
Optimizing Hardware Design for Human Action
Recognition

Xiaoyin Ma, Jose Rodriguez Borbon, Walid Najjar, Amit K. Roy-Chowdhury
University of California, Riverside

Riverside, CA 92521, USA
xma@ece.ucr.edu, jrodr050@ucr.edu, najjar@cs.ucr.edu, amitrc@ece.ucr.edu

Abstract—Human action recognition (HAR) is an important
topic in computer vision having a wide range of applications:
health care, assisted living, surveillance, security, gaming, etc.
Despite significant amount of work having been conducted in
this area in recent years, the execution speed still limits real-time
applications. Moreover, it is highly desirable to have the compute-
intensive feature extraction stage done right at the output of
the camera to extract and transfer only action feature in multi-
camera network setting and hence reduce network bandwidth
requirement. In this work, we first evaluate the possibility to
perform feature extraction under reduced precision fixed-point
arithmetic to ease hardware resource requirements. We compared
the Histogram of Oriented Gradient in 3D (HOG3D) feature
extraction with state-of-the-art Convolutional Neural Networks
(CNNs) methods and shown the later to be 75X slower than the
former. Our experiment shows that by re-training the classifier
with reduced data precision, the classification performs as well
as the original double-precision floating-point. Based on this
result, we implement an FPGA-based HAR feature extraction
for near camera processing using fixed-point data representation
and arithmetic. This implementation, using a single Xilinx Virtex
6 FPGA, achieves about 70x speedup over multicore CPU.
Furthermore, a GPU implementation of HAR is introduced with
80x speedup over CPU (on an Nvidia Tesla K20). Last but not
least, a power comparison is presented for the three platforms.

I. INTRODUCTION

The rapid growth of camera and storage capabilities, over
the past decade, and the related drop in their prices, has
resulted in an exponential growth in the size of video repos-
itories, such as YouTube. In 2015, 400 hours of videos were
uploaded to YouTube every minute [1]. At the same time, mas-
sive amount of images/videos are generated from monitoring
cameras for care to the elderly, assistance to the sick, satellite-
based monitoring for earth science research, telescopes for
space exploration, and security. Human annotation and manual
manipulation of such videos is infeasible. Computer vision
technology plays an essential role in automating the index-
ing, sorting, tagging, searching and analyzing huge amount
of video data. Activity recognition in general, and Human
Action Recognition (HAR) in particular, are some of the
most challenging topics in computer vision today. Despite
significant progress in accuracy and speed over the past few
years, the execution speed, less than one frame/sec in most
of the existing methods, still limits real-time applications [2]
in a wide range of applications: health care, assisted living,
surveillance, security, gaming, etc.

Moreover, many, if not most, monitoring situations increas-
ingly rely on a network of cameras. These networks are mostly
wireless for cost and portability reasons. Hence, the bandwidth
is at a premium. It is therefore highly desirable to have the
compute-intensive feature extraction stage of HAR done near
the camera and to extract and transfer only action features and
hence reduce network bandwidth requirements. The hardware
acceleration of HAR for those applications is particularly
important due to the stringent power and speed requirement.
We choose HOG3D [3] as our HAR feature extraction method
for its high accuracy and relatively low computational com-
plexity. Compared to the state-of-the-art Convolutional Neural
Networks (CNNs) methods, HOG3D is about 75x faster (see
Section VI). Therefore, the HOG3D method is more applicable
for the real-time applications discussed above.

In the last few years we have witnessed the end of Denard
Scaling that had held since 1974: It is no longer possible
to increase the clock speed of digital devices simply by
shrinking the feature size. While Moores Law still holds,
meaning that more cores can be built on the same die, a
multi- or many-core execution suffers from high memory off-
loading overhead for streaming data. Streaming video data
needs to be loaded into memory before it can be processed.
This implies that the processing speed will be limited by
the memory bandwidth. FPGAs do not rely on memory off-
loading; rather the video data can be streamed directly onto
the chip where it is processed. Furthermore, in recent years we
have witnessed a tremendous increase in the size, speed and
bandwidth capabilities of modern FPGA devices making them
excellent candidates to implement, in hardware, large complex,
massively parallel and bandwidth intensive applications such
as HAR.

In this work, we explore the use of reduced, but variable,
bit-width for data representations in feature extraction, ma-
chine learning and classification (recognition) in our FPGA
implementation for HAR acceleration. To the best of our
knowledge, this is the first FPGA implementation that is
targeted on full human body action recognition with state-of-
the-art recognition rate. The contributions of this paper are:

1) A comprehensive evaluation of the HAR recognition
accuracy under reduced data precision. Our experimental
results show that retraining the classifier using reduced
data width can compensate for the precision loss in
feature extraction and achieve the same recognition rate

26th International Conference on Field Programmable Logic and Applications, FPL 2016, Lausanne, Switzerland, August 29 - September 2, 2016

as using floating-point data. This result significantly
relieves hardware resource requirement for video clas-
sification and enables faster and more energy efficient
vision processing. Our final implementation starts with
8-bit pixels but preserves the precision of the data using
variable bit-width in the intermediate and final results
(Section IV).

2) A complete FPGA implementation of feature extrac-
tion for real-time human action recognition using near-
camera processing. This implementation reads raw video
pixels as input and produces the final bag-of-words
features. The output bag-of-words is only 1,000 16-bit
integers. Thus it is especially suitable for embedded
platforms that process videos/images close to cameras
to reduce network bandwidth requirement.

3) In addition to the FPGA implementation, we have im-
plemented a single-precision floating-point HAR appli-
cation in GPU. To the best of our knowledge, it is the
first GPU implementation of HAR algorithm using hand-
crafted features. Our application is able to process 16
videos in parallel achieving a throughput of 1,616 frames
per second.

4) A throughput comparison of multicore CPUs, GPU and
FPGA platforms shows our FPGA and GPU implemen-
tations achieve 80x and 70x speed-up over the multicore
CPU. What’s more, a power consumption comparison
shows that FPGA uses 3x less power than GPU.

The remainder of this paper is organized as follows: Section
II covers related work in state-of-the-art HAR algorithms
as well as previous implementations on FPGAs. Section
III introduces the Histogram of Oriented Gradients in 3D
(HOG3D) and bag-of-words features for human action recog-
nition. Fixed-point evaluation of human action recognition is
discussed in Section IV. In sections V we show the details
of our FPGA implementation. The result and comparison is
presented in Section VI. The conclusion is in Section VII.

II. BACKGROUND

Most of the HAR algorithms developed over the past few
years [4] can be broadly described in terms of the following
framework. A temporal sliding window is applied on a video
stream to find actions. For frames within a window, spatial-
temporal features are extracted from 3D regions by either
interest point detector or dense-sampling. The extracted fea-
tures are clustered (e.g. K-means) to build visual vocabularies
in training. These features are then binned into histograms
based on their center to form high-level fixed-size bag-of-
words (BOW) feature vector [5], [6], [7], [8], [9]. A classifier
is trained using BOW features to detect the targeted action. In
many recent methods, the relationships between the actions are
also exploited in a structural support vector machine (SVM)
[10] or graph-modeling framework [11]. Note that in our work,
we only consider the case that each video clip contains one
action and there are known numbers (and known labels) of
actions to be recognized.

