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Inexpensive DRAMs have created new opportunities for in-memory data analytics. However, the major bot-
tleneck in such systems is high memory access latency. Traditionally, this problem is solved with large cache
hierarchies that only benefit regular applications. Alternatively, many data-intensive applications exhibit ir-

regular behavior. Hardware multithreading can better cope with high latency seen in such applications. This
article implements a multithreaded prototype (MTP) on FPGAs for the relational selection operator that ex-
hibits control flow irregularity. On a standard TPC-H query evaluation, MTP achieves a bandwidth utilization
of 83%, while the CPU and the GPU implementations achieve 61% and 64%, respectively. Besides being band-
width efficient, MTP is also 14.2× and 4.2× more power efficient than CPU and GPU, respectively.
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1 INTRODUCTION

The rapidly decreasing cost of DRAM has enabled in-memory analytics solutions, where fairly
large datasets can be stored and processed entirely in memory. Many commercial in-memory
databases (Oracle TimesTen [50], SAP HANA [28], MS SQL Hekaton [23], IBM BLU [15], Mem-
SQL [68]) as well as academic research prototypes (HyPeR [45], Peloton [3]) have been recently
developed.

While memory capacity continues to increase, the past decade has seen a stagnation of processor
clock speeds due to the end of Dennard scaling and power dissipation concerns. This leaves par-
allelism as the only option to achieve fast processing for the growing amount of memory-resident
data. Two approaches have been considered for leveraging parallelism: (1) off-the-shelf multicore
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architectures (including CPUs and GPUs) [14, 29, 41] or (2) customizable architectures (such as
CPUs with FPGAs) [1, 46, 64, 73].

The main factor influencing in-memory processing performance is the growing gap between
the memory bandwidth and the speed of the processing unit [17] (the so-called memory wall).
This is even more important for multicores, given their higher clock speeds. Multicore CPUs ad-
dressed this problem by introducing large cache hierarchies that rely on data locality. This solution
does not come for free: cache hierarchies can take up to 80% of the chip area. Caching is a major
limiting factor on the number of cores that can be accommodated on a single chip as well as a pri-
mary contributor to energy consumption through leakage current. GPUs offer a different solution
that leverages massive SIMD parallelism and specialized high-bandwidth memory (i.e., GDDR).
Similarly modern CPUs introduced SIMD support to enable data level parallelism. However, these
architectural solutions still inherently rely on data locality.

At the same time, many data-intensive computational problems are moving away from data
locality towards irregular memory access behavior. Such irregularity can be of two types:
(1) Dataflow irregularity is caused by the indirection in the data access, leading to cache misses.
For example, workloads from complex database analytics, hash joins [35], data mining, graph al-
gorithms, bioinformatics, and so on exhibit a very poor degree of spatial and/or temporal localities
and do not benefit from large cache hierarchies. (2) Control flow irregularity is caused by the dy-
namic control flow and leads to branch mis-prediction; this contributes to a large fraction of stall
time on CPUs [62, 74] or thread divergence on GPUs [70]. An example that exhibits such behavior
is the selection operator. While the selection operator has a seemingly regular execution pattern
(i.e., exhibits spatial locality), it often leads to control flow irregularity while evaluating the selec-
tion predicates (see Section 2.1). Since the selection operator typically appears early on within a
query plan—right above the data scan operator—its performance directly affects the total runtime
of the whole query [62].

Clearly, cache hierarchies do not provide an effective solution for irregular memory accesses.
As a consequence, long latencies are introduced to fetch data from the memory. An alternative ap-
proach is to mask these long latencies by using hardware multithreaded execution [40, 66, 76]. Sev-
eral multithreading models (simultaneous, fine-grained, coarse grained) have been proposed. They
can be categorized by how temporally close instructions from different threads may be executed.
On general purpose processors, executing multiple threads concurrently requires saving the full
context of each thread. This limits the amount of parallelism that can be achieved on these systems.

In a custom architecture (e.g., FPGA) where the datapath is designed for a small number of
predefined operations, the required context for each thread is much smaller than in a general-
purpose CPU and, hence, more threads can be supported. In this model, parallelism is limited only
by the number of active threads (ready, executing, or waiting). Furthermore, when the application
consists of a large number of concurrent threads, this model supports the masking of memory
latency. We have recently applied this multithreading approach to implement an in-memory hash
join algorithm [35] and the group-by aggregation [5]. Those results demonstrated up to 10× higher
throughput over the best multi-core software alternatives with comparable memory bandwidth.

In this article, we implement a multithreaded selection engine on custom hardware. While se-
lection is a different operator, there are subtle similarities with the hash-join and group-by aggre-
gation operators. The hash join is implemented in two stages: (1) the build phase, which scans the
first table (usually the smaller one) and builds a hash table on the join key, and (2) the probe phase,
during which each tuple (row) in the second table is accessed and a probe to the hash table (for
matches) is performed. In the group-by aggregation, a hash table is used to build a list of <key,

count>. Each tuple of the aggregated relation is accessed and its key is first searched in the hash
table; then it either updates a key’s count (if the key is found) or inserts a new entry <key, count>
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into the hash table. Note that both the aforementioned operators use hardware multithreading to
mask the latencies caused by dataflow irregularities.

While performing a selection (which typically consists of many predicates), our custom engine
issues a separate thread for each tuple, thus generating a large number of independent and con-
current threads. Moreover, it also facilitates fine-grain data access, which means that a particular
thread fetches only the first column (attribute) value needed to evaluate a given selection predi-
cate. Based on the result of predicate evaluation, this thread will fetch the next column value from
this tuple only if it is needed. To facilitate such multithreaded fine-grained data access, we also
need a memory sub-system that can provide near-peak bandwidth for data accesses at this fine
granularity.

As a proof-of-concept, we implement a multithreaded prototype of the selection engine (referred
hereafter as MTP) on the Micron (Convey) HC-2ex FPGA machine. The HC-2ex is a heterogeneous
computing platform—a system consisting of an off-the-shelf x86 CPU paired with four FPGAs and
a highly parallel memory system.

MTP offers several advantages. Prior FPGA-based solutions [22, 56, 72, 79] stream the whole
database through the execution engine. Similarly, row-oriented software selection applications, in
the worst case, bring in the entire cache line to access a single column or fetch the column values
for the tuples that already were disqualified by the selection predicate in a columnar storage lay-
out. However, MTP reduces the number of memory accesses and improves bandwidth efficiency by
accessing only the values that are necessary to evaluate a predicate. Furthermore, the storage inde-

pendence nature of selection enables efficient analytics on transactional row-oriented data without
replicating or converting it to a columnar representation. Moreover, unlike traditional multithread-
ing architectures [7, 8], MTP requires a very small context per thread (super-lightweight threads),
which allows us to generate a large number of in-flight requests, further improving latency mask-
ing. Finally, previous hardware accelerated proposals [72] required a separate hardwired imple-
mentation for each specific query. Our MTP engine is runtime programmable for predicates ar-
ranged in disjunctive normal form (DNF) and thus avoids prohibitive hardware reconfiguration or
synthesis overheads.

