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Abstract—The reliance on object or people detection is rapidly
growing beyond surveillance to industrial and social applications.
The Histogram of Oriented Gradients (HOG), one of the most
popular object detection algorithms, achieves high detection
accuracy but delivers just under one frame-per-second (fps) on a
high-end CPU. FPGA accelerations of this algorithm are limited
by the intensive floating-point computations. All current fixed-
point HOG implementations use large bit-width to maintain
detection accuracy, or perform poorly at reduced data precision.
In this paper we introduce the full-image evaluation methodology
to explore the FPGA implementation of HOG using reduced
bit-width. This approach lessens the required area resources
on the FPGA and increases the clock frequency and hence the
throughput per device through increased parallelism. We evaluate
the detection accuracy of the fixed-point HOG by applying
state-of-the-art computer vision pedestrian detection evaluation
metrics and show it performs as well as the original floating-
point code from OpenCV. We then show our single FPGA
implementation achieves a 68.7x higher throughput than a high-
end CPU, 5.1x higher than a high-end GPU, and 7.8x higher than
the same implementation using floating-point on the same FPGA.
A power consumption comparison for different platforms shows
our fixed-point FPGA implementation uses 130x less power than
CPU, and 31x less energy than GPU to process one image.

Index Terms—Computer vision; fixed-point; pedestrian detec-
tion; histogram of oriented gradients;

I. INTRODUCTION

Like many applications relying on numeric computations,
computer vision applications make extensive use of floating-
point number representation, both single and double precision.
The major advantage of floating-point representation is the
very large range of values that can be represented with a
limited number of bits. Most CPU, and all GPU designs have
been extensively optimized for short-latency high-throughput
processing of floating-point operations. On an FPGA, the bit-
width of operands in an application is a major determinant
of its resource utilization, the achievable clock frequency and
hence its throughput. By using a fixed-point representation
with fewer bits, an application developer could implement
more processing units on a given FPGA and each unit could
achieve a higher-clock frequency because of its smaller foot-
print. However, smaller bit-width may lead to inaccurate or
incorrect results.

Object and human detection are fundamental problems in
computer vision and a very active research area. In these
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applications a high throughput and an economy of resources
are highly desirable features allowing the applications to be
embedded in mobile or field-deployable equipment. The HOG
algorithm [1], developed for human detection and expanded
to other object detection, is one of the most successful and
popular algorithms in its class. In this algorithm, object
descriptors are extracted from detection window with grids
of overlapping blocks. Each block is divided into cells in
which histograms of intensity gradients are collected as HOG
features. Vectors of histograms are normalized and passed to a
Support Vector Machine (SVM) classifier [2], [3] to recognize
a person or an object.

In this paper we explore the effects of reduced bit-width on
the accuracy and performance of the HOG object detection
algorithm implemented on an FPGA by applying the full-
image evaluation methodology and state-of-the-art computer
vision pedestrian detection metrics. Using four sets of bench-
marks, totaling 10,000 frames, we show that reducing the bit-
width to 13-bits preserves the same detection accuracy as the
original floating-point. We describe an FPGA implementation
of the HOG algorithm and explore the impact of reduced data
precision on the area and clock frequency of the design. The
throughput of the 13-bit fixed-point design on a single FPGA
is then compared to that on CPU using floating-point (68.7x),
a CPU with the Intel IPP library (60x), a high-end GPU (5.1x)
and the same FPGA design using floating-point data (7.8x).
This paper is built on our previous work [4] that evaluates
the HOG detection accuracy under reduced bit-width. In
this paper, we study the detection accuracy based on the
precision and recall values across four different benchmarks
to demonstrate the choice of 13-bits fixed-point over other
bit-width. Moreover, we compare our HOG-Engine FPGA
resource utilization between fixed-point and floating-point, and
different bit-width fixed-point implementations. Additionally,
a two-stage processing architecture is proposed to boost the
throughput of our original single HOG-Engine from 411 ms
per image to 44 ms per image (9.3x better performance).
Furthermore, the system architecture and memory interface
are discussed in this paper. Last but not least, we include the
power consumption comparison for different platforms.

The contributions of this paper are (1) A systematic ex-
perimental evaluation of the detection accuracy of the HOG
algorithm with fixed-point data using full-image evaluation as
opposed to traditional per-window evaluation while varying
the bit-width, using 10,000 benchmark frames with known
ground truth. (2) A fully pipelined, two-step FPGA implemen-
tation of HOG on a Xilinx Virtex-6 LX760 FPGA attached to
Convey HC-2ex computer; its architecture occupies 6.5% of
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the FPGA resources. (3) A comparison of the throughput on
FPGA, fixed and floating-point, CPU, with and without Intel
IPP library, and the Nvidia Tesla K20 GPU, using 640× 480
images at 1.05 scale factor, with bilinear interpolation and a
window stride of four pixels (a low scale factor or window
stride increases the detection accuracy but also the computa-
tional load). (4) A power consumption comparison between
CPU, GPU and FPGA.

The remainder of this paper is organized as follows: Section
II covers related work in the hardware acceleration of HOG
detection algorithms as well as the tradeoffs between fixed and
floating-point representations on FPGAs. Section III offers a
detailed description of the HOG algorithm. The fixed-point
implementation of HOG is evaluated in Section IV using four
benchmarks and we demonstrate that the 13-bits representation
is optimal across all benchmarks. Our FPGA architecture of
HOG detection is described and evaluated in Section V. Our
experimental results and comparison are presented in Section
VI. Concluding remarks are presented in Section VII.