Despite many different detectors being developed for in-
terest point detection [12], [13], [14], [15], [16], [17], it has
been shown that sampling the window at regular positions
in space and time (dense-sampling) achieves the best perfor-
mance in most benchmarks [2]. Also many algorithms have
been proposed for the abstraction of pixel information to
capture human movements, including patches of normalized
derivatives in space and time [18], image gradients [13],
optical flow [19], [13], Speeded-up Robust Features (SURF)
extended to 3D [17], combination of histograms of oriented
gradients and histograms of oriented optical flow [20], and
3D extended HOG (HOG3D) [3], [21]. Among the various
spatial-temporal features, HOG3D with dense-sampling has
been shown to achieve good performance for HAR [2] while
being less stringent in hardware requirement. Thus, we choose
this method in our real-time embedded action recognition
system.

Previous FPGA implementations have mainly focused on
the hand gesture recognition, a predecessor of HAR [22], [23].
The design of a vision processing chip that can be used for
gesture recognition is described in [24]. In [25] a 600-fps
real time action recognition system was proposed for four
types of hand gestures. Meng and Freeman implemented a
re-configurable system for action recognition and have tested
the algorithm using a full human body action benchmark [26].
However, the 63% mean-average recognition rate on the KTH
dataset [18] is well below state-of-the-art results. To the best
of our knowledge, none of the previous work have performed
action recognition under reduced data precision. In this paper,
we propose an FPGA implementation that is comparable to
state-of-the-art recognition rates in complex HAR benchmarks
while maintaining efficient FPGA resource usage by applying
8-bit fixed-point arithmetic.

The study of fixed-point implementation in image and video
processing were primarily focused on the data range analysis
and precision/errors associated with reduced bit-width [27],
[28], [29]. It was also shown that machine learning model has
certain tolerance on the reduced data precision and has lead
to various FPGA implementation using fixed-point data [30],
[31], [32]. In our work, we take one step further by building a
learning predictive model using the reduced precision features
and show that the new model can compensate for the precision
loss in feature extraction having a comparable recognition rate
with double-precision floating-point.

III. HISTOGRAMS OF ORIENTED GRADIENTS IN 3D

In this section, we describe the HOG3D algorithm and BOW
features used for the action recognition.
HOG3D Features HOG3D Features [3] are extracted from
within a 3D box centered at a key point to encode both
spatial and temporal information. In this algorithm each 3D
box is divided into several non-overlapping cells from which
the HOG3D features are calculated. The final feature for each
box is the concatenation of all cell features in that box. Each
cell is further divided into several sub-cells to compute spatial-
temporal histogram. The overview of the feature extraction

Fig. 1: Illustration of HOG3D box, cells and sub-cells.

process is shown in Figure 1. For each sub-cell, the histogram
is obtained by projecting the three mean-gradients (dx, dy and
dt) to the icosahedron surfaces, as shown in Equation 1 and
2, where

~g =

0

@
d̄
x

d̄
y

d̄
t

1

A (1)

~h = P~g (2)

P is the projection matrix (10⇥3 for binning to half orientation
and 20 ⇥ 3 for full orientation). In half orientation (used in
this work), only the absolute value of the projected gradient is
kept. The projected gradients are then subtracted by a threshold
computed in Equation 3 and all negative values are set to zero.
Then, the histogram vector is normalized in Equation 4. Every
group of gradient vectors (dx, dy, dt) generates 10 sub-cell
histogram values.

threshold =
1.618034pP

g2
i

(3)

~h
norm

=

pP
g2
iP

h
j

~h (4)

Histogram vectors in a single cell are accumulated from
sub-cell histogram using a vector add operation and then
normalized again by L2 normalization shown in Equation 5.

~H
norm

=
1pP
H2

i

~H (5)

Gradient Computation and Integral Video The histograms
are computed by using average gradients in three directions
(x, y, t) . The gradients are computed using a simple mask
[�1, 1] as in Equation 6:

8
><

>:

dx = p(x+ 1, y, t)� p(x, y, t)

dy = p(x, y + 1, t)� p(x, y, t)

dt = p(x, y, t+ 1)� p(x, y, t)

(6)

Note that edge pixels are replicated (gradients are set to 0
at edges). Integral video is used to rapidly compute average
gradients within sub-cells. The integral video is an extension
of the popular integral image method proposed by Viola and
Jones [33]. Integral video has been shown to be an efficient
method to extract spatio-temporal features in previous works
[34], [17]. In integral video, the integration value for a gradient

at location (x0, y0, t0) is the sum of all gradient values at current
and previous locations as shown in Equation 7.

I
d

(x0, y0, t0) =
t

0X

t=0

y

0X

y=0

x

0X

x=0

d(x, y, t) (7)

In HOG3D, the integral videos for each of the three gradients
are computed using Equation 7. With a given 3D sub-cell
at location (x, y, t, w, h, l), the average gradient is computed
using Equation 8. Note that x, y and t are the smallest column,
row and time index in a sub-cell respectively and w, h and l
are the width, height and length of the sub-cell.

d̄ = [I
d

(x, y, t+ l) + I
d

(x+ w, y + h, t+ l)�
I
d

(x+ w, y, t+ l) � I
d

(x, y + h, t+ l)]�
[I

d

(x, y, t) + I
d

(x+ w, y + h, t)�
I
d

(x+ w, y, t) � I
d

(x, y + h, t)]

(8)

Dense Sampling and Multi-Scale Processing Dense sam-
pling algorithm extracts key points at regular locations by
moving a 3D box across the video at a constant stride. In
our experiment, the stride is 50% of the box size that is any
two adjacent boxes have 50% overlap. To further increase the
feature diversity (and increase recognition accuracy), features
are extracted at multiple scales. Instead of re-sizing the original
frames/images, the 3D box is enlarged by approximately

p
2

times (each side) until the box is larger than the frame
size. Thus, a single integral video computation can be used
for all spatio-temporal scales. Since dealing with multiple
scaled images using shared hardware is difficult [35], [32],
this design also simplifies the hardware design that will be
discussed later. In our experiments, the box is only re-sized
in spatial dimension at seven different scales with box size of
24, 32, 48, 64, 96, 136, 192 pixels. The box size is fixed at 16
frames in temporal dimension as multiple temporal scales has
shown little impact to the final classification result in [2].
Bag-of-Words Features (BOW) BOW feature is a higher
level video representation built upon pixel-level features (such
as HOG3D). This method was inspired by document classifica-
tion, where a histogram of “words” (also called vocabularies)
are generated to model the document [36]. In this method,
the model is built using their occurrence in the document
regardless of the order. For computer vision applications,
a visual vocabulary is computed by a clustering algorithm
(e.g. K-means or KD-Tree) using the extracted features. Each
HOG3D feature vector in a video clip is binned into its closest
vocabulary to form a BOW feature. The BOW method has
been widely used in many of the latest HAR algorithms [37],
[20], [17], [3], [38], [39], [40]. In our evaluation, we choose k-
means as our clustering algorithm and use 1,000 vocabularies
(i.e 1,000 cluster centers in K-means) for all recognition tasks.
Training and Classification To recognize multiple actions in
a video clip, the BOW features are passed to a multi-class
SVM classifier for classification. The SVM classifier creates
a large margin around the decision boundary (hyperplane) to
achieve maximum classification performance [41]. Specifically
in a linear SVM classifier, the final confidence score is the

dot-product of the trained classification vector (normal vector
to the hyperplane) ~W and the BOW feature vector ~V plus a
constant intercept term s0, as shown in Equation 9.

