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ABSTRACT
Large relational databases often rely on fast join implemen-
tations for good performance. Recent paradigm shifts in
processor architectures has reinvigorated research into how
the join operation can be implemented. The FPGA commu-
nity has also been developing new architectures with the po-
tential to push performance even further. Hashing is a com-
mon method used to implement joins, but its poor spatial
locality can hinder performance on processor architectures.
Multithreaded architectures can better cope with poor spa-
tial locality by masking memory/cache latencies with many
outstanding requests.

In this paper we present the first end-to-end in-memory
FPGA hash join implementation. The FGPA uses massive
multithreading during the build and probe phases to mask
long memory delays, while it concurrently manages hun-
dreds of thread states locally. Throughput results show a
speedup between 2x and 3.4x over the best multi-core ap-
proaches with comparable memory bandwidths on uniform
and skewed datasets; however, this advantage diminishes for
extremely skewed datasets. Results using the FPGA’s full
76.8 GB/s of bandwidth show throughput up to 1.6 billion
tuples per second for uniform and skewed datasets.

Categories and Subject Descriptors
B.7.1 [Integrated Circuits]: Types and Design Styles—
Algorithms implemented in hardware

General Terms
FPGA, Processing Engine, Multi-threading

Keywords
FPGA, Hash Join, Main Memory, Relational Database

1. INTRODUCTION
Database analytics help to drive business decisions, and

businesses thrive on how quickly and how well they can
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analyze available data. As a result, in recent years many
companies developed their own fast in-memory data analyt-
ics solutions. Oracle’s Exadata [1], and Pivotal Software’s
Greenplum [2] have built custom machines for memory in-
tensive workloads. On the other hand IBM’s Netezza [3],
and Teradata’s Kickfire [4] approached the problem using
FPGA hardware integrated solutions.

The main factor influencing in-memory processing perfor-
mance is memory bandwidth. Despite the progress made in
multi-core architectures, the major performance limitations
come from the memory latency (known as thememory wall),
that restricts the scalability of such memory-bounded algo-
rithms. A memory access can take anywhere from 100 to 200
CPU cycles equivalent to the execution of 100s of instruc-
tions. The most common solution to the memory latency
problem is the use of extensive cache hierarchies that oc-
cupy up to 80% of a typical processor die area. This latency
mitigation approach relies on data and instruction locali-
ties. Multithreaded execution [21, 29] has been proposed as
an alternative approach that relies on the masking of mem-
ory latency by switching to a ready but waiting thread when
the currently executing thread encounters a long latency op-
eration, such as a cache miss.

This paper explores this alternative approach to deal-
ing with long memory latencies by supporting multiple out-
standing memory requests from various independent threads.
This multithreading architecture is implemented on FPGAs
and is customized to the specific workload. It is similar to
the multithreading approach used in the SUN UltraSparc
architecture (for example, the UltraSparc T5 [15] can sup-
port eight threads per core and 16 cores per chip). How-
ever, because our FPGA implementation is able to sup-
port deeper pipelining, it can maintain thousands (instead of
tens) of outstanding memory requests and hence drastically
increases concurrency and therefore throughput. Further-
more, the multithreaded execution maximizes the utilization
of the available memory bandwidth.

As an example of our FPGA-based multithreading ap-
proach, we implement a hash join operator. Hash joins are
basic building block of relational query processing and var-
ious recent works have explored their implementation tai-
lored to multi-core CPU architectures [10, 11, 20]. Building
a hash table with an FPGA would require massive paral-
lelism to compete with the CPU’s order of magnitude faster
clock frequency. In turn that means many jobs must be syn-
chronized and managed locally on the FPGA. Building the
table on-chip with local BRAMs is another option, as the
BRAM’s 1-cycle latency removes any need for synchroniza-



tion. However, current FPGAs only have a few MBs of local
BRAMs in total, which limits the build relations to only a
few thousand elements [17].