II. BACKGROUND

A. Related Work
With the advent of computer vision algorithms in the past

few years, various object detection algorithms have been
developed to localize objects in images or video sequences.
A sliding-window detection system based on Support Vector
Machine (SVM) classifier was introduced in [5]. Based on this
idea, the Viola-Jones object detection [6], [7] was proposed
using the AdaBoost algorithm to train a cascade of classi-
fiers; it has been reported as the most efficient method for
object detection due to its use of integral images. In 2005,
Dalal and Triggs proposed the HOG algorithm for pedestrian
detection with a giant detection accuracy boost [1]. In this
algorithm, pixel density gradients are computed and binned
into overlapping blocks as the descriptor of objects. HOG and
its variants are used extensively in modern computer vision
applications [8]. However due to its computational complexity,
its application in real time detection is limited by execution
speed.

The execution speed, or throughput, of HOG implemen-
tations is very strongly affected by (1) the frame size, (2)
the scale factor, (3) the window stride, (4) the number of
histogram bins, (5) the interpolation method used (e.g. bilinear,
trilinear, or none) and the size of the region of interest.
Since there is no one standard set of parameters, an objective
comparison of performance across various implementations is
difficult. Note that the scale factor, the window stride and
the interpolation method affect the accuracy of the detection
as well as the throughput. In this paper we have relied on
640×480 frames, a 1.05 scale factor, a window stride of four
pixels, nine histogram bins with bilinear interpolation and a
region of interest that is the whole frame. Starting with the
widely accepted classifier in OpenCV [9], we have constructed
a fixed-point implementation of HOG in software to determine
the optimal bit-width that does not compromise the detection
accuracy while reducing the resource requirements. We then
compared our fixed-point detection results with the origi-
nal floating-point result, by using four pedestrian detection

benchmarks totaling 10,000 frames with known ground truth.
Finally we constructed our fully pipelined FPGA accelerator
and compared the throughput to those on state-of-the-art GPU
and CPU.

Many hardware accelerated solutions have been proposed
for HOG pedestrian detection, mostly using GPUs, with a
reported speed-up of up to 67x [10], [11], [12], [13], [14], [15].
Because of deeply pipelined architectures and lower power
consumption, FPGA platforms often provide higher execution
speed and better energy efficiency over GPUs [16]. An FPGA-
GPU hybrid system was proposed in [17] using FPGA to
extract HOG features and GPU to perform classification; it
achieved a throughput of 10,000 detection windows per second
for FPGA execution. Note that whole images (frames) were
not tested.

In [18] a HOG feature extractor circuit for pedestrian and
vehicle detection, using fixed-point data, was described with an
estimated throughput of 33 fps at a single scale for 640× 480
images. The detection accuracy was not reported or compared
to a reference implementation. In [19], a HOG detection
system was implemented on an Altera Stratix II FPGA using
window size of 16 × 32 and scale factor of 1.2 achieving an
estimated 30 fps for 640 × 480 video. Our experiments have
shown that a scale factor 1.2 has 3.25x less computation than
the 1.05 scale factor used in this paper and 6x poorer detection
accuracy, in terms of true positives. In [16] a person detection
execution on CPU, GPU and FPGA was compared for power,
speed and accuracy. The FPGA implementation focused only
on 4 out of 37 scales for 640×480 images and achieves 30 fps.
In none of the papers above was the reduced bit-width used
for HOG detection. A pedestrian detection system processing
18 scales of 1920 × 1080 resolution images at 64 fps was
reported in [20]. Its throughput was estimated via simulation.

In [21], a real-time person detection was implemented on
FPGA with a 62.5 fps on images with size equivalent to
320×240 at a single scale. While the data range of fixed-point
values was reported (8-bits for input pixel, 19-bits for gradient,
14-bits for each histogram, and 33-bits for normalized his-
togram), there was no exploration of the tradeoffs in detection
accuracy with reduced bit-width. Moreover, their fixed-point
implementation showed a decrease in detection accuracy.

Mizuno et al. [22] have reported on the fixed-point pa-
rameter optimization by comparing the per-window detection
results with the ground truth for INRIA person dataset [1]. The
difficulty of INRIA benchmark is much simpler than those
used in this paper. A fixed-point version of HOG detection
for a digital signal processor (DSP) PICTOR was discussed
in [23]. The detection accuracy was compared to with MAT-
LAB’s double-precision code without, however, reporting the
bit-width. These approaches focused on comparing the detec-
tion window level output difference between fixed-point and
floating-point computations. Nevertheless, per-window based
evaluation methodology can fail to represent full image perfor-
mance. For example many detected false positive windows in
window-based evaluation can be removed by merging nearby
bounding boxes in post-processing as shown in [8].

Scale factor (the ratio to scale the image after each detec-
tion) and window stride are one of the most important param-
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TABLE I: Comparison of parameters and performance for
various FPGA and GPU implementations.

Scale # scales # bins Win. stride Win./frame Resolution FPS
FPGA Implementation

Our 1.05 34 9 4 121,210 640× 480 68.18
[20] - 18 9 8 >27,960 1920× 1080 641

[16] 1.2 13 9 8 20,868 1024× 768 13
[22] - 1 9 8 5,580 800× 600 72
[21] - 1 8 9 1,540 640× 480 62.5
[17] - 1 9 - 1,000 800× 600 >10
[19] 1.2 >1 8 4 56,466 640× 480 301

[25] 1.2 >1 8 4 3,615 320× 240 38
GPU Implementation

[16], [9] 1.05 37 9 8 unkn 1024× 768 17
[14] 1.05 >1 unkn unkn 4096 640× 480 57
[15] 1.1 >1 8 2 50000 640× 480 23.8
[13] - 1 9 8 unkn 640× 480 32
[12] 1.05 >1 9 4 150000 1280× 960 2.4
[10] 1.05 >1 9 unkn unkn 640× 480 5.6

eters in sliding-window based detection. Performing detection
on the original scale can only find objects that have exactly
the same size as the detector, thus multiple scale detections
are necessary. Furthermore, a small window stride allows the
detector to cover more possible object/person locations. It
has been shown in [24] that the best detection performance
can be achieved with a scale factor smaller than 1.09 and
a window stride of four pixels. Scale factor and window
stride together not only control how densely the detection
window is applied across the image but also determine the
computation complexity. To the best of our knowledge, all
previous FPGA implementations have used a sparse detection,
performing detection at a single scale, a subset of scales,
large scale factors, or wide window strides to reduce the com-
putational load but doing so also significantly compromises
the detection accuracy [24]. Further, none of the previous
FPGA implementations adopt the bilinear interpolation. Table
I compares the important parameters [1], [24] that determine
the accuracy, speed and performance of HOG detection of
previous hardware acceleration approaches with our work.