s = ~W · ~V + s0 (9)

The decision boundary can be non-linear if the “kernel trick”
is applied to the SVM leading to improved recognition rate
[42], [43] but also increased computational complexity. In our
evaluation, we have used both linear and �2 kernels to test the
recognition rate as in Equation 9 and 10 respectively.

s =
X 2w

i

· v
i

w
i

+ vi
+ s0 (10)

Originally, SVM classifiers were designed for binary classifi-
cation. To extend it for multi-class cases, we have adopted
the generally accepted “one versus one” method. In this
method, one classifier is built for each pair of actions, and the
final classification decision is the highest count action after
evaluating all classifiers. For example, if there are six actions
to recognize, 15 classifiers (C6

2) are modeled. The outcome of
such classifier is a histogram of action counts, and the highest
count (maximum count is five if all classifier predictions are
correct) will be the decision.

Due to limited number of data in all benchmarks for training
and testing, we have used cross-validation to evaluate the
performance of our detector. Cross-validation is a technique
commonly used in machine learning to estimate the accuracy
of the predictive model. In cross-validation, the entire dataset
is divided into two groups, training data and test data. A
predictive model is built using the entire training data and
then applied against the test data. The average recognition
rate is computed by comparing the predicted labels with the
ground truth. Leave-one-out cross-validation is a special case
of cross-validation that uses one data as test group and the
rest as training. The process is repeated until all data are
used as test set. In our evaluation, we have used both regular
corss-validation and leave-one-out cross-validation per dataset
specification.

IV. FIXED-POINT HAR

In this section, we review the HAR benchmarks used for
evaluation of the fixed-point recognition. The effect of reduced
bit-width on the HAR applications in k-mean clustering, SVM
training and classification are also studied.
HAR Evaluation Benchmarks We have used three different
benchmarks with increasing difficulty to evaluate our HAR
implementation: KTH [18], UCF11 [44], [45] and UCF50
[39]. KTH benchmark is a collection of 599 videos with six
different human actions. The recognition on this dataset is
relatively trivial. The UCF11 consists of 1,600 video clips
with 11 different actions. Every action is divided into several
different groups based on similarity of videos in terms of
actors, background, and/or view point. This dataset is very
challenging as there is a large number of variations in camera
motion, background, subjects, and object scales. UCF50 is an
extension of the UCF11 by adding 39 more actions with a total

pixel&
0:8& Gradient&&

dx,&dy,&dt&
±0:8& Integral&

Video&

Idx,&Idy,&Idt&
±16:8& Mean:average&

gradient&
±10:(n:10)& ProjecAon&to&&

Icosahedron&

projecAon&vector&
10:(n:10)&

Hist.&Norm.&
hist&9:n:9&

Cell&Hist&

cell&hist&&
11:n:11&Cell&Hist.&

L2&norm&

dx,dy,dt

HOG3D&feature&
0:n&

NN&Search&

L2&distance&10:2n&
BOW&10:0&&

Fig. 2: HOG3D data-flow diagram and key parameter data
sizes (integer:fractional) used in our implementation.

of 6,680 video clips. This dataset is the most difficult among
all three benchmarks due to the large number of actions to be
recognized.
Fixed-Point Experiments We have implemented both
floating-point and fixed-point HOG3D feature extraction in
C++. The floating-point code is based on the original code [3],
[21] with our own version of dense-sampling implementation.
In dense sampling, a 3D box is moved at a regular positions
within the video with 50% overlapping stride. Moreover, the
spatial size is increased approximately

p
2 times until the box

is larger than the original frame size. The two spatial directions
always have the same size and we have fixed the box’ temporal
length to be 16 frames. In our dense-sampling algorithm, the
smallest spatial size is 24 pixels. As shown in Figure 1, we
choose four cells per box per direction and two sub-cells per
cell per direction, thus the box size should always be a multiple
of eight pixels. Accordingly, the dimension of the HOG3D
feature is 640 with half-orientation (4⇥ 4⇥ 4⇥ 10). We have
also fixed the number of frames in each video clip as 396
frames for KTH, 96 frames for UCF11 and 80 frames for
UCF50.

We have implemented the floating-point code in double-,
single- and half-precision floating point to test the outcome
at different data precision. The fixed-point feature extraction
is similar to the floating-point version but with all computa-
tions performed in fixed-point. In our fixed-point evaluation
program, the bit-width can be passed as an input argument at
run-time for processing in different precision. The data size
was obtained by sampling the three benchmarks at every step
of the computation. The data flow of the activity recognition
procedure and the bit-width at different steps are shown in
Figure 2, where n is the bit-width (excluding sign bit, if
applicable). Negative fractional values for small n in Figure
2 is automatically set to 0 in our implementation. In our
experiment, we have used a large range of bit-width from 27-
bit down to 6-bit. The upper bound is chosen to make sure no
intermediate fixed-point data exceeds 64-bit during any stage
of the computation. Due to vast amount of features extracted
from each dataset, we have randomly selected features for K-
means clustering. For KTH and UCF11, 400 and 200 features
are selected from a video clip respectively. For UCF50, we
have randomly sampled 10,000 features per action category
for clustering. Fixed-point and half-precision HOG3D features
are converted to single-precision floating point for k-means
clustering. All clustering are set to terminate after reaching
one million iterations. For fixed-point data, the centers are
converted back to their respective bit-width.

BOW features are built using brute-force nearest neighbor

81.2

85.2 85.2

81.9 81.9

84.6

77.2 77.2
75.8

86.6 85.9

77.2 77.9

88.6
89.9 90.6

87.9 87.9 88.6

85.9

89.3
90.6 89.9 89.9

84.6 85.2

0
1.23E-15

5.42E-06
5.42E-06

8.07E-04

8.62E-03

2.07E-02

2.94E-02

4.92E-02

5.84E-02

6.48E-02

4.40E-02

65

70

75

80

85

90

95

M
ea
n-
sq
ua
re
d	
Er
ro
r	o

f	H
O
G3

D

Re
co
gn
iti
on

	A
cc
ur
ac
y	
(%
)

Lin.

χ2

mse

(a) KTH dataset recognition results

58.8 58.6 57.9 57.4 58.4 58.5 57.8 57.3 56.3 56.9 56.4 54.8
50.0

67.8 67.2 67.4 67.3 66.7 66.0 67.4 66.7 65.6 66.7 66.0
63.2

56.6

0
9.30E-07

1.87E-06
1.90E-06

2.39E-03
4.74E-03

1.02E-02

1.57E-02

2.88E-02

5.84E-02

6.48E-02

4.38E-02

0

10

20

30

40

50

60

70

80

M
ea
n-
sq
ua
re
d	
Er
ro
r	o

f	H
O
G3

D

Re
co
gn
iti
on

	A
cc
ur
ac
y	
(%
)

Lin.