Nevertheless, recent progress in FPGA architecture [5] al-
lows locking of individual memory locations. We leverage
this advancement to build the first end-to-end in-memory
hash join using an FPGA. The FPGA masks long memory
latencies by managing thousands of threads concurrently
without using any caches, as opposed to software CPU-
based implementations, which require e↵ective caching to
limit memory requests. We analyze and test our design in
hardware and show throughput up to 1,6 billion tuples per
second with 76.8 GB/s memory bandwidth. We also claim
3.4x speedup over the state-of-the-art software implementa-
tions when the CPU and FPGA have similar bandwidth.

The rest of this paper is organized as follows: Section 2
discusses related work, while our approach is described in
Section 3; the experimental results appear in Section 4 and
Section 5 provides conclusions.

2. RELATED WORK
Many recent works consider the in-memory implementa-

tion of joins (hash or sort-merge). [23] was the first work,
which emphasized the importance of TLB misses in parti-
tioned hash joins and proposed a radix clustering algorithm
to keep the partitions cache resident. Later [11] studied the
performance of hash joins by comparing simple hardware-
oblivious algorithms and hardware-conscious approaches (since
the radix clustering algorithm is tightly tailored to the un-
derlying hardware architecture). Results showed that the
simple implementations surpass approaches based on radix
clustering. However recently, [10] applied a number of op-
timizations and found that hardware-conscious solutions in
most cases are prevalent over hardware-oblivious.

The implementation of sort-merge joins on modern CPUs
was studied in [20], which explored the use of SIMD opera-
tions for sort-merge joins and hypothesized that its perfor-
mance will surpass the hash join performance, given wider
SIMD registers. Subsequently [8] implemented a NUMA-
aware sort-merge algorithm that scaled almost linearly with
the number of computing cores. This algorithm did not use
any SIMD parallelism, but it was reported to be already
faster than its hash join counterparts. Recently, [9] recon-
sidered the issue and found that hash joins still have an
edge over sort-merge implementations even with the latest
advance in width of SIMD registers and NUMA-aware algo-
rithms.

While the software community has examined both hash
and sort-merge joins the FPGA community has concentrated
on sort-merge approaches. The reasons for this are twofold.
Firstly, sorting and merging implementations are straight-
forward for parallel FPGA architectures. For example, sort-
ing networks like bitonic-merge [19] and odd-even sort [22]
are well established designs for FPGAs; [14] developed a
multi-FPGA sort-merge algorithm, while [25, 30] used sort-
merge as part of a hardware database processing system.
Secondly, e�ciently building an in-memory hash table is
non-trivial because of the required synchronization.

Commercial platforms like IBM’s Netezza[3] and Tera-
data’s Kickfire[4] o↵er FPGA solutions for Database Man-
agement Systems. They cover a full range of database opera-
tions from selection and projection, to joins and aggregation.
However, because of their proprietary nature specific imple-

Figure 1: The FPGA Build Phase Engine.

mentation details, and measurements are di�cult to obtain.
Some patent information is available [13, 18, 24], but it is
di�cult to determine, specifically, how operations are han-
dled with the available literature. By contrast the scope of
this work is much narrower. We look at how FPGAs can
be used to improve only the join operation, which has been
historically a time intensive operation.

3. PROPOSED APPROACH
We outline our implementations for the build phase and

probe phase processing engines of the hash join algorithm.
We then outline how existing research can be applied to this
work and potentially further improve the performance.

When building, and probing the hash table, all writes oc-
cur during the build phase while the probe phase only reads
the hash table. Because of this separation the algorithm’s
hash table interactions are simplified, for both the CPU and
FPGA, compared to other algorithms using hash tables (i.e.
aggregation, duplicate elimination).

3.1 Build Phase Engine
Our target datasets are too large to keep in local FPGA

BRAMs. Therefore, our design trades o↵ small and fast
on-chip memory for larger and slower o↵-chip memory. The
build engine copes with the long memory latencies by issuing
thousands of threads and maintaining their states locally on
the FGPA. Because of the inherent FPGA parallelism, mul-
tiple threads can be activated during the same cycle while
other threads are issuing memory requests and going idle.

The entire build relation along with the hash table and
the linked lists are stored in main memory (Figure 1). Our
hash table uses the chaining collision resolution technique:
all elements hashed to the same bucket are connected in a
linked list, and the hash table holds a pointer to the list’s
head. We use a unique value (0xFFF...FFF) to represent
empty buckets in the hash table.