We compare MTP’s performance to that of an optimized scalar CPU, a vectorized CPU (SIMD),
and a GPU implementation in terms of both raw and bandwidth normalized performance. Both
CPU and GPU run at much higher clock frequencies (GHz compared to an FPGA’s MHz) and have
more dedicated hardware. Given the memory-bounded nature of the problem, our focus is on
achieving better bandwidth utilization rather than focusing exclusively on the raw performance.
Better efficiency leads to better scaling, where performance increases with more resources. Our ex-
perimental evaluation shows that in an important subset of the parameter space (often observed in
practical workloads), MTP did fairly well when compared with the aforementioned architectures.
On a standard TPC-H query evaluation, MTP achieves a bandwidth utilization of 83% while the
CPU and the GPU implementation achieves 61% and 64%, respectively. Besides being bandwidth
efficient, MTP is also 14.2× and 4.2× more power efficient.

The following summarizes the contributions of this article:

• We present MTP, a novel in-memory selection engine based on a runtime programmable,
hardware multithreaded architecture that is independent of physical data storage layouts.

• We thoroughly evaluate the throughput of our MTP selection engine against the state-of-
the-art CPU (both scalar and vectorized) and GPU implementations using synthetic and
TPC-H benchmark data.

This article is organized as follows: Section 2 summarizes basic selection evaluation algorithms
and describes how they are implemented on CPUs and GPUs. Section 3 describes the design of the

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 2, Article 13. Publication date: April 2019.



13:4 P. Budhkar et al.

MTP selection engine and also discusses different factors that affect MTP throughput, followed by
experimental results in Section 4. Section 5 describes the related literature and conclusions appear
in Section 6.

2 BACKGROUND

2.1 Selection Evaluation Algorithms

We assume OLAP setting where the select query directly operates on the input array of records
and writes qualified tuples into a new output array, out[]. This is a common scenario for query
plans where selection is pushed all the way down to the data scan operator. Depending upon the
selectivity, some platform specific implementations build an index that fetches predicates based
on the previous evaluation. However, in this work, we do not assume the availability of any such
index. For each tuple ti , we will evaluate k predicates. There are three commonly used selection
evaluation algorithms. Listing 1 presents the most straightforward way of implementing selection.
It shows the branching scan method for a conjunctive query using ‘<’ comparison. The evaluation
continues until one of the attributes is assessed to be false or all the attributes of a query have been
examined. This technique is often called a “short-circuit evaluation,” because the computation of
further predicates can be skipped when the first predicate is already evaluated to false. The logical-
AND (&&) operator is typically compiled into k conditional branch instructions. Assuming that
the predicates have increasing selectivity, this method is optimal in terms of processing cycles.
However, it was shown that on CPUs it leads to heavy branch mispredictions, causing considerable
performance penalties [19, 62].

Listing 1. Algorithm - Branching Scan.

Listing 2. Algorithm - Predicate Scan with Bitwise-AND (&).

Listing 3. Algorithm - No-Branch.

An alternative implementation, presented in Listing 2, uses bitwise-AND (&) instead of logical-
AND (&&). This approach reduces k conditionals to a single branch. Here, all predicates for a given
tuple, ti , are evaluated and then, depending upon the result of the evaluation, a branch is executed.
This method reduces branch misprediction penalties at the cost of higher computational work.

Finally, a no-branch implementation [62] is shown in Listing 3. This approach completely elimi-
nates branch mispredictions penalties by increasing computation costs. The techniques presented
in Listings 2 and 3 either reduce or completely eliminate the branches. Yet, both approaches process
all predicates and miss the opportunity to skip irrelevant evaluation as in the branching scan.
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2.2 Implementations on Multithreaded Architectures

Multithreaded architectures seamlessly exploit thread-level parallelism and improve the perfor-
mance of any of the aforementioned algorithms by partitioning the input over multiple threads
[51]. Most modern processors support simultaneous multithreading (SMT) that allows multiple
instructions from different threads to execute in the same cycle. This implies that all threads (con-
texts) are active at the same time and there is no notion of context switching. Examples include the
latest Intel and AMD processors that are 2-way SMT, supporting 2 threads per core, and a recent
SPARC64, which is 8-way SMT [54]. There is a vast literature [47, 48, 83, 85] that further enhances
SMT with pre-fetching techniques. These techniques mainly include helper threads and cores [58]
that prefetch cache blocks [83] to tolerate the memory latency, provide better exception handling
[85], and clever instruction fetch [4] to prevent I-cache misses and instruction stream interleaving
[48] to attain better core utilization.

However, temporal multithreading is another form of multithreading that allows only one thread
of instructions to execute in any given pipeline stage. It is further classified into fine-grained and
coarse-grained multithreading. In the former case, a thread switches the execution at a fixed time
interval (Tera MTA now Cray XMT [38]). In the latter, switching is done during the long memory
latency (SUN UltraSparc T5 [29]).

All the above architectures support a relatively small and predetermined number of threads
(up to 128 on the MTA and up to 8 threads per core on the UltraSparc T5). This is because for
each thread a heavy context (i.e., current state) in the form of registers, program counters, stack
pointers, and so on is maintained. These resources are either used to save the context of all active
threads (in SMT) or the waiting threads that switch the execution to the ready thread (in temporal
multithreading). As a result, the number of threads that can run in parallel is limited by the total
number of physical cores (or hardware contexts for CPUs with hyper-treading).

In the MTP model, the architecture is designed for a narrow range of specific applications and
thus requires very small thread context. The execution of a thread is pipelined and, hence, several
threads can be active in different stages of the pipeline. Unlike in other models, threads in MTP are
not persistent: a thread is created when the evaluation of the selection query is started on a new
row (tuple) and that thread is terminated when the evaluation concludes and the result is written
for that row. The thread execution could lead to the evaluation of every attribute in a tuple or a
single attribute. As a thread is stalled during a long latency memory access, other ready threads
are executing on the same datapath. The only limit to the number of active threads (ready and
waiting) is the total size of the buffers in the datapath and the memory interface.

We prototype MTP on the Convey HC-2ex machine, shown in Figure 1(a). We choose the Con-
vey HC-2ex machine, because it is the only FPGA platform we know of that provides near-peak
bandwidth for random memory accesses using Scatter-Gather DIMMS. Instead of a cache line
access, these types of DIMMS allows us to gather/scatter values of strided access from multiple
memory banks using a single memory request. However, note that this multithreaded paradigm
is independent of any platform. As long as the memory system supports non-sequential memory
accesses, the multithreaded architecture can efficiently mask memory latency.

2.3 Convey HC-2ex Prototype System

The Convey HC-2ex is a heterogeneous platform that offers a shared global memory space between
the CPU and FPGA regions. It uses SG-DIMMs (scatter-gather DIMMs) to be able to access 8-byte
values randomly, and at near-full throughput. As shown in Figure 1(a), the memory is divided into
regions connected through PCIe with portions closer to the CPU and portions closer to the FPGAs.
Each processor (CPU or FPGA) can access data from both regions, but data accesses across PCIe
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Fig. 1. The Convey HC-2ex architecture is divided into software and hardware regions, as shown in (1(a)).

Each FPGA has 8 memory controllers that are split into 16 channels for the FPGA’s logic cells, as shown

in (1(b)).

are significantly longer. The software region has an Intel Xeon E5-2643 processor. The hardware
region has 4 Xilinx Virtex6-760 FPGAs, called application engines (AE), connected to the global
memory through a full crossbar. The crossbar not only interfaces the AEs to the memory modules
but also supports the in-order return of all memory requests. MTP utilizes this re-ordering to serve
all the concurrent threads in the order of their arrival.