B. Fixed-Point Representation

The main advantage of a floating-point representation, given
a fixed bit-width, is its very large range; its precision, however,
deteriorates as the value represented grows. Fixed-point values
are essentially integers with a fixed place of radix-point. Their
range is determined by the number of bits to the left of the
binary-point while the precision is determined by those to
the right of it. Arithmetic operations on floating-point values
require careful manipulation of the mantissa and exponent as
well as rounding, normalization and re-normalization. All of
these steps are hidden away from the programer by hardware
floating-point units on all CPUs and GPUs. On an FPGA,
smaller bit-width is desired to achieve higher clock frequency
and fewer resource usage. We have evaluated the FPGA
resource usage of single unit addition and multiplication in
different bit-width for both fixed-point and floating-point,
shown in Table II. All values are obtained using Xilinx Virtex-
6 LX760 FPGA with ISE 14.3 after place & route. Xilinx
CoreGen generates all floating-point units and fixed-point
multiplication units. 64-bit, 32-bit, and 16-bit floating-point are

1Simulation estimated speed, no actual implementation.

TABLE II: FPGA resource utilization of arithmetic operations
between fixed-point and floating-point data.

# Bits Reg. LUTs DSPs Latency f (MHz)
Fixed-Point Addition2

64 130 76 0 2 235
32 66 36 0 2 541
16 34 20 0 2 627
13 18 13 0 2 609

Floating-Point Addition
64 1034 800 0 12 268
32 541 397 0 12 390
16 224 171 0 8 397
13 193 142 0 8 412

Fixed-Point Multiplication without DSP
64 4296 4293 0 6 219
32 1098 1099 0 5 345
16 279 283 0 4 438
13 216 194 0 4 445

Floating-Point Multiplication without DSP
64 2431 2309 0 9 179
32 681 634 0 8 226
16 202 185 0 6 353
13 151 129 0 6 396

Fixed-Point Multiplication with DSP
64 859 437 16 18 308
32 53 2 4 6 473
16 4 1 1 3 473
13 0 0 1 3 473

Floating-Point Multiplication with DSP
64 391 308 10 15 291
32 179 132 3 8 325
16 89 74 2 6 398
13 80 64 1 6 370

IEEE standard. 13-bit floating-point has five exponent bits and
eight fraction bits. As shown in Table II, fixed-point additions
use 10.5-12.5x less LUTs than floating-point addition while
operate at 1.6-2.4x higher frequency. Furthermore, floating-
point additions require more registers as the computation takes
several clock cycles.

Fixed-point multiplication requires more FPGA area than
floating-point multiplication since the product of two 32-bit
integer multiplication is 64-bit while the result of two 32-bit
floating-point multiplication will yield another 32-bit value, as
shown in Table II. However, the multiplication of small bit-
width values can take the advantage of on-chip DSP blocks
to ease the area usage. Table II shows the FPGA resource
utilization when using DSP block for both fixed-point and
floating-point multiplications. 32-bit and below fixed-point
multiplication benefit from the usage of DSP blocks.

Fixed-point arithmetic uses less FPGA area and runs at a
higher frequency than floating-point operations. Hence, with
sufficient memory bandwidth, one can place more fixed-point
modules on a single FPGA running at higher frequency to
increase the overall throughput. However, the use of fixed-
point data may compromise the accuracy of the detection.
The original HOG algorithm uses single-precision floating-
point for all computations. Replacing the large range floating-
point data with fixed-point value may potentially cause data
overflow. To further increase the computation throughput, we

2The latency for a regular fixed-point adder should be one. An additional
output stage is intentionally added here to obtain correct timing results.
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want to use the least possible number of bits for each step but
the use of lower bit-width values may introduce uncertainties
in the final classification result. To find the exact bit-width that
can be used in fixed-point detection, we carefully evaluate
every computation step of the HOG pedestrian detection
implementation in OpenCV [9]. We determine that 27-bit
fixed-point is sufficient to maintain a similar precision as the
original floating-point data representation. The exact bit-width
for each data is discussed in Section IV. Then we construct our
own HOG detection program that performs the exact detection
procedure using fixed-point data. We then gradually decrease
the number of bits, starting from 27 bits, and compared the
detection outcome with the original floating-point OpenCV
detection to find the least possible number of bits suitable for
HOG detection. The detailed comparison process is described
in Section IV.

III. HISTOGRAMS OF ORIENTED GRADIENTS

In the HOG algorithm object descriptors are extracted from
detection window with grids of overlapping blocks. Each block
is divided into cells in which histograms of intensity gradients
are collected as HOG features. Vectors of histograms are
normalized and passed through detector for detection. The
detailed detection algorithm is described below.

A. Orientation and Magnitude Computing

Input pixel values are converted to gradients in HOG-based
object detection. As shown in Equation 1, the gradient of{

dx = pixel(x+ 1, y)− pixel(x− 1, y)

dy = pixel(x, y + 1)− pixel(x, y − 1)
(1)

pixels, dx and dy are obtained by using a simple 1-D mask[
1 0 −1

]
. Then, for each pair of dx and dy, the magnitude

m(x, y) and orientation θ(x, y) are computed as Equation 2.{
m(x, y) =

√
dx2 + dy2

θ(x, y) = atan dy
dx

(2)

For colored images, the magnitudes are computed for each
individual channel and the one with largest magnitude value
is chosen.