Figure 1 also shows how the build engine (FPGA logic)
makes requests to the main memory data structures using 4
channels. In the FPGA logic, local registers are programed
at runtime and hold pointers to the relation, hash table, and



Figure 2: The FPGA Probe Phase Engine.

linked lists. They also hold information about the number of
tuples, the tuple sizes, and the join key position in the tuple.
Lastly, the registers hold the hash table size, which is used to
mask o↵ results from the hash function. The Tuple Request
component will create a thread for each tuple and issues a
request for its join key. The design assumes the join key
size is between 1 and 8 bytes, and it is set at runtime with a
register. The tuple can be of arbitrary size. If the key is split
between two memory locations the Tuple Request component
will issue both requests, and merge the responses. Requests
are continually issued until all tuples have been processed,
or the memory architecture stalls. When a thread issues a
request the tuple’s pointer is added to the thread state, and
the thread goes idle.

As join key requests are completed, the thread is acti-
vated, and the key along with its hash value are stored in
the thread’s state. The Write Linked List component writes
the key and tuple pointer to a new node into the appropriate
bucket linked list. The Update Hash Table component issues
an atomic request to read, and update the hash table. The
old bucket head pointer is read while the new node pointer
replaces it. An atomic request is needed here because a sin-
gle engine can have hundreds of threads in flight, and issu-
ing separate reads and writes would create race conditions.
While the atomic request is issued the new node pointer is
added to the thread’s state.

As the atomic requests are fulfilled the thread is again
activated, and the Update Linked List component updates
the bucket chain pointer. If no previous nodes hashed to
that location then the atomic request will return the empty
bucket value, which is used to signify the end of a list chain.
Otherwise, the old head pointer is used to extend the list.

3.2 Probe Phase Engine
The probe engine also assumes that all data structures

are stored in main memory. Like the build engine it has
to use memory masking to cope with high memory latency
and maintain peak performance. Because no data is stored
locally, the same FPGA used for the build engine can be

reprogrammed with the probe engine (which can be useful
in the case of a small FPGA). Larger FPGAs can hold both
engines and switch state depending on the required compu-
tation.

Figure 2 shows how the probe engine makes requests to
the data structures in main memory (using 4 channels). Is-
suing threads, tuple requests, and hashing are handled the
same way as in build engine. Again, the join key and the
tuple’s pointer are stored in the thread’s state. Because the
probe phase only reads data structures, there is no need for
atomic operations. The thread only looks up the proper
head pointer by hashed value from the table. The value
(0xFFF...FFF) is again used to identify empty table buck-
ets; if this value is returned then the probe tuple cannot
have a match and is dropped from the FPGA datapath.
Otherwise, the thread is sent to the New Job FIFO.

During the probe phase each node in a bucket chain must
be checked for matches. A thread is not aware of the bucket
chain length without iterating through the whole chain. There-
fore, threads are recycled within the datapath until they
reach the last node in the chain. The Probe Linked List
component takes an active thread and requests its list node.
We devote two channels to this component because it issues
the bulk of read requests, and its performance is vital to the
engine’s throughput.

After the node is returned from memory the Analyze Job
component determines if there was a match. Matching tu-
ples are sent to the Join Tuple component. If a node is
the last in the bucket chain then its thread is dropped from
the datapath. Otherwise, its next node pointer is updated
in the thread’s state and is sent to the Recycled Job FIFO.
The datapath can be improved to drop threads once a match
is found, but this is only possible if the build relation’s join
key is unique. An Arbiter component is used to decide the
next active thread, which will be sent to the Probe Linked
List component. Priority is given to the recycled threads,
thus reducing the number of concurrent jobs and ensuring
that the design will not deadlock. Otherwise, when the re-
cycled job FIFO fills, its back pressure would stall the mem-
ory responses, causing the memory requests to stall, thus
preventing the arbiter from issuing a new job. As matches
are found, the Join Tuple component merges the probe tu-
ple’s pointer (from the thread) with the build tuple’s pointer
(from the node list) and sends the result out of the engine.