Each AE also has 8 64-bit memory controllers (MCs) running at 300MHz (Figure 1(b)) that sup-
port a total of 16 DDR2 memory channels. MCs provide a highly parallel connection between the
AEs and the coprocessor physical memory [77]. The MCs also translate virtual to physical ad-
dresses on behalf of the AEs. The hardware logic on each AE run in a separate 150MHz clock
domain to ease timing. On the HC-2ex, all the reads and writes to the memory are done through
MCs. Each channel supports independent and concurrent read-write accesses to memory.

2.4 Latency Masking Multithreaded Architecture

As shown in Figure 2(a), a latency masking multithreaded setup typically has three stages of ex-
ecution: (1) build-up (2) steady state, and (3) drain-out. Figure 2(b) shows different components
of multithreaded implementation. In a build-up stage, the processing unit (PU) of each processing

engine (PE) generates multiple requests to the DRAM. Each request corresponds to a unit of work
done by a thread. For instance, while executing a select query, each row is a thread and evaluating
a particular column of a row is a unit of work.

The number of requests that are generated by the PU must be commensurate with the number of
in-flight requests required to mask memory latency. This number is governed by Little’s Law [10],
which states that Concurrency (C ) = Performance (P ) x Latency (L). On the Convey HC-2ex, the
average memory latency to the DRAM is ~100–200 6ns cycles (L = 600ns to 1200ns). Since selec-

tion is a memory bound operation, performance is measured by achieving peak memory bandwidth
(P = 76.8GB/s). Substituting request size (8 bytes) and independent channels (64) in the aforemen-
tioned equation (P ∗ L/(8 ∗ 64)) yields C = 90 to 178 in-flight requests per memory channel. In our
simulations, we verified this number to be 150. Moreover, our internal FIFOs are capable of main-
taining up to 512 in-flight requests. Therefore, as long as PU can generate/sustain 150+ memory
requests per channel, we can achieve high memory bandwidth utilization.

Using this observation, we conclude that hiding memory latency is a pure function of inflight-
requests. In a steady state, a kernel/core can maintain sufficient in-flight requests that can hide the
memory latency. However, towards the end of execution, when threads in a pipeline are terminat-
ing, the number of in-flight requests start decreasing and can no longer mask the latency. If the
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Fig. 2. Multithreaded architecture details.

steady state execution is longer than the other two states, then the build-up and the drain costs
are amortized.

3 MTP SELECTION ENGINE

For our MTP implementation, we take advantage of the early termination provided by the
branching-scan algorithm without incurring branch misprediction penalties and independently
of the data layout. MTP spawns multiple lightweight threads (one for each tuple) that allows it
to do fine-grained data access (fetching only the values needed for the query evaluation on each
tuple). This section describes the details of the MTP design and its workflow on FPGA. Later, we
discuss several factors affecting the throughput of the MTP custom datapath, hereafter referred to
as the selection engine.

3.1 Predicate Control Block

The selection engine is capable of processing different selection queries without needing to re-
configure the logic on the FPGA. To program the selection engine at runtime for different queries,
we arrange our queries in a standard disjunctive normal form or DNF, which is a common way of
storing queries in data warehouses [42]. We build the DNF by parsing a query and creating a data
structure called the Predicate Control Block (PCB).

The PCB size is linear to the number of predicates in a query as it maintains a single record for
each predicate. Each record of the PCB stores the comparison operator (e.g., less than, equal, etc.),
the constant, and two column offsets (True or False) that are needed to direct further evaluation.

Figure 3 shows a sample SQL query and its corresponding PCB. It has three rows that corre-
spond to the three predicates in the query. We parameterize all three parts of our predicate: (1) the
column ID, (2) the comparison operator, for which one out of six possibilities is selected (=, <>,
<, >, <=, >=), and (3) a constant value. Given a tuple from OrderDetails, after evaluating the first
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Fig. 3. Figures 3(a) and 3(b) describe the translation of control flow to data flow in the selection operator.

Fig. 4. Selection Accelerator Engine: showing different building blocks and memory channels that read/write

from memory. Double-edged arrows indicate memory transaction.

predicate (UnitPrice > 5) in the query, the next column offset requested is Quantity if the condition
evaluates to true. Otherwise, MTP request TotalPrice. Notice that if UnitPrice > 5 is false, then we
continue immediately with TotalPrice instead of finishing the next comparison. This provides early

termination within clauses as well as queries.

3.2 Engine Workflow

Figure 4 shows the overall execution of the selection engine. The host CPU accepts the selection
query, parses it, and builds its corresponding PCB. The database relation and the PCB are loaded
in the host memory. Subsequently, using the Convey-provided memory allocators and datamover
functions, the query and the relation are copied from the host to the co-processor memory through
PCIe. Finally, the execution is off-loaded to the FPGA. During this dispatch process, local FPGA
registers are programmed with pointers to the database table, an out array holding qualifying
RowIDs, the PCB, the number of tuples, the row size (in number of columns), and the starting
column offset (column ID in the first predicate).

The MTP implementation consists of two main blocks, namely, the thread manager (TM) and the
processing unit (PU). Each block consists of queues that are used to mask memory latency while
performing other tasks. The execution starts by requesting the PCB (query) from the DRAM. The
PCB is stored locally by the PU in BRAM. Concurrently, the TM prepares a job for each thread. As
mentioned before, a thread is a row and evaluating each column of a row is a job. The TM handles
two types of read jobs: new and recycled jobs as well as the write jobs. Every row (thread) then
requests a column that corresponds to the first predicate of a query. These requests are mandatory
memory requests and are treated as new jobs. The TM tags each request with aRowid that is used as
a unique thread identifier by the system to keep track of all threads. As addresses are issued to the
external memory, the TM registers the PCB address of the next predicate that needs to be evaluated
as the state information. For new jobs it is PCB0. Data is returned from memory in the same order it
was requested. Data responses (Rowid ,Columnvalue ) are received in a FIFO. These responses, along
with the thread state PCB0, enter the pipeline handled by the PU. Using the PCB address, query
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parameters are read from the PCB BRAM and set the ALU circuit for column evaluation. These
parameters include an operator, a constant, and the next column offset for further evaluation.
The outcome of an ALU can lead to three possible cases: (1) the current row qualifies a query
condition, indicated by the “TRUE” opcode, that triggers the write-back process of the Rowid ;
(2) the current row disqualifies the query condition, indicated by the “FALSE” opcode, leading to
thread termination; and (3) recycled jobs are generated to further evaluate the next attribute in
a query. The recycled jobs <Rowid , ColumnT /F> are again submitted to the TM in a FIFO. The
recycled addresses are calculated and different column values for the same row are requested from
the memory. The state of recycled requests is a PCB address that is different for every row. This
state information is maintained in a state FIFO.

At the steady-state, a job, new or recycled, enters the pipeline every cycle. This achieves the
multithreading: multiple reads are waiting in queues for memory while other reads are processed.
Priority is given to the write jobs, followed by recycled and new requests to ensure forward progress.
Terminating recycled jobs will make room for new jobs. Additionally, this decision ensures that
the design will not deadlock. New jobs will generate more recycled jobs that will eventually fill
up the recycled job FIFO. The back-pressure from this FIFO will stall the memory responses as
well as prevent the TM from issuing more new jobs.

The design uses FIFOs to store requests and responses from the memory system. The HC-2ex
provides a fully buffered memory system that allows several in-flight requests per channel. The
number of outstanding memory requests in a multithreaded system is a measure of the effective
parallelism. A FIFO raises a stall signal whenever it is close to being full. This signal propagates
backwards, stalling all the circuits upstream and eventually stopping fetching jobs from the mem-
ory. Obviously, a larger queue size would reduce the probability back-pressure being activated. In
the current MTP design, the queue size is 512 entries.