B. Histogram Generation

In this algorithm, every 8 × 8 pixels form a cell, and
every 2 × 2 cells form a block, as illustrated in Figure 1.
The magnitudes are binned into histograms based on the
orientations within each cell. Figure 2 shows the binning
diagram used in HOG. Each cell generates a 9-bin histogram
for orientation in the range of 0◦ − 360◦. The orientations
are ”unsigned” meaning that from 180◦ − 360◦ the binning
are the same as 0◦ − 180◦. The bin value is updated by
weighted magnitude value. The magnitude weight is based
on the difference between the angle and bin edge as shown in
Equation 3 (floor function is used to compute bin edge).

α =
9 · θ
π
− floor(9 · θ

π
− 0.5) (3)

cells block1 

block2 

Fig. 1: Illustration of HOG cells and blocks. This detection
window consists of 6 × 12 cells of 8 × 8 pixels. Every four
cells (2× 2) are a block. The pedestrian image is from [26].

In addition, the bin after current bin will also be updated to
reduce aliasing as shown in Equations 3 and 4 (vote0 is{

vote0 = (1− α)×m
vote1 = α×m

(4)

for current bin, vote1 is for the next bin). Furthermore, each
vote in a cell is bilinearly interpolated to the neighboring cell.
Finally, a Gaussian filter is applied to each vote based on its
location within a block to mitigate the contribution of pixels
close to the block edge. Thus, the final votes can be written
as the products of the vote and two weights (weightintrpl,
weightgauss) as in Equation 5. Histograms within a block are{

votef0 = weightintrpl × weightgauss × vote0
votef1 = weightintrpl × weightgauss × vote1

(5)

concatenated together forming a 1× 36 vector. All vectors in
a sliding window are also concatenated as the final descriptor
vector. Therefore, a 48×96-pixel window (Figure 1) has 5×11
blocks with a total of 1980 histograms (a 1× 1980 vector).

C. Histogram Normalization and SVM Classification

Block histograms are normalized to minimize the effect of
local illumination variance and foreground-background con-
trast. The block histogram vector is normalized twice using
Equation 6. In general, each vector element is divided by the

~V =
~v√

||~v||2 + c
(6)

vector’s Euclidean length (square root of elements’ sum of
squares). Constant value c is used to avoid division by zero. In
the first normalization, c value is 3.6 and the maximum value
for each element is limited to 0.2 after normalization. Then,
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Fig. 2: HOG cell binning. The bins are actually spaced from
0◦−180◦. Binning from 180◦−360◦ is the same as 0◦−180◦.
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Fig. 3: HOG computation data-flow diagram and key parame-
ter data sizes (integer:fractional) used in our implementation.

the new histogram vector is normalized again using Equation
6 with c = 0.001.

Normalized histograms within a detection window are con-
catenated into a single vector and passed to a Gaussian kernel
linear SVM classifier [1] for final classification. The SVM
classifier creates a large margin around the decision boundary
(hyperplane) to achieve maximum classification performance
[2], [3]. Specifically, the final value s for a detection window
is the dot product of the trained classification vector (normal
vector to the hyperplane) ~W and normalized HOG descriptor
~V plus a constant intercept term s0, as shown in Equation 7.

s = ~W · ~V + s0 (7)

The length of the SVM classifier depends on the detection
window size as described in Section III-B. For a 48 × 96-
pixel window descriptor histogram vector has 1980 values (11
vertical blocks, 5 horizontal blocks and 36 histograms/block)
and a 64× 128-pixel window descriptor histogram vector has
3780 values. The final value output, s, is used to determine
whether or not a window contains an object.

Figure 3 shows the entire data-flow of HOG detection for
a single scale image. Values associated with parameters show
the n-bits fixed-point implementation used in our experiment
with integer and fractional sizes. All weights discussed above
have 0 integer bits and n fractional bits (see Section IV).

IV. BENCHMARK COMPARISON

In this section we evaluate the accuracy of the fixed-point
HOG detection and compare it to the OpenCV’s floating-point
detection.

A. Implementation of Fixed-Point HOG Detection

For the implementation of fixed-point HOG pedestrian
detection, we started with the Daimler detector (a pre-trained
SVM classifier) came with OpenCV [9], [27] with a window
size of 48× 96 pixels. The window stride is 4 pixels for both
horizontal and vertical direction. Moreover, we choose the final
threshold as 0.5 (only when s > 0.5, the window is considered
as positive) to limit the total number of positive windows. All
other parameters discussed in Section III, e.g. trained classifier
vector values, are converted to fixed-point data for detection.

The implementation includes all the steps of HOG detection:
from the initial orientation and magnitude computation to the
computing of the final score s. The final grouping algorithm
(combine multiple detection windows at various scales into
a single rectangle) is not included. For an n-bit fixed-point
implementation, the bit-width of individual parameters are
shown in Figure 3. As we reduce the bit-width, all intermediate
values are scaled accordingly, as shown in Figure 3. However,
the sum of histogram squares in Equation 6 (denominator part
without computing square root) for the first normalization has
a very large data range. Thus it will remain 27 bits with 0
fractional bits for n is 16 or lower. All constant parameters
in HOG detection are converted to fixed-point using 0 integer
bits and n fractional bits, as discussed in Section III. Also the
interpolation and Gaussian weights (Equation 5) are combined
into a single value before converting to fixed-point.