3.3 Possible Optimizations
In practical workloads, joins are typically combined with

selections and projections, in an e↵ort to minimize interme-
diate result sizes (e.g., push selections and projections close
to the relation). This approach can also be used here to
further improve performance.

Predicate evaluation could filter out tuples, and alleviate
memory utilization by creating gaps in the FPGA datapath.
This could improve the build phase performance because it
removes some of the costly atomic operations. The gaps
could also mitigate back-pressure in the probe phase caused
by long node chains. By adding the selection hardware on
the FPGA, the latency will increase but because it is fully
pipelined [27] it would not decrease the throughput.

Projection and the join step (i.e., using the tuple pointers
to actually create the joined result) are ideal candidates for
FPGA acceleration. Both are naturally parallel and stream-
able. Many works have leveraged these operations to im-



(a) The Convey MX software and hardware regions. (b) Convey MX FPGA AE wrapper.

Figure 3: The Convey MX architecture is divided into software and hardware regions as shown in (a). Each FPGA has 8
memory controllers, which are split into 16 channels for the FPGA’s logic cells as shown in (b).

prove performance [28, 25, 17]. In the special case where
an entire tuple fits in one memory word the probe engine
presented in this work can be easily extended to perform
the join step. The engine already joins the pointers, but a
little modification can replace them with the values instead.
In order to capture the real e↵ect of FPGA multithreading
in the join operation, our implementation does not consider
the selection, projection and join step.

Another common optimization applied to multi-core hash
joins is partitioning, which eliminates the costly thread syn-
chronization and allows to keep partitioned tuples cache res-
ident [26]. However our FPGA engines cannot abandon syn-
chronization completely. Even with partitioned data, each
engine still has hundreds of outstanding read and write re-
quests. Since all these requests are processed in a pipelined
manner the only way to avoid race conditions will be to
use atomic operations or some form of locking. Moreover
our approach does not cache results on the FPGA BRAM,
hence decreasing the number of tuples processed by each
thread via partitioning will not have any e↵ect on FPGA
performance.

4. EXPERIMENTAL RESULTS
We proceed with a description of the target architecture,

the Convey-MX, and discuss how engines can be duplicated
to match the available memory bandwidth. The FPGA hash
join implementation is compared in terms of overall through-
put against the best multi-core approach [10]. We match
the FPGA’s and CPU’s memory bandwidth as best we can
(38.4 GB/s for the FPGA vs 51.2 GB/s for the CPU) to give
the best comparison possible. We also present experiments
on the scalability of the FPGA designs and their space uti-
lization. Synthesizing FPGAs is well known to be a time
intensive task; nevertheless, all designs in this paper are ca-
pable of processing di↵erent join queries without needing
to re-synthesize the FPGA logic.

4.1 Convey-MX Platform
The Convey-MX is a heterogeneous platform with a global

memory shared between the CPUs and the FPGAs, allowing
us to directly compare hardware and software in-memory
hash join applications on the same memory architecture.
Figure 3a depicts the MX’s memory architecture. It has
two regions (the software and hardware) connected though
a PCIe bus. Each processor (CPU or FPGA) can access
data from both regions, but data accesses across PCIe are

significantly longer.
The software region has 2 Intel Xeon E5-2643 processors

running at 3.3 GHz with a 10 MB L3 cache. The multi-
socket architecture treats each processor with the memory,
attached to it, as a separate NUMA node. The NUMA
asymmetry coe�cient of described architecture is equal to
2.0. In total the software region has 128 GB of 1600 MHz
DDR3 memory. Each NUMA node has a peak memory
bandwidth of 51.2 GB/s.

The hardware region has 4 Xilinx Virtex-6 760 FPGAs
connected to the global memory through a full crossbar.
Each FPGA has 8 64-bit memory controllers running at 300
MHz (Figure 3b). The FPGA logic cells run in a separate
150 MHz clock domain to ease timing and are connected to
the memory controllers through 16 channels. The hardware
region has 64 GB of 1600 MHz DDR3 RAM. Each FPGA
has a peak memory bandwidth of 19.2 GB/s. The MX mem-
ory also has locking bits at every word block allowing the
FPGA to handle synchronization and atomic operations.