χ2

mse

(b) UCF11 dataset recognition results

50.6 49.6 49.9 49.7 50.2 49.2 49.2 51.0 51.5 51.4 50.4
47.2

38.3

60.6 59.4 60.2 59.3 60.3 59.4 59.8 61.1 62.3 61.6 60.9
56.8

46.8

0 4.94E-101.11E-061.11E-06
2.90E-03

5.36E-03

1.05E-02

1.56E-02

2.72E-02

3.88E-02

5.69E-02

4.40E-02

0

10

20

30

40

50

60

70

M
ea
n-
sq
ua
re
d	
Er
ro
r	o

f	H
O
G3

D

Re
co
gn
iti
on

	A
cc
ur
ac
y	
(%
)

Lin.

χ2

mse

(c) UCF50 dataset recognition results

Fig. 3: Recognition accuracy, linear and �2, and MSE of the
feature extraction for the three benchmark versus bit-with.

search method. The nearest cluster center for a feature vector
is determined by comparing the L2 distance with all the 1,000
centers. We have implemented the nearest neighbor search in
double- and single-, precision floating-point as well as fixed-
point. Half-precision features are converted to single-precision
for nearest neighbor search.

To evaluate the accuracy of the activity recognition, we have
followed the original experimental settings from the authors
of the benchmarks. We use a modified version of LIBSVM
(added �2 kernel) for classifier training [46]. This library
uses double-precision floating-point for all training. For KTH
dataset, we use nine subjects (2,3,5,6,7,8,9,10, and 22) as test
group and the rest as training group. For both UCF11 and
UCF50 datasets, leave-one-group-out cross-validation is used
(since videos at the same group are similar, they are used in
training/testing together). Note that because the UCF50 is a
superset of UCF11, we only evaluate the 39 actions that are
not included in UCF11 dataset.

82.9 82.9 82.9 82.9
79.8

75.2
80.6

76.7

65.9
60.5

71.3

85.2
81.9 81.9

84.6

77.2 77.2 75.8

86.6 85.9

77.2 77.9

0

10

20

30

40

50

60

70

80

90

100

Re
co
gn
iti
on

	A
cc
ur
ac
y	
(%
)

DPFP

individual

(a) KTH dataset recognition results using different centers.
58.6 58.4 58.4

57.8 57.8
56.5

56.8

54.3

50.7 50.9 50.6

57.9
57.4

58.4 58.5
57.8

57.3

56.3
56.9

56.4

54.8

50.0

44

46

48

50

52

54

56

58

60

Re
co
gn
iti
on

	A
cc
ur
ac
y	
(%
)

DPFP

individual

(b) UCF11 dataset recognition results using different centers.

49.6 49.7 49.7 49.6
48.7 49.0 48.0 46.3 44.7

41.0 38.5

49.9 49.7 50.2
49.2

49.2 51.0 51.5 51.4 50.4
47.2

38.3

0

10

20

30

40

50

60

Re
co
gn
iti
on

	A
cc
ur
ac
y	
(%
)

DPFP

individual

(c) UCF50 dataset recognition results using different centers.

Fig. 4: Recognition accuracy, BDFP centers and individually
trained centers versus bit-width.

Recognition Results We evaluate the recognition accuracy by
using all processing steps in fixed-point (fxp-) and compared
the results with float-point data, as shown in Figure 3. We
report both linear and �2 kernel SVM classification result. The
“org” evaluation uses the original authors’ code and config-
urations in feature extraction that uses floating-point indexed
and sized 3D boxes to sample the video. We also calculate the
mean-squared error (MSE) of the HOG3D features by using
the double-precision floating-point (DPFP) feature as ground
truth. As shown in Figure 3-(a), the accuracy at different bit-
width fluctuates a lot. However, for UCF11 and UCF50, the
lower bit-width is very stable as shown in Figures 3 (b) and
(c). The fluctuation in KTH dataset is likely due to the limited
number of training/testing samples. For UCF50 dataset, the
fxp-8 slightly outperforms the DPFP recognition even though
the MSE in feature extraction increased by several orders of
magnitude. The half-precision recognition performs worst in
all cases. The MSE at fxp-8 ranges from 2.7% to 4.9% and

87.8

50.1

33.3
28.3

18.3
15.2

0

10

20

30

40

50

60

70

80

90

100

Re
co
gn
iti
on

	A
cc
ur
ac
y	
(%
)

DPFP

individual

(a) KTH dataset recognition results using different SVM models.

86.4

56.4

36.3
31.7

21.6
16.0

0

10

20

30

40

50

60

70

80

90

100

Re
co
gn
iti
on

	A
cc
ur
ac
y	
(%
)

DPFP

individual

(b) UCF11 dataset recognition results using different SVM models.
92.5

78.2

48.8

20.3
16.9

9.3
5.5

0

10

20

30

40

50

60

70

80

90

100

Re
co
gn
iti
on

	A
cc
ur
ac
y	
(%
)

DPFP

individual

(c) UCF50 dataset recognition results using different SVM models.

Fig. 5: Recognition accuracy, DPFP SVM model, individually
trained SVM model.

increases by about 13 orders of magnitude from the MSE of
single-precision float, while the recognition accuracy remains
relatively the same. Additionally, the MSE for half-precision
float is between fxp-8 and fxp-7. However, half-precision
recognition accuracy is well below the lower bit-width fixed-
point recognition for all test cases. This is due to the error
propagation in the integral video stage. On one hand, fixed-
point feature extraction does not suffer precision loss during
integral video as the data range is carefully selected to avoid
overflow. On the other hand, the integral video using half-
precision may suffer large amounts of information loss due to
the limited range and precision of half-float. This information
loss is further amplified at later stages.

To study how the recognition performs well under low
bit-width, we performed further experiments to investigate
the effect of Kmeans-clustering. In addition to performing
recognition by finding clustering centers in each bit-width
(“individual” in Figure 4), we also performed nearest neighbor

search by using clustering centers trained from DPFP features
(“DPFP” in Figure 4). All other evaluation parameters remains
the same as in previous evaluations. Only �2 kernel SVM
result in cross-validation is used for comparison. As shown
in Figure 4, recognition accuracy drops significantly as the
bit-width decreases when using clustering centers from DPFP
features. Therefore, rebuilding clustering centers for individual
bit-width has an important contribution to overall recognition
accuracy at low bit-width.

What’s more, the effect of SVM training is evaluated.
Similar to the K-means study, we build an SVM prediction
module (with �2 kernel) using DPFP features in HOG3D
and K-means. Then the same model (“DPFP” in Figure 5) is
applied to the fixed-point features extracted from HOG3D plus
BOW features using DPFP clusters. Additionally, individual
SVM model is trained using the fixed-point plus BOW features
for comparison. No cross-validation is used for SVM classifier
comparison and the features are applied to both training and
testing. Figure 5 show the comparison result. The dramatic
accuracy difference between individually trained SVM models
and DPFP SVM model shows that when retraining SVM using
reduced precision features, the internal prediction model has
been changed. This model change is significant enough, under
low bit-width (fxp-10 and below), to cause the recognition
failure even with the same training data.