B. Evaluation Methodology

Traditionally, fixed-point arithmetic implementation focuses
on the absolute errors introduced by the reduced bit-width.
Specifically in object detection, both fixed-point and floating-
point object detectors are applied to detection windows known
as object or background for detection rate comparison. The
desired bit-width is determined by the minimum acceptable
detection rate using certain fixed-point bit-width. However,
this approach may not correctly predict the actual detection
performance when considering the entire frame across multiple
image scales. Usually a post-processing step is performed
on all positive windows across the image at all scales to
merge nearby positive windows. This step can reduce the
number of false positive windows found by the detector.
On the other hand, it can introduce detection errors such as
incorrectly detected object sizes that would otherwise not have
been found in window-based evaluation. Thus, to evaluate
the effect of reduced data precision, methods other than
window-based evaluation are needed. Dollar et al. [28], [8]
proposed the per-image evaluation approach as opposed to
per-window methodology for pedestrian detection algorithm
evaluation. They reported the classification performance of
various classifiers for these two approaches. In general, the
per-image based approach is more meaningful as well as
practical. Therefore, we applied this method in our fixed-point
detection to find the optimal bit-width. The detailed evaluation
results will be discussed in Section IV-D .
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(b) Caltech Benchmark Results
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(c) TUD-Brussels Motion Pairs Results
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(d) ETH Benchmark Results
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(e) Overall Detection Results

Fig. 4: HOG detection accuracy for Daimler, Caltech, TUD-Brussels, ETH Benchmarks, and overall results by averaging the
recall and precision of all benchmarks.

C. Benchmarks and Detection Evaluation

We have used four benchmarks to evaluate our fixed-
point HOG detection: Daimler Mono Pedestrian Detection
[27], TUD-Brussels [26], Caltech Pedestrian Detection [28],
and three sequences from ETH datasets (the BAHNHOF,
JELMOLI, and SUNNY DAY sequences) [29]. All benchmark
images are 640× 480 and have a ground truth of pedestrians.
Every ground truth pedestrian is marked by a rectangular
bounding box (BB), indicating its location and size. In our
evaluation, we selected the frames that contains at least one
pedestrian object with a BB height > 67 pixels (70% of
the detection window height). The number of images and
pedestrian objects we use for evaluation are shown in Table
III. To match our detection results to the ground truth we use
the commonly accepted PASCAL method shown in Equation
8 [30]. BBdet refers to the BB from the detection and BBgrt

α0 =
area(BBdet ∩BBgrt)

area(BBdet ∪BBgrt)
> 0.5 (8)

is the ground truth BB. Two objects are matched when their
overlapping area is more than 50% of the union area. Each
detected object may be matched at most once to a ground truth
object. In addition, adjustments for both BBdet and BBgrt

are made based on the methods described in [28], [8]. For
each BBgrt, the aspect ratio of a rectangle depends on the
limb position of a walking pedestrian. Thus, all BBgrt are
resized to an aspect ratio of 0.41 by keeping the center of the
object. What’s more, each BBdet corresponds to a detection
window of 48×96 pixels with about twelve-pixel paddings on
top and bottom of each pedestrian [27]. Therefore, the BBdet

TABLE III: Number of frames and objects for each benchmark
sequence after filtering.

Daimler Caltech TUD-Brussels ETH
# image 2117 5346 237 1785
# object 2603 8310 661 8076

height is resized by a scale of 0.78125, then the aspect ratio
is resized to 0.41. These processes provide better matching
between ground truth and detection result. Moreover, ground
truth objects near the image edge, with height below 67 pixels
and non-pedestrian are set to ignore. Ignored objects are not
counted as true positive if matched and will not contribute to
false negatives if unmatched.

D. Evaluation Result

For fixed-point detection, we perform detection in 27-bits
down to 11-bits. The number of bits for each fixed-point
detection is shown in Figure 3 (substitute n with corresponding
bits). In addition to the single-precision floating-point and
fixed-point detection, we construct another detection with
all data represented by double-precision floating-point. All
detection results are collected, and evaluated using the method
discussed above. Then we calculate the precision and recall
from number of true positives (TP), false negatives (FN), and
false positives (FP). Finally, all results discussed below are
using for per-image evaluation with each 640 × 480-pixel
image processed at 34 different scales with a scale factor of
1.05.
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We show the OpenCV detection (cv-float), double precision
floating-point (double) and a subset of fixed-point detection
results for each benchmark and the overall results by averaging
the four individual benchmark, in Figure 4. Detection precision
and recall are computed using Equation 9.{

precision = TP
TP+FP

recall = TP
TP+FN

(9)

Fixed-point detection results from 27-bits to 18-bits are almost
identical to the floating-point results in all benchmarks. For
17-bits and lower, detection at lower bits generally increases
recall and decreases precision. For all benchmarks, we observe
an increase of precision in fix-17, and a decrease in recall. This
is due to a slight decline of the TP, but a significant reduction
in FP. Besides, the reduced TP also results the contraction
of FN, hence the loss of recall as shown in Figure 4 (a),
(b), (d) for fix-17. The overall recall is increased from 0.458
at cv-float to 0.465 for fix-13 and 0.475 for fix-12 while the
precision grows from cv-float’s 0.561 to 0.564 for fix-13 and
dropped to 0.555 at fix-12. Moreover fix-11 has boosted recall
to 0.488 with a significant decrease of precision to 0.522.
Finally, we choose 13-bits in our hardware implementation
as it provides a balance between precision and recall and
consistent performance across all benchmarks in per-image
evaluation. The detailed hardware implementation is discussed
in Section V.

V. FPGA IMPLEMENTATION

In this section we describe and evaluate the fixed and
floating-point implementations of the HOG detection on an
FPGA. We compare the throughput to those of the CPU and
GPU implementations.