3.3 Factors Influencing MTP Throughput

MTP selection engine implements the branching-scan algorithm and therefore exhibits a strong
correlation between the measured throughput, selectivity (S) of the query and predicate probabil-

ity (p). We define S as the fraction of records in the input relation that satisfies the given query
conditions, p is the probability of an individual predicate to be true, and (k) is the total number of

predicates.
The evaluation order of predicates also plays a central role in achieving a quick query response

time for selection. In this work, predicates are ordered by increasing selectivity, as described in Ref-
erences [71, 87]. This ordering scheme inherently assumes non-correlated predicates, simplifying
our analysis. There have been other optimization techniques [37, 44] that determine the optimal
evaluation order of selection predicates. MTP can take advantage of any ordering scheme that
leads to a quick decision on a row.

We also group all the predicates on a single column into one; hence, in the rest of this article, we
assume that every predicate is applied on a different column. With these assumptions, we calculate
expected number of predicates evaluated for a given value of S and k and describe the variability
in throughput based upon these predicate evaluations. We define all the parameters used in this
analysis in Table 1.

Query evaluation involves reading column values from the memory and writing back the IDs of
the rows that qualify. Therefore, the total work done to process a query can easily be partitioned
into the amount of work done to evaluate the query, We, and the work done to write back the ID of
the qualifying rows, Wwr. Note thatWe includes sending a request and receiving a response from
the memory, evaluating the value of a column against a constant, and sending further requests for
other predicates until a decision on a row can be made.
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Table 1. Definition of Query and Input Relation Parameters

Used in the Analytical Model

S Selectivity
p Predicate probability
k Number of predicates
N Total number of Tuples
We Work done to evaluate predicates
Wwr Work done to write back the qualifying rows

Fig. 5. Number of qualified rows after each predicate for a conjunctive query. N is the total number of rows,

p is a predicate probability, C0,C1,C2, . . . ,Ck designate k different predicates.

Clearly,We is proportional to the total number of predicates evaluated, andWwr is proportional
to the total number of qualifying rows. Hence, the overall throughput of the system can be defined
as follows:

We ∝ Total number of evaluated predicates, (1)

Wwr ∝ Total number of qualified rows, (2)

Throughput ∝ 1/(We +Wwr ). (3)

The rest of this section further elaborates upon We and Wwr on two types of queries; namely, a
query that contains only conjunction of predicates and a query that consists only of disjunction
of predicates. Finally, we discuss the case of a mixed query (that contains combination of ANDs
and ORs).

Conjunctive Queries. Figure 5 shows the expected number of qualifying rows after each pred-
icate in a conjunctive query.

Exp. number of evaluated predicates = N ∗
k−1∑

i=0

pi , (4)

From Equation (1),We ∝ N ∗
k−1∑

i=0

pi , (5)

Selectivity of a conjunctive query, Sand = pk , (6)

Expected number of qualified rows = N ∗ Sand , (7)

From Equation (2),Wwr ∝ N ∗ Sand . (8)

Equation (4) calculates the expected number of evaluated predicates by summing up the number
of rows reaching each predicate. Equation (6) shows that the selectivity, S , is a function of p and
k . Equation (7) defines the expected rows satisfying the last predicate condition based upon query
selectivity. As a result, we obtain We and Wwr for conjunctive query in Equations (5) and (8),
respectively.

Equation (6) is plotted in Figure 6(a). An important observation is that as S and k increase, p
increases, too. Higher values of p imply that more predicates per row are evaluated, i.e., increasing
We . With increasing value of S ,Wwr increases, too.
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Fig. 6. Variation in predicate probability with respect to selectivity for conjunctive (a) and disjunctive (b)

query.

Fig. 7. Number of qualified rows after each predicate for a disjunctive query. N is the total number of rows,

p is a predicate probability, C0,C1,C2, . . . ,Ck designate k different predicates.

Table 2. Summary of Relationships Between S , k ,We , andWwr

Conjunctive Disjunctive
S Const, k ↑ k Const, S ↑ S Const, k ↑ k Const, S ↑

We linearly ↑ f(p,k) ↑ linearly ↑ f(p,k) ↓
Wwr ∝ S linearly ↑ ∝ S linearly↑

Disjunctive Queries. We perform the same analysis for a disjunctive query, shown in Figure 7,
and obtain the following equations:

We ∝ N ∗
k−1∑

i=0

(1 − p)i , (9)

Sor = 1 − (1 − p)k , (10)

Wwr ∝ N ∗ Sor . (11)

Once again, we plot p with varying values of S and k in Figure 6(b). Key observations from
this graph are: (1) For a given k , p increases with S . Higher probabilities cause disjunctive queries
to terminate early; hence,We decreases butWwr increases. (2) Keeping S constant, if we increase
k , then probability p decreases, increasingWe . Also, note the opposing nature of probabilities for
conjunctive and disjunctive queries in Figure 6. It visually illustrates Equations (4) and (9), showing
that for any given selectivity, S , the number of predicates evaluated for both types of queries are
complementary to each other. We observe the same trend in our experiments. Table 2 summarizes
the different trends inWe andWwr for both conjunctive and disjunctive queries.

Mixed Queries. We can extend the same analysis to loosely bound the throughput of a query
with different combinations of AND-OR, arranged in the standard DNF form. The throughput of a
mixed query is also governed by Equation (3), i.e.,We andWwr . Any query with k predicates will
at least evaluate 1 predicate and maximum k predicates. For a pure conjunctive query, the former
case happens at p = 0 and the latter at p = 1, vice versa for pure disjunctive queries. This behavior
directly translates into performance achieved by each of these queries. A pure conjunctive query
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Table 3. System Configuration of Different Architectures Used for Evaluation

Device Make & Model Clock (MHz) Cores Memory (GB) Memory Bandwidth (GB/s)

CPU Intel Xeon E5-2650V3 3000 10 768 60

GPU NVIDIA Titan X 1500 3584 12 480

FPGA Virtex6-760 150 N/A 64 76.8

Fig. 8. 64-bit format of Predicate Control Block (PCB).

achieves maximum throughput at p = 0 and minimum at p = 1 (vice versa for disjunctive queries).
Since a mixed query is a disjunction of pure conjunctive queries,We for a mixed query is always
bounded by Equations (5) and (9). Similarly, Wwr for a mixed query is directly affected by its
selectivity. Thus, we can infer that the total throughput achieved by a mixed query is bounded by
the maximum and minimum performance of pure conjunctive and disjunctive queries.

4 EXPERIMENTAL EVALUATION

We proceed with the details of the MTP implementation on the Convey HC-2ex as well as dis-
cuss the CPU and GPU implementations. Table 3 summarizes the characteristics of all the plat-
forms used. We then present the experimental validation of different factors affecting the MTP
throughput, followed by a thorough comparison of the MTP selection engine with CPU and GPU
implementations.

4.1 MTP Implementation

The Convey HC-2ex machine supports 16 memory channels that can concurrently read or write
data from the DRAM. With this configuration, the selection engine uses each memory channel:
(1) to read PCB (2) to request new rows and (3) to request recycled rows, and (4) to write back
qualifying rowIDs. One engine per channel allows us to place a total of 16 selection engines on a
single AE. Each engine holds the same select query and applies it to different sets of rows. With
more engines, more rows are evaluated in parallel. We also replicate the selection engine across
four AE, thus leveraging inter-engine parallelism.