Based on above analysis, the good recognition accuracy
under low bit-width is attributed to three main factors: (1)
Small information loss at early stage of feature extraction. (2)
Performing K-means clustering for the reduced bit-width to
build centers better suited for that bit-width. (3) Re-train the
SVM classifier at the end to generate classification models spe-
cific for the data. This findings are not limited to FPGA-based
applications but are relevant all hardware resource constrained
embedded or real-time processing learning systems to achieve
faster and more power-efficient computation.

V. FPGA IMPLEMENTATION

In this section we provide detailed FPGA implementation.
We have implemented the feature extraction on Convey HC-
2ex machine [47]. The system is composed of two Intel Xeon
E5-2643 CPUs and four Xilinx Virtex-6 LX760 FPGAs. Each
FPGA has 16 64-bit memory channels at 150 MHz controlled
by eight memory controllers. We use 8-bit fixed-point to per-
form HOG3D feature extraction and nearest neighbor search.
The implementation is a complete end-to-end solution that
reads raw pixels in gray-scale and generates BOW features
as output. Each video has 97 frames with 320 ⇥ 240-pixels
per frame. The BOW feature is a histogram consisting 1,000
bins. For our single FPGA implementation, two channels are
used for input and eight for output. The entire implementation
is fully pipelined so that all modules can immediately start
processing the next group of data after the first is streamed in.
Integral Video and Gradient Vector As the first step of
HOG3D feature extraction, gradients are calculated based on
Equation 6. One memory channel is used for pixel input.
Because temporal gradients dt needs two frames to compute

the final gradient, to avoid using on-chip memory to store the
entire previous frame, two frames are accessed at the same
time. The input controller generates addresses for “current”
frame and “next” frame alternatively. “Next” frame is only
used in computation of dt while “current” frame is used in
all gradients. Memory resource is minimized as only one line
buffer is used in computing dy. Three gradients are then sent
to integral video module for further processing.

Integral video computation can potentially be expensive on
FPGA as frame sizes increase (to store previous frame values
for integration). Observe that Equation 8 can be re-written as
d̄ = J(t+ l)� J(t), where J(t) = I

d

(x, y, t)+ I
d

(x+w, y+
h, t)� I

d

(x, y + h, t)� I
d

(x+ w, y, t). Also J(t+ l)� J(t)
is the sum of all pixels between t and t+l (excluding t) and in
the area of rectangle (x, y, w, h). In our configuration, L is
always two and t are constant indices (0, 2, 4, 6, ...). Hence,
the gradient vector d̄ can be computed using the sum of two
consecutive frames INT

d

(d̄ = INT
d

(x, y)+INT
d

(x+w, y+
h)�INT

d

(x+w, y)�INT
d

(x, y+h) where INT
d

(x0, y0) =P
t2

t=t1

P
y

0

y=0

P
x

0

x=0 d(x, y, t)).
Moreover, only a subset of pixels are used in gradient

vector computation. For example, for the first scale (scale 0),
pixels in every third row/column are accessed and for the third
scale (scale 2) pixels in every sixth row/column are used. To
maximize data sharing and reduce on-chip buffering, integral
video is computed for a group of scales that uses the same
pixels (e.g. multiple of 3). All groups share a single line-
buffer that stores integration values at previous row. Each
group uses one FIFO to store previous frame’s integration
values at locations they use the pixels. As a result, the video
integration module does not need to buffer every pixel in the
previous frame. In our configuration, only 12761 out of 76800
(320⇥240) pixels in a frame are saved in the previous frame
FIFO.

In the FPGA design, integral image is first computed for
each frame of the pixel gradients. Pixels are sent to frame
FIFO after line integration if they belong to that scale group
(every 3 row/col for scale 0, 2, 4, 6, every 4 row/col for scale
1, 3 and every 17 row/col for scale 5). Odd indexed frames are
sent to the FIFO for integration and then to compute gradient
vector.

The pixel gradient, video integration and gradient vector
computation module is implemented in C++ and synthesized
by Xilinx Vivado HLS. The input address generator unit is
directly implemented in Verilog VHDL.
HOG3D Feature Extraction Gradient projection module is
implemented in Verilog HDL. The procedure of generating
sub-cell HOG3D features are shown in Figure 6. In our design,
the L2�norm of the gradient vectors (

pP
g2
i

is computed in
parallel with the projection. The norm coefficient is to computepP

g

2
iP

hj
in Equation 4. Note that each HOG3D feature consists

of 10 elements. Because the values of L2�norm for gradient
vectors have a very large range, values are converted to half-
precision floating-point before performing division and then
converted back to fixed-point. Seven gradient projection units

dX FIFO

dy FIFO

dt FIFO

Gradient
Vector x
Gradient
Vector y

Gradient
Vector t

Gradient
projection

Grad.	Vec.
L2-norm

FIFO

Thresholding

Norm
CoefficientSub-cell

Hist.	Norm
Sub-cell

histogram

Pre-computed	
Projection	Mat.

Fig. 6: Block diagram of gradient projection module on FPGA.

Pre.	Col.
FIFO

Pre.	Row
FIFO

Pre.	Fr.
FIFO

Sub-cell hist.
stream in

Pos.	
Select

Sum Pos.	
Select

Cell hist.
Stream out

Fig. 7: Block diagram of cell histogram generation module.

Col Row

outCol
Col Row

FrCol

Fig. 8: Diagram of destination FIFOs for each location in a
cell. Out means the cell histogram is streamed out.

are instantiated (one for a scale).
Sub-cell HOG3D features are then accumulated by vector

add. Each cell consists of 2 ⇥ 2 ⇥ 2 sub-cells, as shown in
Figure 1. There are no overlapping between adjacent cells in
any dimension. Three FIFOs are used to store histograms in
previous column, previous row, and previous frame as shown
in Figure 7. The sub-cell histogram is arranged in columns,
rows and frames like pixels. Each column contains one sub-
cell features (10 elements) and each row contains all sub-cells
extracted in a row of sliding windows from integral video.
The accumulation module determines the position of current
sub-cell histogram inside a sliding box (see cell diagram in
Figure 7). Based on the histogram location, it reads one of the
three FIFOs and adds current feature to the values in the FIFO.
Then, it sends the accumulated to appropriate destination FIFO
as shown in Figure 8. After accumulating histograms in all
eight locations, cell histograms are streamed out. This module
is implemented in C++ and synthesized by Xilinx Vivado HLS.

Cell histograms are normalized according to Equation 5 and
the normalization unit is implemented in Verilog HDL. The
entire computation is performed in fixed-point as discussed in
Section IV.

Cell histograms are sent to main memory on FPGA. Differ-
ent scales of histograms are stored linearly one after another.
The output controller generates sequential addresses plus a
constant scale offset for memory writes. Output memory
controller is implemented in Verilog HDL. Seven memory
channels are used to send HOG3D features into main memory.

Scale
Num. T-Box Y-Box X-Box T-Cell Y-Cell X-Cell

SUMBase
Addr.

Addr.
Out

State change control

Fig. 9: Nested state machines control the address offsets
generation to construct HOG3D features.