A. FPGA Platform

We implement our HOG detection system on the Convey
HC-2ex machine [31]. The system’s hybrid-core architecture
is composed of two Intel Xeon E5-2643 four-core processors
and four Xilinx Virtex-6 LX760 FPGAs. Both CPUs and
FPGAs share a globally addressable 256 GB virtual memory,
128 GB on FPGA side and 128 GB on CPU side. FPGA
memory is connected to CPUs via one PCIe 3.0 x16. The
FPGA memory system is built around Convey’s Scatter-Gather
DIMMs to provide random transfer of 8-byte bursts at near
peak bandwidth [32]. All FPGAs are linked to host processors
through an Application Engine Hub that can send and transfer
opcodes and scalar operands to FPGA. Each FPGA has 16
64-bit memory channels at 150 MHz controlled by eight
memory controllers. The FPGA program runs at 150 MHz.
The memory subsystem provides a highly parallel and high
bandwidth (19.2 GB/s per FPGA) connection between FPGAs
and physical memory. These properties permit the user to
design complicated memory access pattern in the HOG-Engine
to achieve maximum performance. The hardware architecture
and memory accesses will be discussed in the following
sections.

The host software is written in C++ and the FPGA code is
developed in Verilog. The design is simulated using Convey

Personality Development Kit and Modelsim Foreign Language
Interface for hardware and software co-simulation. Synthesis is
performed using Xilinx ISE 14.3. We have used Xilinx Core
Generator to generate fixed-point multiplication and square
root IP cores. For fixed-point division, we use the divider
from [33]. Each HOG-Engine uses 138 fixed-point multipli-
cation modules. To ease the FPGA timing, we implement
64 multiplication modules in bilinear interpolation of votes
and four multiplication for magnitude voting on DSPs (a
total of 68 DSP slices per HOG-Engine), others on LUTs.
The normalization module is implemented by using square
root, division and multiplication modules. First the histogram
squares are summed, then sent to square root module. Finally
the reciprocal is computed by the divider core. The normalized
histogram value is the multiplication of histogram and the
reciprocal value.

B. HOG-Engine Architecture

As a first step, we profiled the HOG pedestrian detection
code, on CPU, to find the most critical computation in HOG
detection. The profiling information is shown in Table IV.
Post processing is used in all object detection algorithms to
combine similar windows into one. For our HOG-Engine,
we focused on implementing the most computational expen-
sive parts of HOG detection on FPGA: orientation binning,
magnitude voting, histogram generation, normalization, and
SVM classification. All other computations are performed in
software.

Our implementation design on FPGA consists of two steps:
histogram generation and classification. Histogram generation
produces weighted votes, accumulates them in cell histograms
that are combined to form block histograms. Block histograms
are then normalized twice and sent back to memory. The
classification module fetches the normalized histograms from
memory and performs SVM classification to generate the
final score. The schematics of our HOG-Engine for histogram
generation and classification are shown in Figure 5.

The HOG-Engine reads the magnitude and orientation val-
ues from memory. Each pair of magnitude and orientation
values is packed into a single 32-bit integer. As one memory
access returns a 64-bit value, two pairs of magnitude and
orientation values are returned in a single memory access. The
HOG-Engine fetches pixels from two rows of cells alternately
to increase parallelism as shown in Figure 5a. For each
pair of orientation and magnitude, two vote values (vote0,
vote1) and a bin number are computed. As discussed in
Section III-B, each cell has 64 pixels and generates a 9-
bin histogram. However, due to bilinear interpolation, each
vote is weighted and interpolated into all other cells in the
same block. To reduce the interaction between different cells,
each cell produces 4 × 9-bin histograms. In addition, as a
cell could be in one of the four positions in a block shown
in Figure 5a (TL, TR, BL, BR), in our implementation, a
single cell will generate 4 × 36-histograms. Cell histograms
are then combined using a simple vector add to obtain the
block histogram when all four cells in a block are processed.
Unused cell histograms are automatically discarded based on
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Fig. 5: The HOG-Engine architecture for histogram generation module and classification module.

TABLE IV: HOG detection profiling result.

Function Time (%)
Initialization & read image 0.65
Image resize 0.65
Magnitude& angle 0.62
Binning & voting 3.44
Block hist. gen. & norm. 46.20
SVM 18.82
Post processing 29.63

their position (cells on the edge of image can only appear
in a subset of positions of a block). Besides, to compute the
block histogram between the second and third rows, the TL,
TR histograms of second row cells are saved in FIFO and later
combined with the third row’s BL, BR. Two Block histogram
generation modules are instantiated for each HOG-Engine.
Generated block histograms are sent to normalizer and finally
stored in memory. This design is efficient as all pixel values
within an image scale are accessed only once to generate the
histogram.

Generated histogram values are stored in memory, to be
processed by a sliding-window based classification system
(window stride is one block). In this classification system,
detection windows are computed in column basis. As we slide
the detection window one block to the right, only one new
column of block histograms are fetched from memory. We
divide, therefore, the classifier into five classifiers, one for
each column as shown in Figure 5b. Every classifier performs
part of the SVM classification and output a single value for
the 396 elements. Each column of blocks will be sent to
all five classifier as they will be at five different locations
when the window slides in a row. The Sum module adds these
values together for each window and outputs the final threshold
sum. When the window slides down one block, all the block
histograms within that window are re-fetched from memory.
As result, the classification is less efficient as the histogram
generation. In our design, we use three classification modules
to compute three consecutive row of windows so the speed of
classification is similar to histogram generation.

The aforementioned architecture works well with a window
stride of eight pixels (one cell). However, to further improve
the detection accuracy, we would like to use a stride of four
pixels (half cell). When the window stride is four pixels, all
cells and blocks in the new window are changed and we
cannot re-use previously computed cell histogram results. To
solve this problem, we treat a single scale of image as four
sub-scales, processing each with a window stride of eight
pixels. Concretely, we first process the sub-scale starting at
the first column, first row of pixels using the above HOG-
Engine. Then, we process the same image again starting at
the first row, fifth column. Thirdly, we compute histograms
starting at the fifth row, first column, and finally fifth row, fifth
column. Therefore, a total of 34 scales image is divided into
134 sub-scales (the last scale only have two sub-scales). This
design allows us to use the same HOG-Engine architecture to
efficiently generate histograms and perform classification.