To execute queries at runtime, queries are parsed into a PCB. To generate a PCB, we wrote
a simple C++ program that converts an SQL query to the corresponding PCB, as discussed in
Section 3.

Figure 8 shows the bit allocation for a query. We choose a 64-bit wide PCB to match the Convey
HC-2ex data bus. A 64-bit PCB enables six basic comparison operators (<=, <,=, ! =, >, >=), 4-byte
constants, and 128 column indexes. These values are sufficiently large to test the functionality and
performance of our design. The PCB can be made wider if we need to support more operators or
larger constants. A wider PCB will require more memory requests to get the complete information
about the query and column data.

Table 3 describes our other evaluation platforms. Note that the Convey HC-2ex CPU host does
not support AVX2 registers. Therefore, to compare the throughput of MTP and CPU in-memory
selection implementation, we use a newer Intel Xeon E5-2650 v3 CPU. In this work, we do not
assume the availability of any a priori information about the query selectivity. However, to identify
the average selectivity of standard workloads, we profiled queries from the TPC-H benchmark
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Fig. 9. Branching and No-Branching algorithm cost vs selectivity (taken from Reference [63]).

(more details in Section 4.7). In this profiling, the average query selectivity was observed to be less
than 30%. Finally, we assume that the input relation is already transferred to the DRAM closer to
the FPGA region. We hold the same assumption for the CPU and the GPU. We do not consider any
transfer time for all the devices, which is usually the case for in-memory data analytics [5, 35, 70].

4.2 CPU and GPU Implementations

We implement a scalar and an SIMD vectorized version of the no-branch algorithm (Listing 3) on the
CPU. In related literature [18, 61–63] both branch (Listing 1, 2) and no-branch (Listing 3) variants
have been benchmarked with the latter exhibiting on average higher throughput. The former tech-
nique is often sensitive to branch mispredictions, only marginally outperforming the no-branch
algorithm in extreme cases (i.e., extremely low or high selectivity), as shown in Figure 9 (taken
from Reference [63]). This property holds true for both scalar and vectorized implementations [18,
62], guiding our choice to implement only the no-branch variant.

In both the scalar and vectorized implementations, we leverage multithreading by partitioning
the input relation across different threads, pinned to physical CPU cores to avoid cache trashing.

For each approach, we use the tuple storage format that allows it to extract the greatest benefits;
namely, row-major format for scalar implementation and columnar data layout for the vectorized
version. Predicate constants are statically compiled, and predicate loops are manually unrolled
to avoid additional cache misses and allow additional compiler optimizations. Code is compiled
with GCC version 4.8.5 with the -O3 optimization flag. To materialize the resultant recordIDs, the
permutation table technique presented in Reference [61] is used.

Our GPU implementation relies on the findings of References [36, 70]. We assign each GPU
thread to a distinct tuple for processing and evaluate the conditions of a query using a for-loop.
Each evaluation is aggregated to a local register using bitwise-AND operands. Also, as suggested in
Reference [70], we use optimal GPU plans to mitigate the effects of thread divergence on GPU. The
final evaluation results are written back to global memory into a flag vector. To identify the quali-
fying tuple-ids, we utilize a stream compaction kernel available from NVIDIA’s CUB [55] library.
This kernel applies the given selection criterion, as indicated by the flag vector, to construct the
corresponding output sequence from the selected items in the tuple-id input sequence. Gathering
the qualifying tuples using the aforementioned method was also proposed in Reference [36].

4.3 Datasets and Queries

To study in detail how the number of predicates and the total selectivity affects runtime on dif-
ferent platforms, we used synthetically generated data. We experimented with different dataset
sizes by varying the number of tuples from 220 to 227. Each tuple consists of 8 fixed-size 64-bit
columns, which is generally used for performance evaluation of in-memory query processing al-
gorithms [13, 16, 17, 79]. However, none of the design choices prevent the use of wider tuples. The
tuple width is solely limited by the machine architecture. We have considered both row-major and
column-major storage formats. In the former case, the tuple’s data is aligned contiguously,
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occupying exactly one cache line. In the latter scenario, values of a particular column for all tuples
are stored adjacent to each other. Values of different columns are drawn from a uniform distri-
bution and are not correlated between individual tuples. This allows us to use Equation (6) to
calculate the total query selectivity from the probability of each predicate.

Query selectivity was varied from 0% to 100% (0%: no row qualifies, 100% all rows qualify) with
10% increments, while the number of predicates in queries was independently changed from 1 to
8. Overall, we experimented with a total of 160 such queries for both conjunctive and disjunctive
selection conditions and experimentally validated the complementary performance achieved for
both types of queries, as discussed in Section 3.3. Unless and until specified, all experiments are
conducted on the dataset size of 227 tuples (~1GB) on different parameters for conjunctive queries.

To the best of our knowledge, there is no separate benchmark concentrating on evaluating the
selection operator. Standard analytical database benchmarks (like TPC-H) evaluate complex SQL
queries, consisting of multiple operators such as projections, joins, aggregations, and so on. Among
the TPC-H queries, only Q6 involves single table selections; Section 4.7 presents our experiments
for this query using data created by the TPC-H benchmark.

We note that our experiments concentrate only on evaluating single-column numeric predicates;
however, MTP can be extended to compare string or variable length columns in several ways. To
achieve this goal, we can pad their contents with zeros to the nearest 8-byte chunk and treat all
chunks as k predicates of a conjunctive query where each predicate performs numeric comparison.
This solution still provides the benefit of early termination; however, we also waste some space on
paddings. Alternatively, we can store the reference to the actual value of such a column. In this case,
accessing the value will require an additional memory access. Handling complex string matching
is another use-case with the similar requirements, so we leave this problem for a future work.

4.4 Throughput Validation

In this section, we experimentally verify the effect of selectivity and number of predicates on the
MTP throughput, as discussed in Section 3.3. We present results for a conjunctive query with
selectivity S varying from 0% to 100% and number of predicates k varying from 1 to 8.

Peak performance is dependent on the total number of concurrent engines and the clock fre-
quency. The Convey HC-2ex machine has 4 FPGAs and each FPGA interfaces to the DRAM via
16 individual duplex memory channels, allowing us to place a total of 64 selection engines. Since
the FPGAs run at 150MHz and assuming no stalls, the design could evaluate an aggregate of P =

9.6 billion predicates/s (150 ∗ 106 cycle

s
∗ 64

pr edicates

cycle
). A row can evaluate anywhere between 1 to

k predicates, putting an upper bound of P tuples/s and the lower bound of P/k tuples/s on the
overall design. For k = 8, the maximum and the minimum theoretical throughput values are 9.6
billion tuples/s and 1.2 billion tuples/s, respectively.

Figure 11(a) presents the achieved throughput, and Figure 11(b) presents the total number of
predicates processed for a conjunctive query while varying the selectivity (S) and the number
of predicates (k). The trends are in accordance with Equation (4). The observed throughput (Fig-
ure 11(a)) decreases with increasing values of S and k in accordance with Equation (3). At S = 0%,
only one predicate is evaluated, resulting in a high throughput of 9.06 billion tuples/s. At S = 100%
and k = 8, all 8 predicates are evaluated, resulting in a lower throughput of 1.04 billion tuples/s.
The prior condition represents the best case and the latter represents the worst case of the predi-
cate evaluation. Hence, the throughput achieved in both cases is close to the upper and the lower
bound. The throughput achieved by other combination of S and k lies between these two cases.

