In this case we take the paths PI =

[v.4, ~1, V, v2, v3] and 1% = [v3, WA,v, VI, VZ]. The
path P added by the algorithm is at most as heavy

as the lighter of the paths P1 and P2. Hence,

w(p) < min(P1, P2) <
W(l’1) + W(P2)

2“

Simplifying, we get

The proof of this is identical to the proof of the

previous case. ❑

4 Points in higher dimensions

We show how to compute a degree-3 tree (T3) when

the points are in arbitrary dimension d z 3. The

algorithm for computing the tree is similar to the

algorithm for computing degree three trees in the

plane — the tree T3 is formed by rooting the MST

and taking the union of the paths {Pv}, where each
P.. is the shortest path starting at v and visiting all

of the children of v in the rooted MST. It is known

that any Euclidean MST has constant degree [17],

so that the algorithm still requires only linear time.

The bound on the weight of T3 is similar, except

that v may have more children. We prove that

regardless of the number of children that v has,

the weight of P. is at most 5/3 the weight of the

edges that it replaces:

Lemma 4.1 Lei {V, VI, W,. . . . vk} be a set of a?=

bitrary points in R ~. There is a path P, starting at

v, thot visits cdl the points VI, VZ, ..., Vk such that

Pmf: We prove this by induction on the degree of

v. Sort the points in increasing distance from v as

Vi, ..., vk. Let v = VCI.The lemma is trivially true

when k = 0,1,2. Let us assume that the lemma is

true for all values of k up to some f z 2. Consider

k = 4+1. By the induction hypothesis, the claim is

true when v has k – 3 children; hence we can find

a path P’ that starts at v and visits all vertices

v~(i= l,..., k – 3) (not necessarily in that order)

such that w(P) S ~ ~$~~ ~. Let vj be the last

vertex on the path P’. lVe add the cheapest path

P“ that starts at ?)j and visits v&z, vk-1 and vh

(again, not necessarily in that order). This path

together with P’ will form a path that starts at v

and visits all vertices adjacent to v. We now show

that

— —
w(P”) ~ :(vv&z + v’U&l + ~). (8)

This suffices to prove the lemma. Let PI,. . . . Pe be

the six possibilities for P“. Clearly,

We will prove that

This simplifies to

k
2 ~k_~’??k_l~k + ~ ~

izk—2

< s(vvk_2 + Vv&l + ~).
——

(9)

Notice that if the above equation is not true,

we can “shrink” all the vi (i = k – 2, k – 1,k)
—— — .

UIltil VVj = VV&2 = VV&l = V’uk. Assume that

8 = (vvk-z -— F@ + (Vvk-1 – ~) + (w – q).

This can be done because the r.h.s decreases by

56, and the l.h.s decreases by at most 56. If the

above equation is not true then it is also not true
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when the distance from v to all the points is the

same. By scaling, we can assume that the distance

of the points from v is 1. We call this a canonical

configuration. The following proposition is implied

by Lillington’s work [13] and helps in completing

the proof.

Proposition 4.2 Let A, B, C and D be points on
——

a unit sphere. The function F = ~+ AC + AD +

~ •I- ~ + ~ waches a maximum value of 4&

when the points A, B, C and D form a regular tetra-

hedron.

We will now show that (9) is satisfied by the

canonical configuration. The left side of (9) can

be written as the sum of sides of the tetrahe-

dron formed by points {ok, v~-l, vk_2, vj} and the

sum of sides of the triangle formed by points

{vk, vk_l, v~_2}. These points lie on a sphere whose

center is v. By Lemma 4.2, the first sum is bounded

by 4fi. The second sum is bounded by 3W.

Hence the left side of (9) is bounded by 4fi+ 3W,

which is about 14.994. The right side of (9) is 15.

Hence (9) is satisfied by the canonical configuration

and therefore all configurations. This concludes the

proof of Lemma 4.1. 0
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