C. Input/Output Controller

Both histogram generation and classification modules have
input and output controllers to interface with the FPGA
memory system. As discussed previously, the HOG-Engine
processes a frame at 34 different scales. In addition, each scale
is divided into four sub-scales to slide detection window by
four pixels vertically and horizontally. These controllers are
responsible to access images at different scales. The image
is resized in software and then magnitude and orientation
are computed. For a single frame, magnitude and orientation
values at 34 scales are concatenated into a single array and
sent to FPGA memory. Histogram generation input controller
generates pixel (magnitude and orientation pairs) addresses by
using three nested state machines, to control horizontal cell
offset, vertical cell offset and pixel offset within a cell. The
image size information such as the number of horizontal cells,
vertical cells, offset to current scale, and sub-scale are stored
in ROMs. These offsets are added together with image base
address to form the actual pixel address. A counter is used to
keep track of current sub-scale number and incremented when
all addresses in that scale are generated to control the output of
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ROMs. As a result, no DSP slices are needed in input/output
controllers. The input controller for the classification system
operates similarly, but generates three addresses in parallel for
three rows of detection windows as discussed in V-B. Besides
counting the number of scales processed, the output controllers
also count the number of histograms/final scores processed for
all scales to determine the ending-point of a frame. Each HOG-
Engine has a dedicated memory channel for histogram output
but three HOG-Engines on one FPGA share a single memory
channel for final score output through time multiplexing. Since
the number of output values in the final classification are
52x less than the input pixels, multiplexing three outputs into
one memory channel will not affect the system throughput.
Synchronization between the histogram generation system and
classification system are done by a simple 1-bit FIFO. When
the histogram output controller finished one scale, it writes
one 1-bit value into the FIFO to indicate data available for
classification. The classification input controller will read one
value out when finished a scale to prevent the FIFO full. The
histogram input controller will stop working when the 1-bit
FIFO is full (all memory allocated for histograms are used).

To allow maximum throughput for the FPGA execu-
tion, we pipelined the HOG-Engine execution at multiple
scales/frames. Specifically, after finished fetching pixels at
one size, input controller modules will immediately start
the next scale/frame, if available. The HOG-Engine operates
without knowing the size of the image. However, the histogram
generation module needs to know the beginning and ending of
each column and each row to combine the cell histograms to
block histogram and discard unused values as noted in Section
V-B. What’s more, since our HOG-Engine operates on two row
of cells, the last row will have only one module working if the
image has odd number of cell rows. Therefore, the histogram
input controller generates a four-bit position signal associated
with each pixel to let the core know which portion of image
it’s currently executing on. Two-bits indicate the beginning,
middle and end of a column and the other two bits used for
row. The same idea is also applied to the classification module
as the first four columns and last columns will not be sent to
all five SVM classifiers. By changing the ROMs containing
the image size information and the constant scale number in
the input and output controllers, our FPGA implementation
can be used for any image sizes and scale factors. As a result,
this design is highly scalable.

D. FPGA Resource Usage Comparison

In this section we report the area utilization and clock
frequency of the HOG-Engine. The data is shown in Figure
6 for fixed-point, 27 to 13 bits, and single-precision floating-
point. The resources usage does not include input and output
controllers that interface with external memory. FPGA re-
sources for our actual implementation including all functional
units will be discussed later. Percentage values are based on the
Xilinx Virtex-6 LX760 FPGA. Compared to floating-point, the
registers used for fix-13 are reduced by a factor of 3.0x, LUTs
by 6.6x, DSPs by 2.6, BRAMs by 2.2, and frequency increased
by 3.1x. The floating-point implementation is fully pipelined
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Fig. 6: HOG-Engine FPGA resource utilization and running
speed comparison. Percentage values are based on a Xilinx
Virtex-6 LX760 FPGAs. The number of 36kb BRAMs also
includes 18kb BRAMs. See text for detailed analysis.

with maximum number of pipeline stages applied to most
arithmetic operations (generated by Xilinx Core Generator),
except the adder at the histogram accumulation. Since the
design is fully pipelined, a new vote will be accumulated
to the existing bin value every clock cycle. Therefore, a
multiple staged floating-point adder can not be used, hence
negatively impacts the clock frequency in the floating-point
implementation.

VI. RESULTS AND DISCUSSIONS

In this section we evaluate our FPGA program performance
and provide a comparison between CPU, GPU, and FPGA. All
our tests are based on 640 × 480 images with a scale factor
of 1.05. To the best of our knowledge, this is the first densely
scanned detection window implementation of HOG algorithm
on FPGA. The window stride is four pixels for both directions.
Therefore, for each frame, there are 134 scales with window
stride of eight as noted in Section V-B.

A. FPGA Execution Speedup

As discussed in Section V-A, our FPGA implementation is
targeted on Convey HC-2ex computer. Each FPGA is running
at 150MHz clock with 16 64-bit memory channels at the same
frequency. Three instances of HOG-Engine are implemented
on a single FPGA taking all 16 memory channels. The com-
plete system resource utilization, including three HOG-Engine,
input/output controllers, and Convey wrapper, is shown in
Table V.

As the program is fully pipelined across different image
scales, the total execution speed is determined by the number
of memory accesses. We performed our experiments on the
Convey HC-2ex computer using a single FPGA by measuring
only the FPGA execution time. Memory copy time is not taken
into account since this latency can be hidden by pipelined
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TABLE V: HOG-Engine complete system resource utilization.
Three HOG-Engines are instantiated on a single FPGA using
all 16 memory channels.

Resources Registers LUTs 36Kb BRAMs DSPs
Percentage 22% 39% 53% 22%

TABLE VI: HOG detection throughput estimation for different
sized images. The throughput for image sizes other than 480×
640 are estimated based on the number of read requests in the
histogram generation module.