4.2 FPGA & Software Implementations
In this paper we choose to implement our FPGA designs

on a Convey-MX platform, but the designs themselves are
platform independent. The only requirement needed by
the FPGA platform is in-order responses to memory re-
quests. Given this assumption the Probe Engine can be
easily ported. The Build Engine requires some form of
atomic operations. We choose the Convey-MX because it
is the only FPGA platform we know of with direct sup-
port for atomic operations. However, with additional e↵ort
to enforce synchronization a Maxeler[6], Pico[7], or even a
Convey-HC board could be used.

Additional requirements are needed for the FPGA to achieve
high throughput. First, it should have a high memory band-
width. Second, it should handle multiple outstanding mem-
ory requests. The longer memory latency a platform has the
more outstanding requests it will need be able to support.
Peak performance will be achieved when memory latency
can be fully masked.

Peak performance is dependent on the total number of
concurrent engines, and the clock frequency. The number of
engines is determined by the memory bandwidth. We next
show how this applies to the Convey-MX, but the same could
be done for other platforms. Sustained performance is de-
pendent upon the memory architecture as shown in Section
4.4.

On the Convey-MX each FPGA has 16 individual mem-



(a) Unique dataset (b) Random dataset

(c) Zipf 0.5 dataset (d) Zipf 1.0 dataset

Figure 4: Dataset throughput as the build relation size is increased.

ory channels which is more than what a single build or probe
engine would need. To fully utilize the available bandwidth
and increase parallelism, we duplicate the number of engines
per FPGA. Since the build engine requires four channels
(Section 3.1), four build engines can be stored on a single
FPGA. Given that each FPGA runs at 150 MHz and, as-
suming no stalls, one could achieve a peak throughput of
600 MTuples/s per FPGA for the build phase. Similarly,
the probe engine (Section 3.2) requires 4 channels, but also
jointly uses a channel to write the output result to memory.
Therefore only 3 probe engines could be placed on a FPGA.
Assuming no stalling the FPGA can reach a peak through-
put of 450 MTuples/s per FPGA for the probe phase.

As the state-of-the-art multi-core hash join approach we
use the implementation from [10]. It includes 2 types of hash
join algorithms: a hardware-oblivious non-partitioning join
and a hardware-conscious algorithm, which performs prelim-
inary partitioning of its input. Both implementations per-
form the traditional hash join with build and probe phases,
however they di↵er in the way multithreading is used. The

non-partitioning approach performs the join using the hash
table which is shared among all threads, therefore relying
on hyper-threading to mask cache miss and thread synchro-
nization latencies. The partitioning-based algorithm per-
forms preliminary partitioning of the input data to avoid
contention among executing threads. Later during the join
operation each thread will process a single partition without
explicit synchronization. The Radix clustering algorithm,
which is a backbone of the partitioning stage needs to be
parameterized with the number of TLB entries and cache
sizes, making the approach hardware-conscious. In our ex-
periments we use a two pass clustering and produce 214 par-
titions, which yields the best cache residency for our CPU.

4.3 Dataset Description
Our experimental evaluation uses four datasets. Within

each dataset we have a collection of build and probe relations
ranging in size from 220 to 230 elements. Each dataset uses
the same 8-byte wide tuple format, commonly used for per-
formance evaluation of in-memory query engines [12]. The
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Figure 5: FPGA Throughput comparison as the bandwidth and number of threads are increased.
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Figure 6: Partitioned CPU throughput comparison as the bandwidth and number of threads are increased.

first 4 bytes hold the join key, while the rest is reserved for
the tuple’s payload. Since we are only interested in finding
matches (rather than joining large tuples), our payload is a
random 4-byte value. However, it could just as easily be a
pointer to an actual arbitrarily long record, identified by the
join key.