Note that the entire HOG3D feature extraction is computation-
bounded. The input and output memory channels are sufficient
to deliver/send data.
Nearest Neighbor Search The input controller of the nearest
neighbor search is responsible to generate feature addresses
that construct actual HOG3D features. The HOG3D features
are obtained by concatenating all cell histograms in a 3D
box as shown in Figure 1. The address generation module is
analogous to [32]. Different scales are processed sequentially.
Seven nested state-machines are used to generate the address
offsets for current scale, t-box, y-box, x-box, t-cell, y-cell, and
x-cell, as shown in Figure 9. “Scale Num.” is the outmost state
machine while “X-cell” is the the innermost state machine. “X-
cell” state machine generates five offsets for 40 consecutive
histograms (4 ⇥ 10 cell histogram, 8-bit each as shown in
Figure 2). When each inner state machine reached the end, it
notifies all outer state machines so that they can check if a
state change is needed. After all state machines reached the
end, addresses for all scales are generated. It takes 80 clock
cycles to generate all addresses for one HOG3D feature (640
elements), and there are 10241 features per 97-frame video.

The nearest neighbor search module finds the smallest dis-
tance between each feature and all 1000 centers. The HOG3D
feature has 640 dimensions (10 features per sub-cell). To find
the nearest neighbor, the distance between each feature and
1000 centers are computed and then compared. To maximize
the throughput, 640 multipliers are instantiated to compute
one distance per clock cycle. HOG3D features are loaded
from memory and all center data is stored on chip in ROMs.
These 640 multiplications are divided into 80 multiplication
cores as each memory access will return 8 features as shown
in Figure 10. The centers are also divided into 80 ROMs
(1000⇥ 64-bit size) based on their position in a feature. Input
feature is passed to a three-stage data splitter that sends the
feature into appropriate multiplier core to better meet timing.
Each multiplication core computes the sum of eight euclidean
distances. Another three-stage summation is used to produce
the final L2 distance between the feature with one of the
centers.

The BOW feature is a histogram of 1000 bins. When a
minimum distance center of a feature is found, the bin count
corresponding to the center will be incremented by one. We
build a streaming histogram accumulation unit to process 1000
histogram bins. The diagram of this unit is shown in Figure
11. Histogram bins are organized in a chain structure. The
index (bin number) is streamed in from the first bin. Each bin

64-bit
feat. in

5-out	
Splitter

4-out	
Splitter

4-out	
Splitter

4-out	
Splitter

4-out	
Splitter

4-out	
Splitter

4-out
Splitter0

4-out
Splitter3

4-out
Splitter1

4-out
Splitter2

Splitters
…

Mul w/	
ROM0

Mul w/	
ROM1

Mul w/	
ROM2

Mul w/	
ROM79

Multipliers
…

Mul w/	
ROM3

4-out
Splitter15

4-in
Sum0

4-in
Sum15

Sums
…

4-in
Sum1

4-in
Sum

4-in
Sum

4-in
Sum

4-in
Sum

4-in
Sum

5-in
Sum

L2 dist.
out

4-in
Sum2

4-in
Sum3

Fig. 10: Illustration of parallel nearest neighbor Search archi-
tecture.

Idx. outCenter idx. in

bin0

…

bin1 bin2

Idx. out

bin999
Stream done Done

Bin	
out	0

Bin	
out	1

Bin	
out	2

Bin	
out	999

Done

Hist. bin
stream out

Bin count Bin count Bin count Bin count

Fig. 11: Illustration of streaming histogram accumulation unit.

accumulator will check if the index is the same as its defined
bin value. If the input equals current bin number, its counter is
incremented. If it does not equal current bin, the index will be
sent to the output which is the input of next bin. Immediately
after all 10241 indices are streamed in, a done signal is
streamed from bin0 to bin999 causing accumulated bin values
to be streamed out. Once received the done signal, each bin is
ready to start accumulating next histogram. Similar to HOG3D
feature extraction, nearest neighbor search is computation-
bounded.

VI. RESULTS AND DISCUSSION

In this section we evaluate the the speedup of our feature
extraction FPGA and GPU implementation over a highly
optimized CPU code. All tests are based on UCF50 dataset
with 97 frames per video.
CPU Results Our CPU implementation uses single-precision
floating-point for HOG3D feature extraction and nearest neigh-
bor search. Our CPU platform is an Ubuntu machine with
two Intel Xeon-E5520 quad-core CPUs and 24-GB RAM.
The CPU program is implemented in C++ with Intel TBB
library for multi-threading capability. SSE is also enabled in
nearest neighbor search. The processing time measured for
CPU implementation is the actual feature extraction time.
Loading the video from hard drive and writing features to file
are not included. Our experiment shows that it takes about
4.80 seconds for a multi-core machine to process one video
(97 frames).
GPU Results In this section1 we briefly describe our single-
precision floating point GPU implementation of the HAR
algorithm using HOG3D feature extraction running on an
Nvidia Tesla K20c GPU[48]. The code is compiled with the
NVIDIA CUDA toolkit 6.0 with the Basic Linear Algebra
Subroutines (cuBLAS) V2.0. The CPU is used for input-output
and control only. The time measurements reported do not

1The entire details of our GPU implementation are beyond the scope of
this paper due to space constraints. It should be noted however that it is the
first such implementation of HOG3D on GPUs.

TABLE I: FPGA implementation resource utilization.

Attributes Virtex-6 LX760 (Convey) Kintex-7 XCU060
Registers 312085 (32%) 214820 (32%)
LUTRam 39987 (30%) 15068 (10%)
LUTs 197025 (41%) 123708 (37%)
36KBram 247 (34%) 265 (25%)
DSPs 168 (19%) 320 (12%)

TABLE II: Human action recognition feature extraction
throughput comparison.

Platform Throughput (fps) Speedup
CPU 20.2 1
GPU 1,616.0 80

one FPGA-fxp8 1420.8 70
four FPGA-fxp8 5682.8 280

include the time to transfer the videos to the GPU nor the time
to allocate GPU global memory. Our GPU implementation can
process 1,616 frames per second (fps) i.e. 16 videos in 0.96
seconds.
FPGA Results We have synthesized the entire implementation
(including the Convey memory interface) using Xilinx ISE
14.7. All Vivado HLS generated modules are connected to
our Verilog code using FIFOs. For arithmetic operations,
we choose to place portions of the nearest-neighbor search
distance computation (multiplication) into DSPs (26% of
the multiplications in nearest-neighbor search) and all other
operations in pure logic. Table I summarizes the synthesis
result. In addition to the Virtex-6 FPGA on the Convey HC-
2ex machine, we also implemented our algorithm on a Xilinx
Kintex-7 Ultrascale FPGA (XCU060) for comparison. The
clock on the Kintex-7 FPGA is also set to 150 MHz.

Both HOG3D feature extraction and nearest neighbor search
are computation-bounded. Then, the processing speed is deter-
mined by the actual number of clock cycles to process data on
FPGA. HOG3D feature extraction takes 96⇥ 320⇥ 240 clock
cycles to process (frame 97 is only used for dt computation,
and is processed in parallel with frame 96) which is equivalent
to 0.049 seconds at 150MHz frequency. Additionally it takes
about 0.068 seconds to process a video in nearest neighbor
search (1000⇥10241 clock cycles). Consequently, the overall
speed of our FPGA implementation is about 1420.8 frames
per second. The summary of all platforms in shown in Table
II.