The impact ofWwr on the throughput can be clearly seen with higher values of S . For instance,
even though the evaluated predicates remain the same for a query with k = 1 (Figure 11(b)), the
throughput still drops with increasing value of S .
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Fig. 10. (a) The mixed queries used for evaluation; (b) Their performance evaluation with varying selectivity.

Fig. 11. Experimental validation of (a) Equation (4) and (b) Equation (3).

Next, we evaluate the performance of mixed (AND-OR) queries described in Figure 10(a). No-
tice that the number of predicates (k = 8) is the same, but the attributes are grouped differently for
each query. As discussed in Section 3.3, the performance achieved by a mixed query will always
be bounded by the performance of a pure conjunctive and disjunctive queries. As depicted in Fig-
ure 10(b), the performance of Q1, Q2, Q3, and Q4 lies between the Max(AND, OR) and Min(AND,

OR) queries. Max(AND, OR) presents the maximum performance achieved by a pure conjunctive
and disjunctive query with k = 8 predicates. Similarly, Min(AND, OR) presents the minimum per-
formance achieved by both of these queries. Empirically, we also observed that for any given value
of selectivity and number of predicates, the performance of a query is governed by the work done
to evaluate the total number of predicates, i.e.,We . For instance, for S = 0, the number of predicates
evaluated by queries Q1, Q2, Q3, and Q4 are 268,435,456, 536,870,912, 402,653,184, and 268,435,456,
respectively. Q2 processes more data, hence achieves lower throughput.

4.5 Throughput Evaluation

Figure 12 compares the absolute query runtime on the CPU, GPU, and MTP implementations. The
GPU delivers the best raw performance across different predicate values and selectivities, followed
by MTP that performs better on low selectivity values and smaller values of predicates. The CPU
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Fig. 12. Runtime (in ms) achieved by MTP, CPU, and GPU implementation.

SIMD implementation comes next, and finally the CPU Scalar implementation achieves the highest
runtime among all other architectures.

In our experiments, we define S using p and k assuming that all predicates have the same proba-
bility. On the contrary, real-world queries might have a different combination of predicate probabil-
ities for the same total selectivity. If a query optimizer performs a good job of arranging predicates
in the order of their likelihood of being false (true) for conjunctive (disjunctive) queries, then MTP
will work independently of the number of predicates in a query and is only limited by the number
of memory accesses required for query evaluation. This can be seen in Figure 12, where the MTP
runtime does not change with the number of predicates for 0% selectivity.

The performance of MTP is sensitive to predicate probability. The predicate probability of a
conjunctive query increases with the selectivity (S) as well as with the number of predicates (k),
as can be seen in Figure 6(a). As a consequence, the query evaluation can terminate early on the
lower value of selectivities but builds up for higher values. Additionally, for high values of S , the
writeback work (Wwr ) increases, too, resulting in a quick drop in throughput.

Unlike the MTP implementation that is based on early termination, all other platforms imple-
ment a variant of the No-Branch algorithm. The CPU Scalar graphs clearly show that its execution
time is independent both from the number of predicates and from the query selectivity. This inde-
pendence is an expected behavior, because in a row-major storage format, selection is a memory-
bounded computation. Each access to a particular tuple will bring from memory the values for all

its columns, whether they will be evaluated later or not.
However, the runtime of the CPU SIMD implementation grows linearly as we increase the num-

ber of predicates in a query from 1 to 8. Again, this behavior is explained by the fact that, in a
columnar storage format, we are fetching only the values that will be later used for evaluating the
predicate. For the queries with 8 predicates, the runtimes of Scalar and SIMD converge, because
they perform the same amount of memory accesses. However, we can also see another trend for
the vectorized implementation: its runtime grows as we move from 0% selectivity to 100%. This is
explained by the increasing amount of qualifying recordIDs that need to be written to the output
buffer. The SIMD implementation is susceptible to growing Wwr , because it requires additional
permutations to retrieve IDs of the rows that were qualified from an SIMD lane.

We should also note that for the CPU implementations, the runtime is a function of the main
memory bandwidth utilization, not the penalty of fetching data into CPU cache. In both experi-
ments, the data access patterns (contiguous load for Scalar or load with constant strides for SIMD)
are easily recognized by the CPU prefetcher, which was verified by preliminary experiments where
we had disabled the prefetcher.

Similarly, the GPU implementation evaluates all predicates despite their different selectivities,
resulting in more evaluation work for the respective query. This translates to a higher number of
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Table 4. Number of Reads and Writes for Selection Algorithm

Across MTP, CPU, and the GPU

Read Words Write Words

MTP N ∗∑k−1
i=0 p

i N ∗ S
CPU Scalar N ∗ �Row Size/Cache line size� N ∗ S
CPU SIMD k ∗ �N/Cache line size� N ∗ S
GPU N + S ∗ N ∗ (k − 1) N ∗ f laд_vectorRowI Ds

(N + N ∗ f laд_vectorRowI Ds ) N ∗ S
Note that Nvidia Cub library accepts a vector of 1byte flags.

memory fetches that quickly dominate the total execution time, as their cost is several magnitudes
higher than that of evaluating the predicate conditions. Therefore, an increase in the number of
predicates corresponds to increasing runtime, as indicated by our experimental results.

4.6 Throughput Efficiency

To better capture the memory-bounded nature of the selection and provide a direct comparison be-
tween widely different architectures, we measure bandwidth utilization as well as predicates eval-
uated/s on our evaluation platforms. Better bandwidth utilization directly translates into higher
predicate evaluation, which also indicates efficient core utilization. As discussed in Section 4.1,
the Convey HC-2ex has 4 FPGAs with cumulative bandwidth of 76.8GB/s, the CPU system has a
memory bandwidth of 60GB/s, and the GPU system has a memory bandwidth of 480GB/s.

In this experiment, both read and write operations contribute towards total memory access.
Table 4 summarizes these operations on each of the evaluation platforms.

Both CPU and GPU implementations require gather operation to materialize the resultant
rowIDs. While on CPU, gathering the result from a SIMD register is a pure vector instruction
and does not incur additional memory read/write latency; GPU implementation write intermedi-
ate query results back to the global memory.

Figure 13 shows the bandwidth utilization across different evaluation platforms. There are two
parts of this experiment: (1) minimum amount of work required to achieve maximum bandwidth
utilization; (2) absolute peak bandwidth utilization achieved. To evaluate part (1), we varied dataset
sizes (N in Table 4) from 220 to 227. For brevity, we chose to show the results for 220, 223, and 227.
The MTP bandwidth utilization is affected by the total number of predicates evaluated (We ). It can
be seen in Figure 13(a) that for N = 220 and S = 0%, MTP evaluates ~1M predicates, achieving the
utilization of 69%. On the same dataset size, for S = 100%, a total of ~8M predicates are evaluated,
and the bandwidth utilization quickly reaches 85%. MTP bandwidth saturates at ~8M predicate
evaluations. Beyond this limit, bandwidth utilization minimally increases or remains constant,
irrespective of N . Similarly, CPU-Scalar and CPU-SIMD implementations saturate bandwidth at
N = 223 and N = 226, respectively. The GPU implementation achieves its peak at N = 227. This
limit was verified by running an additional experiment with N = 228. On CPU and GPU, smaller
dataset size does not provide enough work for their cores, limiting the bandwidth utilization.