The first dataset, termed Unique, uses incrementally in-
creasing keys which are randomly shu✏ed. It represents the
case when the build relation has no duplicates, thus keys
in the hash table are uniformly distributed with exactly one
key per bucket (assuming simple modulo hashing). The next
dataset (Random) uses random data drawn uniformly from
a 32 bit int range. Keys are duplicated in less than 5% of
the cases for all build relations having less then 228 tuples.
The largest relations have no more than 20% duplicates. For
this dataset, bucket lists average 1.6 nodes when the hash
table size matches the relation size, and 1.3 nodes when the
hash table size is double the relation size. The longest node

chains have about 10 elements regardless of the hash table
size. To explore the performance on non-uniform input, the
keys in the final two datasets are drawn from a Zipf distri-
bution with coe�cients 0.5 and 1.0 (Zipf 0.5 and Zipf 1.0
respectively); these datasets are generated using the algo-
rithms described in [16]. In Zipf 0.5 44% of the keys are
duplicated in the build relation. The bucket list chains have
on average 1.8 keys regardless of the hash table size, while
the largest chains can contain thousands of keys. In Zipf 1.0
the build relations have between 78% and 85% of duplicates.
Their bucket list chains have on average from 4.8 to 6.7 keys.
The longest chains range from about 70 thousand keys in
the relation with 220 tuples to about 50 million in the 230

relation.

4.4 Throughput evaluation
We report the multi-core results for both partition-based

and non-partitioning algorithms. Results are obtained with
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Figure 7: Non-partitioned CPU throughput comparison as the bandwidth and number of threads are increased.
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Figure 8: Throughput e�ciency.

a single Intel Xeon E5-2643 CPU, running on full load with 8
hardware threads. However because of the memory-bounded
nature of hash join we use two FPGAs to o↵set the CPUs
bandwidth advantage: a single CPU has 51.2 GB/s of mem-
ory bandwidth while two FPGAs have 38.4 GB/s (even with
this bandwidth adjustment, the CPU still has almost a 30%
advantage). By matching the bandwidth be can get a more
accurate comparison between the approaches. Obviously,
given of the parallel nature of hash join, the CPU and FPGA
performance could easily be improved by adding more hard-
ware resources.

Figure 4 shows the join throughput for two build rela-
tions, with 221 and 228 tuples respectively, while increasing
the probe relation size from 220 to 230 for all datasets men-
tioned in Section 4.3. The FPGA performance shows two
plateaus for the Unique, Random and Zipf 0.5 data dis-
tributions on Figures 4a, 4b and 4c. The FPGA sustains
throughput of 850 MTuples/s when the probe phase domi-

nates the computation (that is, when the size of the probe
relation is much larger than the size of the build relation)
and it is close to the peak theoretical throughput of 1200
MTuples/s which can be achieved with 8 engines on 2 FP-
GAs. When the build phase dominates the computation,
atomic operations restrict FPGA throughput to about 450
Mtuples/s (in the FPGA 228 plot, the throughput stays al-
most constant until the probe relation becomes comparable
in size to the build relation). Clearly, in real-world applica-
tions the smaller relation should be used as the build rela-
tion. In the worst case we can expect FPGA throughput to
be 600 MTuples/s when both relations are of the same size.
For the extremely skewed dataset, Zipf 1.0, (shown in Fig-
ure 4d) the FPGA throughput decreases significantly and
varies widely depending on the specific data. This happens
because extremely long bucket chains create a lot of stalling
during the probe phase that greatly a↵ects throughput.

The CPU results are consistent with those reported in [10].



The partitioned algorithm peak performance is around 250
MTuple/s across all datasets, regardless of whether compu-
tation is dominated by the build or the probe phase. It is
also not a↵ected by the data skew. For the non-partitioned
algorithm, the throughput depends on the relative sizes of
the relations, since like in the FPGA case, the throughput
of the build phase is lower than the probe phase. The non-
partitioned algorithm behaves always worse than the FPGA
approach. Interestingly, for the Unique dataset, the non-
partitioned version has better throughput than the parti-
tioned one, because the bucket chain lengths are exactly
one. As the average bucket chain length increases (moving
from the Unique to the Random to the skewed datasets) the
throughput of non-partitioned approach decreases. For the
extremely skewed Zipf 1.0 dataset, it falls approximately to
50 MTuples/s.

Averaging the data points within all datasets yields the
following results: the FPGA shows a 2x speedup over the
best CPU results (non-partitioned) on Unique data, and a
3.4x speedup over the best CPU results (partitioned) on
Random and Zipf 0.5 data. The FPGA shows a 1.2x slow-
down compared to the best CPU results (partitioned) on
Zipf 1.0 data.