Resolution scales read requests Input Size (MB) det. wind. FPS
640 ∗ 480 34 6219520 12.6 121210 68.18
800 ∗ 600 38 9906944 20.0 211788 42.80
1024 ∗ 768 43 16742272 33.7 389186 25.33
1280 ∗ 960 48 25915328 52.1 637332 16.36
1600 ∗ 1200 52 40731520 81.8 1049886 10.41

execution. The experiment with single HOG-Engine indicates
the FPGA can process one image at all 34 scales in 44 ms.
With three HOG-Engines executing in parallel, we are able to
achieve an overall throughput of 68.2 fps on a single FPGA.

For floating-point implementation, only one engine can be
placed on a single FPGA with a reduced clock frequency
and requires eight input memory channels and four output
memory channels for each HOG-Engine. Thus, we estimate
its speed of 8.79 fps if under full memory bandwidth (see
Table VII, FPGA-fp). Hence, our fixed-point implementation
has increased the throughput of the FPGA execution by at
least 7.8x. Moreover, we project the speed of executing the
fixed-point HOG-Engine on all four FPGAs is 273 fps. In our
design, the magnitude and orientation array size of a single
image (34 scales) is 12.6 MB, and the size of FPGA output
array (final scores) for an image is 0.24 MB. Running at 273
fps requires 3.5 GB/s memory bandwidth which is well below
the bandwidth of 15.75 GB/s delivered by the 16x PCIe 3.0.

Based on our single FPGA execution speed, we also esti-
mated the speed for larger images by scaling the throughput
based on the number of memory accesses, as shown in Table
VI. The number of memory read requests are the input requests
for the histogram generation module. Since the design is
fully pipelined, the throughput is determined by the memory
bandwidth. This estimation can correctly predict the execution
speed for different image sizes. As seen in Table VI, when the
original image size increased by 1.2 times, the number of read
requests for the histogram generation grows by 1.6 times. This
significant growth is because more image scales are needed to
evaluate a single frame.

B. Speedup Comparison

To compare our FPGA implementation with other platforms,
we performed HOG pedestrian detection on CPU and GPU.
The CPU and GPU implementations are all in single-precision
floating-point, adapted from the commonly used OpenCV
library [9] to use the parameters that matches the FPGA
execution. CPU program is implemented in C++ and compiled
by G++ 4.3.6. The CPU platform has two Intel Xeon E5520
quad cores with 24 GB memory. The GPU used is the Nvidia

TABLE VII: HOG detection throughput comparison.

Platform Throughput (fps) Speedup
CPU 0.99 1.00

CPU-IPP 1.14 1.15
FPGA-fp1 8.79 8.86

GPU 13.40 13.50
one FPGA-fix13 68.18 68.69
four FPGA-fix13 272.73 274.77

TABLE VIII: HOG power consumption comparison.

Platform Frame/s Power (W) Joules/frame
CPU-IPP 1.14 80 70
FPGA-fp3 8.79 36 4

GPU 13.40 225 17
FPGA-fix13 68.18 37 0.54

Tesla K20 GPU attached to the same machine. We also
include the results of using Intel’s IPP library for CPU’s
multi-threading capability. All execution time are measured
corresponding to the portions that are implemented on FPGA.
In addition, for GPU execution, the memory transfer time
is not included. The throughput for all platforms is shown
in Table VII. The single FPGA version achieves a 68.7x
speedup compared to the single core CPU and a 5.1x speedup
compared to GPU. If all four FPGAs are used for execution,
we can further push the throughput to 273 fps with a 20x
speedup to GPU. As a result, our proposed HOG frame work
is suitable for applications that require large throughput and
high accuracy pedestrian detection.

C. Power Consumption Comparison

The power consumption estimation for the three platforms
is shown in Table VIII. We used the maximum Thermal
Design Power of Intel Xeon E5520 processor for the CPU.
For the GPU we have used the Nvidia Tesla K20 board power
since no individual chip power is available. FPGA power
consumption, both fixed-point and floating-point, are estimated
using Xilinx Power Estimator 14.3 with a 100% toggle rate
(assume all signals will flip every clock cycle). The floating-
point module has less power than the fixed-point version.
This is due to reduced clock frequency and less resources,
since floating-point version only has single-engine running at
significantly lower frequency. We compute the power divided
by throughput (energy consumption to process a single frame,
Joules/Frame) as a measure of power efficiency. Our fixed-
point implementation uses 130x less energy than CPU and
31x less energy than GPU to process a single frame.

VII. CONCLUSION

Object and person detections are computationally intensive
applications whose importance has been steadily growing. The
Histogram of Oriented Gradients (HOG), one of the most
popular detection algorithms, achieves a high detection ac-
curacy but delivers just under one frame-per-second (fps) on a
high-end CPU. All current fixed-point FPGA implementations

3FPGA-fp refers to the floating-point execution implemented on FPGA.
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use large bit-width to maintain detection accuracy, or perform
poorly with reduced data precision. In this paper we explore
the FPGA implementation of HOG using reduced bit-width
fixed-point representation to lessen the required area resources
on the FPGA, increase the clock frequency and hence the
throughput per device. We evaluate the detection accuracy of
the fixed-point HOG by the state-of-the-art computer vision
pedestrian detection evaluation metrics and show it performs
as well as the original floating-point code from OpenCV.
We then show our implementation achieves a 68.7x higher
throughput than a high-end CPU, 5.1x higher than a high-
end GPU, and 7.8x higher than the same implementation
using floating-point on the same FPGA. Power consumption
estimation shows that FPGA uses 130x less energy than
CPU and 31x less than GPU to process a single image.
The future work involves performance comparison of different
detection classifiers under reduced bit-width using the same
HOG feature.
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