To address part (2), we compare the bandwidth utilization achieved by each of the platforms
on the dataset size of 227 in Figure 13. MTP achieves fairly constant bandwidth utilization across
different query parameters (S andk). This behavior is expected, because all memory accesses (reads
or writes) on the MTP are interleaved on a single memory channel. More channel activity leads
to a higher bandwidth utilization. On average, MTP achieves 88.6% bandwidth utilization across
varying values of S and k .
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Fig. 13. Bandwidth Utilization of (a) MTP (b) CPU-Scalar (c) CPU SIMD (d) GPU implementations by varying

dataset size and the selectivity.

Fig. 14. Predicates/s compared to the respective peak performance.

The CPU SIMD implementation is remarkably efficient for S = 0%. Since only one predicate is
evaluated, the columnar data layout makes the cache access extremely effective in this case. More-
over, with 0% selectivity there is no result materialization overhead. On S = 0%, CPU SIMD im-
plementation achieves up to 81% of the bandwidth utilization. However, the bandwidth utilization
quickly drops to 30%–54% as k and S are increased. Higher value of k and S directly increasesWe

andWwr , respectively. However, CPU Scalar implementation achieves on average 52.2% bandwidth
utilization. It fairly remains constant across different query parameters.

The bandwidth utilization of the GPU implementation drops almost linearly up to the selectivity
of 40%. However, in the selectivity range of 50%–100%, the bandwidth utilization increases again
and reaches up to 66%.

Figure 14 compares predicates evaluated/s on each platform to its respective theoretical peak.
MTP runs 64 parallel selection engines running at 150MHz, achieving a theoretical peak of
9.6 BPredicates/s. On S = 0%, the observed throughput is 9.03 BPredicates/s. However, for smaller
values of k (k ≤ 3), as the value of S increases, total predicates/s evaluated drop down. For instance,
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Fig. 15. (a) describes the selectivity of TPC-H queries. Each color marks the range of selectivity: (blue) above

60%, (orange) 50%–20%, (green) below 10%; (b) presents TPC-H Query6.

at S = 100% only 4.1–6.7 BPredicates/s are achieved for 1 ≤ k ≤ 3. This behavior is a consequence
of threads terminating early for smaller values of k , unable to completely mask memory latency as
well as high selectivity. Similarly, CPU and GPU run 10 cores and 3,584 cores in parallel, running
at 3GHz and 1.5GHz, respectively, achieving a peak of 30 BPredicates/s and 5.3 TeraPredicates/s,
respectively. As shown in Figure 14, both CPU and GPU evaluate significant lower percentage of
predicates/s with respect to their corresponding peaks.

4.7 TPC-H Query Evaluation

To evaluate the performance of our implementations on a standard workload, we considered the
well-known TPC-H benchmark [75]. We have profiled all 22 TPC-H queries to understand the
various characteristics (selectivity, number of predicates, predicate types) of the selection opera-
tor in this benchmark. Most queries in the TPC-H workload involve complex joins and group-by
aggregations, so not all predicates in the WHERE clause might be used as filtering conditions in se-
lection operators. Instead, we have considered optimized plans where selections are pushed down
and executed before the joins and right after table scan operators. Figure 15(a) presents the selec-
tivity(%) of different TPC-H queries. In this experiment, the average number of predicates in the
selection was 2, with an exception of queries Q6 and Q19, which have 5 and 8/12 (Part/Lineitem
tables) predicates, respectively. All of the selections in the benchmark were conjunctions, again
excluding Q19, which has a mix of conjunctions and disjunctions.

To capture the real effect of the MTP design in the selection operation, we would like to iso-
late the effect of all relational operators in the query. This makes Q6, shown on Figure 15(b), an
ideal candidate for our evaluation. We run the query Q6 on the TPC-H Lineitem table with the
scale factor of 10. The measured selectivity of this query is 1.91%. Figure 16(a) presents the raw
performance of query Q6 executed by the various architectures. We observe the same through-
put trend as discussed in Section 4.5. Due to the high memory bandwidth, GPU achieves the
highest raw performance, followed by the MTP design, the CPU SIMD, and the CPU Scalar im-
plementation. However, when we compare the bandwidth utilization in Figure 16(b), the MTP
achieves 83% while CPU Scalar, GPU, and CPU SIMD implementation achieves 47%, 61%, and 64%,
respectively.
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Fig. 16. TPC-H query Q6 performance evaluation.

Table 5. Performance Evaluation of TPC-H query Q6

on CPU, GPU, and MTP Implementations

CPU CPU GPU MTP
Scalar SIMD

Memory Fetches (%) 100 18.75 18.75 7.25
Average Evaluations 3 3 3 1.27
(per Row)
Effective Bandwidth 0.47 3.44 3.53 13.7
speedup

Furthermore, to confirm the advantage of our MTP design, we also measured the total num-
ber of predicate evaluations and memory fetches. The CPU and GPU implementations access the
common columns (lshipdate , ldiscount ) only once. However, MTP treats them as two independent
attributes and fetches the same column again only if required for further evaluation. The CPU
Scalar implementation accesses all 16 columns per row of the table, therefore it is considered as a
100% memory access. The CPU SIMD and the GPU implementations need only 3 out of 16 columns
to evaluate the query, contributing to 18.75% of memory accesses. We used counters to keep track
of the number of memory fetches and the number of evaluated predicates for the MTP imple-
mentation. Memory fetches with MTP amount to 7.25% of total memory accesses. As suggested in
Reference [72], we compute the effective bandwidth speed-up by taking the ratio of the total size
of the Lineitem relation processed per unit time and the peak bandwidth, summarized in Table 5.

4.8 Data Layout Independence

Both CPUs and GPUs are optimized for cache line access. We believe this is the reason why their
performance varies so much for different storage formats (row and column major). Architecturally,
GPUs operate similarly to SIMD on CPUs, with the difference being the GPU grouping of execution
threads into warps. This grouping is not only relevant to computation but also to global memory
accesses. In fact, the related literature has unanimously promoted the use of column major [11, 24,
31, 70] data layouts to maximize the effective memory bandwidth. Leveraging the aforementioned
data layout, database researchers focused on defining a set of fairly standard parallel primitives
[36] having a direct correlation to relational operators. Therefore, we do not consider GPU for
this experiment. MTP design, along with the Convey HC-2ex memory subsystem, achieves per-
formance that is free from utilizing any form of data alignment in memory and only depends upon
accessing individual columns of a tuple for query evaluation.
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Fig. 17. Performance comparison of the CPU and the MTP implementations with row-major and columnar

data layouts.

Fig. 18. Comparison of power efficiency on MTP, CPU, and GPU systems.

Figure 17(a) compares the performance achieved by the CPU implementations; namely, Scalar on
row and SIMD on column store. The columnar data layout leads to efficient cache access when only
few predicates are required for evaluation. This directly translates into high throughput that is 8×
over the performance achieved by a row-store data layout. However, as the number of predicates
increases, the amount of data accessed by both the row-store and the column-store implementa-
tions converge and so does their performance. Figure 17(b) shows the MTP performance on row-
and column-store data layouts. For a given number of predicates and selectivity, the number of
memory accesses does not depend upon the type of data layout and, therefore, the MTP perfor-
mance remains unaffected. These observations on the MTP are coherent with the results presented
in Reference [67].