4.5 Scalability
To examine scalability, in the next experiments we at-

tempt to match the bandwidth between software and hard-
ware as closely as possible: every four CPU threads are com-
pared to one FPGA (note that this still provides a slight
advantage to the CPU in terms of memory bandwidth). We
examine two cases, when the probe relation is much larger
than the build one, and when they are of equal size.

Figures 5a,6a and 7a show the results when the probe
phase dominates the computation. The FPGA scales lin-
early on datasets Unique, Random and Zipf 0.5 (Figure 5a).

However, for the Zipf 1.0 dataset, the performance does
not scale because of the extreme skew. Each probe job
searches through an average of 4.8 to 6.7 nodes in the linked
list. Therefore most jobs are recycled through the datapath
multiple times. Having too many jobs being recycled limits
the new jobs entering the datapath causing back pressure
and stalling. The partitioned algorithm scales as the num-
ber of threads increases but at a lower rate than the FPGA
approach (depicted on Figure 6a). The non-partitioned al-
gorithm shows a drop in performance while moving from 8
to 12 threads because of the NUMA latency emerging while
moving from 1 to 2 CPUs (Figure 7a).

The FPGA scales at a lower rate when the build and probe
relation are of the same size (Figure 5b), since the through-
put of the build phase remains constant while the probe
phase scales. The slope of the scale graph is almost com-
parable to the CPU implementations (shown on Figures 6b
and 7b) Again the extreme skew case does not scale for the
FPGA.

4.6 Throughput Efficiency
To get a direct comparison of throughput we normalize it

to the available bandwidth. As discussed in Section 4.1 each
FPGA has 19.2 GBs of bandwidth, and each CPU has 51.2
GBs. The normalized results are shown in Figure 8.

When the probe relation dominates the computation (Fig-
ure 8a) the FPGA shows speedup between 3.2x and 6x on
the Unique dataset. It shows a speedup between 4.4x and

10x on the Random and Zipf 0.5 datasets. Finally, it shows
speedup between 0.6x and 8.3x on the Zipf 1.0 dataset.

When neither relation dominates the computation (Figure
8b) the FPGA shows speedup between 1.7x and 8.6x on the
Unique dataset. It shows a speedup between 1.7x and 23.1x
on the Random and Zipf 0.5 datasets. Finally, it shows
speedup between 0.2x and 21.6x on the Zipf 1.0 dataset.

# Engines Registers LUTs BRAMs

1 probe 65678 (7%) 62521 (13%) 104 (14%)

2 probe 81712 (9%) 74951 (16%) 133 (18%)

3 probe 94799 (10%) 86200 (18%) 154 (21%)

1 build 112476 (16%) 118169 (33%) 41 (4%)

2 build 117202 (17%) 123890 (35%) 48 (5%)

3 build 121408 (17%) 129592 (37%) 55 (6%)

4 build 125588 (18%) 135908 (38%) 62 (7%)

Table 1: FPGA Resource utilization.

4.7 FPGA Area Utilization
Table 1 shows the resource utilization (registers, LUTs

and BRAMs used) for the di↵erent FPGA designs. We ob-
serve that many resources are shared between engines as
their number increases. For example, one probe engine uses
7% of the available registers, whereas three engines utilize
only 10% of the register file. Note that the build phase uses
much more logic resources (LUT) due to its atomic opera-
tions, but it also has very low BRAM utilization. Overall,
the space utilization on the FPGA is low, leaving su�cient
space to extend out design for with various optimizations
(selections, projections, join step).

5. CONCLUSIONS
We have presented the performance benefits of the first

end-to-end FPGA implementation of hash joins. Our ap-
proach is di↵erent as the entire hash-table is built in memory,
leveraging FPGA multithreading to deal with long memory
latencies. As hashing itself is a basic building block for many
relational operator implementations, the presented FPGA
design could be extended to support other operations like
group-by aggregations, duplicate elimination, unions, inter-
sections etc. Furthermore, we are examining how partition-
ing and thread load balancing can be utilized on the FPGA
approach so as to deal with extremely skewed datasets.
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