Note that an FPGA implementation of the this application
using floating-point data would not only be too large for
both FPGAs, its parallelism would also be constrained by the
memory bandwidth.
Power Consumption Comparison We have compared the
power efficiency between CPU, GPU and FPGA. For CPU, we
used the thermal design power (TDP) of the processor (two
processors) and for GPU, we have used the NVIDIA System
Management Interface (nvidia-sim) to determine power con-
sumption. For FPGA power consumption, we estimated the
power using Xilinx Power Estimator with 50% toggle rate.
The power consumption result is shown in the Table III.

TABLE III: HOG3D implementation power consumption com-
parison.

Platform Power (W) Joules/frame
CPU 160 7.921
GPU 85 0.053

FPGA 28.1 0.020

Speed, Power, and Accuracy Trade-off Our work focuses
on the action recognition in camera networks where battery
powered cameras are distributed across multiple locations.
Information captured by cameras are sent via Wi-Fi. A cen-
tralized processing of such information is limited by the
available bandwidth, security concerns and the difficulty in
processing massively large amounts of data. Thus we propose
to use FPGAs to process raw pixels behind the camera and
only send extracted action features back to center servers for
classification. In this application, both processing speed and
power consumption are critical. Therefore, FPGA is more
suitable for its relatively fast processing speed and lowest
power consumption compared to both GPU and CPU imple-
mentations.

Recently, CNNs have been shown to provide exceptional
accuracy on large-scale recognition problems [49], [50], [51],
[52]. However, applying a deep neural network for real-time
embedded applications remains challenging [53], [54].

The computational complexity of CNNs is significantly
higher than that of hand-crafted feature extraction (such as
HOG3D). We have compared the throughput of the open-
source CNN-based HAR algorithm [55] with our implemen-
tation of HOG3D on GPU: HOG3D feature extraction is 75X
faster on the same benchmarks. Accordingly, using a hand
crafted feature (e.g. HOG3D) for real-time and embedded
system implementation is at present the better option.

VII. CONCLUSION

In this paper, we explore the feature extraction, classifier
training and prediction under reduced fixed-point bit-width
for human action recognition. We compare the accuracy of
HAR using three popular action recognition benchmarks under
different precision. The result shows that by re-training the
classifier with low precision data (8-bit fixed-point), the recog-
nition accuracy is the same as double-precision floating-point.
This result significantly lessens the hardware requirement for
embedded action recognition systems. By applying this result
to our FPGA implementation, we are able to achieve 70x
speedup over multicore CPU code. In addition, this speed is
about 0.875x of our GPU implementation (approximately 80X
speedup over CPU) running on a high-end GPU. Furthermore,
the power consumption comparison shows that FPGA imple-
mentation is more suitable for embedded applications as it
uses 3x less power.

REFERENCES

[1] http://www.reelseo.com/hours-minute-uploaded-youtube/, accessed:
2016-03-01.

[2] H. Wang, M. M. Ullah, A. Kläser, I. Laptev, and C. Schmid, “Evaluation
of local spatio-temporal features for action recognition,” in British
Machine Vision Conference, 2009, pp. 124–1.

[3] A. Kläser, M. Marszałek, and C. Schmid, “A spatio-temporal descriptor
based on 3D-gradients,” in British Machine Vision Conference, 2008,
pp. 275–1.

[4] R. Poppe, “A survey on vision-based human action recognition,” Image
and Vision Computing, vol. 28, no. 6, pp. 976–990, 2010.

[5] J. Sivic and A. Zisserman, “Video google: a text retrieval approach to
object matching in videos,” in Proceedings of the Ninth International
Conference on Computer Vision. IEEE, 2003, pp. 1470–1477.

[6] O. G. Cula and K. J. Dana, “Compact representation of bidirectional
texture functions,” in Proceedings of the IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition, vol. 1, 2001, pp.
1041–1047.

[7] C. Wallraven, B. Caputo, and A. Graf, “Recognition with local features:
the kernel recipe,” in Proceedings of the Ninth IEEE International
Conference on Computer Vision. IEEE, 2003, pp. 257–264.

[8] J. Willamowski, D. Arregui, G. Csurka, C. R. Dance, and F. Lixin,
“Categorizing nine visual classes using local appearance descriptors,”
Illumination, vol. 17, p. 21, 2004.

[9] S. Lazebnik, C. Schmid, and J. Ponce, “Beyond bags of features:
Spatial pyramid matching for recognizing natural scene categories,” in
IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, vol. 2. IEEE, 2006, pp. 2169–2178.

[10] X. Wu, D. Xu, L. Duan, J. Luo, and Y. Jia, “Action recognition using
multilevel features and latent structural SVM,” IEEE transactions on
Circuits and Systems for Video Technology, vol. 23, no. 8, pp. 1422–
1431, 2013.

[11] Y. Zhu, N. Nanyak, and A. K. Roy-Chowdhury, “Context-Aware activity
modeling using hierarchical conditional random fields,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. 37, no. 7, pp.
1360–1372, 2015.

[12] I. Laptev, “On Space-Time interest points,” International Journal of
Computer Vision, vol. 64, no. 2-3, pp. 107–123, 2005.

[13] P. Dollar, V. Rabaud, G. Cottrell, and S. Belongie, “Behavior recognition
via sparse spatio-temporal features,” in International Workshop on Visual
Surveillance and Performance Evaluation of Tracking and Surveillance.
IEEE, 2005, pp. 65–72.

[14] A. Oikonomopoulos, I. Patras, and M. Pantic, “Spatiotemporal salient
points for visual recognition of human actions,” IEEE Transactions on
Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 36, no. 3, pp.
710–719, 2005.

[15] H. Jhuang, T. Serre, L. Wolf, and T. Poggio, “A biologically inspired
system for action recognition,” in IEEE 11th International Conference
on Computer Vision. IEEE, 2007, pp. 1–8.

[16] C. Thurau and V. Hlavac, “Pose primitive based human action recogni-
tion in videos or still images,” in IEEE Conference on Computer Vision
and Pattern Recognition. IEEE, 2008, pp. 1–8.

[17] G. Willems, T. Tuytelaars, and L. Van Gool, “An efficient dense and
Scale-Invariant Spatio-Temporal interest point detector,” in European
Conference on Computer Vision, 2008, pp. 650–663.

[18] C. Schuldt, I. Laptev, and B. Caputo, “Recognizing human actions:
a local SVM approach,” in Proceedings of the 17th International
Conference on Pattern Recognition, vol. 3. IEEE, 2004, pp. 32–36.

[19] B. D. Lucas and T. Kanade, “An iterative image registration technique
with an application to stereo vision,” in International Joint Conference
on Artificial Intelligence, vol. 81, no. 1, 1981, pp. 674–679.

[20] I. Laptev, M. Marszalek, C. Schmid, and B. Rozenfeld, “Learning
realistic human actions from movies,” in IEEE Conference on Computer
Vision and Pattern Recognition. IEEE, 2008, pp. 1–8.

[21] A. Kläser, “Learning human actions in video,” Ph.D. dissertation,
Université de Grenoble, 2010.

[22] Y. Shi and T. Tsui, “An FPGA-Based smart camera for gesture recog-
nition in HCI applications,” in Asian Conference on Computer Vision,
2007, pp. 718–727.