4.9 Power Efficiency

To further justify our MTP design, Figure 18 presents the power efficiency results measured
in Million Tuples/s per Watt. We compared the power efficiency of CPU, GPU, and MTP
implementations.

The measured on-chip power consumption on each FPGA of HC-2ex machine is 21W and total
power supply is 25W, which gives us the total FPGA power consumptions as 109W (25 + 21*4).
On CPU, we use the manufacturer TDP (thermal design power) rating of 105W, as prescribed in
Reference [59]. On GPU, the average power consumption was measured to be 155W for the design
with a power supply of 600W [2]. We compare the power efficiency of all the devices in Figure 18.
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Table 6. FPGA Area Utilization for

Selection Engine

# Engines Registers LUTs BRAMs

1
129,251 78,746 175

13.6% 16.6% 8.2%

4
149,151 88,801 250

15.4% 18.76% 11.6%

8
172,171 108,451 295
18.15% 22.82% 14.2%

16
201,241 120,321 358

21.2% 25.22% 16.5%

The power efficiency is coherent with our throughput evaluation. Since the MTP throughput drops
with the selectivity and number of predicates, it directly affects the power efficiency, too. It is
1.7×–10.6× better than CPU-SIMD on 0% selectivity. However, for S = 100%, the power efficiency
drops to 2.5×–1.97×. Similarly, in comparison to GPU, we get 1.9× power savings at S = 0 but for
S = 100%, the efficiency is on par with GPU.

We use the same power statistics to evaluate the power efficiency of different architectures on
query Q6 of TPC-H benchmark. MTP design is 14× and 4.2× more power efficient than GPU and
CPU-SIMD implementations on this query.

4.10 FPGA Area Utilization

Table 6 shows the area utilization. Many resources are shared between the engines as their num-
ber increases. For example, one selection engine uses 13.6% of the available registers, whereas
16 engines use only 21.2%. Also note that with increasing number of engines there is very minimal
increase in the number of logic resources (LUTs). Overall, the space utilization on the FPGA is
low, leaving sufficient space to extend our design with various optimizations or operators (projec-
tions, aggregation, join). This also gives us insight into how well the design could scale on another
platform with more, or less, memory channels. These results include Convey’s memory interface
wrapper, which does not occupy a significant portion of the area. We see that even with 16 engines
the Virtex-6 still has plenty of room for more engines; only 25.22% of the logic is utilized.

5 RELATED WORK

All modern, medium to high-end CPUs are equipped with SIMD registers that can be used to
accelerate many database operations [78, 84], including selection. The data layout (row- or column-
oriented) of an in-memory database table also plays a significant role in achieving better response
times, as it directly impacts the bandwidth and cache utilization. Despite many efficient algorithms
proposed for both row [25, 62] and column [25, 60, 86] storage layouts, columnar format provide
better opportunities for data compression [30, 52, 78]. However, all these approaches suffer from
the overhead of converting data in row-major format to a columnar layout either in the background
or by keeping two separate representations of the same record. Different variants of the Listings
described in Section 2.1 are explored in References [44, 52, 61].

Recently, hardware accelerators, such as FPGAs and GPUs, have also been considered a vi-
able alternative to modern CPUs for accelerating common relational operators [36, 57], including
selections [32, 72]. FPGAs are either integrated into a datapath between a network and proces-
sor to perform database operations [1, 65, 79], viewed as a co-processor or accelerator [20], or
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domain-specific processors [21, 53, 57, 69]. Similarly, GPUs have also demonstrated significant
speed-up in data processing [12, 24, 70] by proposing kernel scheduling, algorithms, and data
structures to overcome architectural challenges like avoiding thread divergence and offering coa-
lesced memory access pattern.

Embedding reconfigurable hardware in storage devices is a growing area of interest [6, 33, 43,
65]. For instance, Ibex [79] is a MySQL accelerator platform where a SATA SSD is coupled with an
FPGA. The work in Reference [39] explores offloading part of the computation in database engines
directly to the storage with FPGA-based accelerators while targeting row-oriented databases and
implements a no-branch selection algorithm. JAFAR [82] is a near-data processing hardware ac-
celerator embedded into DRAM modules that implements the select operator of a modern column-
store. Commercial platforms such as Kickfire [46] and Baidu [9] offer FPGA solutions for database
management systems. However, because of their proprietary nature, specific implementation de-
tails and measurements are difficult to obtain.

Domain-specific processors are proposed in References [1, 27, 34, 57], including Q100 [81] and
LINQits [21]. Q100 is a data-flow style processor and uses ASIC functional units to exploit operator
pipelines without supporting data management in off-chip storage. Although ASICs can provide
higher efficiency, their fabrication process is time-consuming. By contrast, FPGAs allow relatively
easy development cycle. Another emerging trend is the use of dark silicon [26, 49]. Widx [49], in
particular, is one such on-chip accelerator for hash index lookups in main memory databases.

Hybrid CPU-FPGA cache-based architectures have been proposed to mitigate long memory la-
tencies [21, 69, 80]. For instance, LINQits [21] maps LINQ, a query language, to a set of FPGA-
based hardware templates on a heterogeneous SoC (FPGA + ARM). This accelerator focuses on
the range-partitioning step of query processing to insure that each partition can fit on an on-chip
cache. Similarly, Reference [69] exploited an Intel Xeon + FPGA prototype system to speed up
complex pattern-matching SQL constructs supported by MonetDB.

In this work, rather than mitigate the memory latency by relying on large cache hierarchies, the
MTP architecture masks it by switching to the next ready thread upon a memory operation in a
cache-less architecture. All the database accelerators discussed in this section assume a continu-
ous stream of data onto the FPGA for processing. With the MTP, non-streamable applications can
also achieve higher performance on FPGAs. As a consequence of relying on streaming paradigm,
other accelerators also assume a particular data layout, either row [22, 57, 72, 79] or column [20]
format for query processing. Instead, the MTP selection engine can handle either format without
compromising the performance. In the future, we want to explore the aforementioned near-data
processing ideas for upcoming memory technologies without being limited by random access per-
formance. In fact, the distributed storage system presented in Reference [39] is a good alternative
option to the Convey HC-2ex SG-DIMMs.

6 CONCLUSIONS

We presented a lightweight hardware multithreaded implementation of the selection operation
for in-memory relational databases, the MTP, prototyped on an FPGA platform. The MTP design
facilitates fine-grained data access, thus is completely oblivious to a particular data layout (row
or column) and avoids fetching irrelevant data. Furthermore, MTP does not rely on hardwired
filters for the selection. Instead, it can execute new queries at runtime. We thoroughly evaluate
it against the best implementations on CPU and GPU. Experimental results show that the MTP
throughput varies only with the predicate probability and is bounded by the memory channels.
The GPU achieves the best raw performance over the entire parameter space. Due to the memory-
bounded nature of the selection operation, we attribute this performance to the high GPU memory
bandwidth. However, while comparing the bandwidth utilization across different platforms, we
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observe MTP achieves 88% of the bandwidth utilization while GPU implementation peaks at 66%.
We also evaluate MTP on the TPC-H query Q6. On this benchmark query, MTP achieves 83%
of the bandwidth utilization while saving 93% of total evaluations. Additionally, the MTP engine
occupies only 25.2% of chip area, leaving plenty of room for future improvements. Furthermore,
we are examining how partitioning and thread load balancing can be utilized on the MTP-based
implementations to deal with extremely skewed datasets.
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