[23] C. Li and W. Chen, “A novel FPGA-based hand gesture recognition
system,” Journal of Convergence Information Technology, vol. 7, no. 9,
pp. 221–229, 2012.

[24] A. A. Maashri, M. Debole, M. Cotter, N. Chandramoorthy, Y. Xiao,
V. Narayanan, and C. Chakrabarti, “Accelerating neuromorphic vision
algorithms for recognition,” in Proceedings of the 49th Annual Design
Automation Conference. ACM, 2012, pp. 579–584.

[25] Z. Hou, H. Zhu, N. Zheng, and T. Shibata, “A single-chip 600-fps
real-time action recognition system employing a hardware friendly
algorithm,” in International Symposium on Circuits and Systems. IEEE,
2014, pp. 762–765.

[26] H. Meng, M. Freeman, N. Pears, and C. Bailey, “Real-time human
action recognition on an embedded, reconfigurable video processing
architecture,” Journal of Real-Time Image Processing, vol. 3, no. 3, pp.
163–176, 2008.

[27] W. Osborne, R. Cheung, J. Coutinho, W. Luk, and O. Mencer, “Au-
tomatic Accuracy-Guaranteed Bit-Width optimization for fixed and
Floating-Point systems,” in International Conference on Field Pro-
grammable Logic and Applications, 2007, pp. 617–620.

[28] D. Lee, A. Gaffar, R. Cheung, O. Mencer, W. Luk, and G. Constan-
tinides, “Accuracy-Guaranteed Bit-Width optimization,” Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 25,
no. 10, pp. 1990–2000, 2006.

[29] A. Benedetti and P. Perona, “Bit-width optimization for configurable
DSP’s by multi-interval analysis,” in Conference Record of the Thirty-
Fourth Asilomar on Signals, Systems and Computers, vol. 1. IEEE,
2000, pp. 355–359.

[30] T. Wilson, M. Glatz, and M. Hodlmoser, “Pedestrian detection imple-
mented on a fixed-point parallel architecture,” in 13th International
Symposium on Consumer Electronics. IEEE, 2009, pp. 47–51.

[31] K. Mizuno, Y. Terachi, K. Takagi, S. Izumi, H. Kawaguchi, and
M. Yoshimoto, “Architectural study of HOG feature extraction processor
for Real-Time object detection,” in Workshop on Signal Processing
Systems. IEEE, 2012, pp. 197–202.

[32] X. Ma, W. A. Najjar, and A. K. Roy-Chowdhury, “Evaluation and ac-
celeration of High-Throughput Fixed-Point object detection on FPGAs,”
Transactions on Circuits and Systems for Video Technology, vol. 25,
no. 6, pp. 1051–1062, 2015.

[33] P. Viola and M. Jones, “Rapid object detection using a boosted cascade
of simple features,” in Proceedings of the Conference on Computer
Vision and Pattern Recognition, vol. 1. IEEE, 2001, pp. 511–518.

[34] Y. Ke, R. Sukthankar, and M. Hebert, “Efficient visual event detection
using volumetric features,” in Tenth International Conference on Com-
puter Vision, vol. 1. IEEE, 2005, pp. 166–173.

[35] Q. ”Zhu, N. Garg, Y. Tsai, and K. Pulli, “An energy efficient time-
sharing pyramid pipeline for multi-resolution computer vision,” in IEEE
21st International Conference on Very Large Scale Integration. IEEE,
2013, pp. 278–281.

[36] S. ”Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and
R. Harshman, “Indexing by latent semantic analysis,” Journal of the
American Society for Information Science, vol. 41, no. 6, pp. 391–407,
1990.

[37] I. Laptev and T. Lindeberg, “Local descriptors for spatio-temporal
recognition,” in Spatial Coherence for Visual Motion Analysis. Springer,
2006, pp. 91–103.

[38] H. Wang, A. Kläser, C. Schmid, and C. L. Liu, “Action recognition
by dense trajectories,” in Conference on Computer Vision and Pattern
Recognition. IEEE, 2011, pp. 3169–3176.

[39] K. K. Reddy and M. Shah, “Recognizing 50 human action categories
of web videos,” Machine Vision and Applications, vol. 24, no. 5, pp.
971–981, 2013.

[40] H. Wang and C. Schmid, “Action recognition with improved trajec-
tories,” in Proceedings of the International Conference on Computer
Vision. IEEE, 2013, pp. 3551–3558.

[41] V. Vapnik, The nature of statistical learning theory. Springer Science
& Business Media, 2000.

[42] S. Y. Kung, Kernel Methods and Machine Learning. Cambridge Uni.
Press, 2014.

[43] B. Schölkopf, C. J. C. Burges, and A. J. Smola, Advances in kernel
methods: support vector learning. MIT press, 1999.

[44] J. Liu, J. Luo, and M. Shah, “Recognizing realistic actions from
videos “in the wild”,” in Conference on Computer Vision and Pattern
Recognition. IEEE, 2009, pp. 1996–2003.

[45] J. Liu, Y. Yang, and M. Shah, “Learning semantic visual vocabularies
using diffusion distance,” in Conference on Computer Vision and Pattern
Recognition. IEEE, 2009, pp. 461–468.

[46] C. Chang and C. Lin, “LIBSVM: A library for support vector machines,”
Transactions on Intelligent Systems and Technology, vol. 2, no. 3, pp.
1–27, 2011.

[47] “Convey Computers,” www.conveycomputers.com, accessed: 2016-01-
17.

[48] “NVIDIA’s next generation CUDA compute architecture: Kepler
GK110,” www.nvidia.com, accessed: 2016-01-17.

[49] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and
L. Fei-Fei, “Large-Scale video classification with convolutional neural
networks,” in Proceedings of the IEEE conference on Computer Vision
and Pattern Recognition. IEEE, 2014, pp. 1725–1732.

[50] K. Simonyan and A. Zisserman, “Two-Stream convolutional networks
for action recognition in videos,” in Advances in Neural Information
Processing Systems, Z. Ghahramani, M. Welling, C. Cortes, N. D.
Lawrence, and K. Q. Weinberger, Eds., 2014, pp. 568–576.

[51] M. Hasan and A. K. Roy-Chowdhury, “A continuous learning frame-
work for activity recognition using deep hybrid feature models,” IEEE
Transactions on Multimedia, vol. 17, no. 11, pp. 1909–1922, 2015.

[52] J. Yue-Hei Ng, M. Hausknecht, S. Vijayanarasimhan, O. Vinyals,
R. Monga, and G. Toderici, “Beyond short snippets: Deep networks
for video classification,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2015, pp. 4694–4702.

[53] Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, X. Feng, Y. Chen,
and O. Temam, “ShiDianNao: Shifting vision processing closer to the
sensor,” ACM SIGARCH Computer Architecture News, vol. 43, no. 3,
pp. 92–104, 2015.

[54] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing
FPGA-based accelerator design for deep convolutional neural networks,”
in Proceedings of the ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays. ACM, 2015, pp. 161–170.

[55] J. Donahue, L. Anne Hendricks, S. Guadarrama, M. Rohrbach, S. Venu-
gopalan, K. Saenko, and T. Darrell, “Long-term recurrent convolutional
networks for visual recognition and description,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2015,
pp. 2625–2634.

