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Abstract. The wide and increasing availability of collected data in the form of trajectory has lead to
research advances in behavioral aspects of the monitored subjects (e.g., wild animals, people, vehicles).
Using trajectory data harvested by devices, such as GPS, RFID and mobile devices, complex pattern
queries can be posed to select trajectories based on specific events of interest. In this paper, we present
a study on FPGA-based architectures processing complex patterns on streams of spatio-temporal data.
Complex patterns are described as regular expressions over a spatial alphabet that can be implicitly or
explicitly anchored to the time domain. More importantly, variables can be used to substantially enhance
the flexibility and expressive power of pattern queries. Here we explore the challenges in handling several
constructs of the assumed pattern query language, with a study on the trade-offs between expressiveness,
scalability and matching accuracy. We show an extensive performance evaluation where FPGA setups
outperform the current state-of-the-art CPU-based approaches by over three orders of magnitude. Unlike
software-based approaches, the performance of the proposed FPGA solution is only minimally affected
by the increased pattern complexity.

1 Introduction

Due to their relative ease of use, general purpose processors are commonly favored at the heart of many
computational platforms. These processors are deployed in environments with varying requirements, ranging
from personal electronics to game consoles, and up to server-grade machines. General purpose CPUs follow the
Von-Neumann model, which execute instructions sequentially. Nevertheless, in this model performance does
not always linearly scale in multi-processor environments, mostly due to the challenges of data sharing across
cores. As it is non-trivial for these CPUs to satisfy the increasing time-critical demands of several applications,
they are often coupled with application- or domain-specific parallel accelerators, such as Graphics Processing
Units (GPUs) and Field Programmable Gate Arrays (FPGAs), which strive given a certain class of instructions
and memory access patterns.

FPGAs consist of a fully configurable hardware platform, providing the flexibility of software (e.g., pro-
grammability) and the performance benefits of hardware (e.g., parallelism). The advantages on performance
of such platforms arise from the ability to execute thousands of parallel computations, relieving the appli-
cation at hand from the sequential limitations of software execution on Von-Neumann based platforms. The
processor “instructions” are now the logic functions processing the input data. Depending on the applica-
tion, one big advantage of FPGAs is the ability to process streaming data at wire speed, thus resulting in a
minimal memory footprint. The aforementioned advantages are shared with Application Specific Integrated
Circuits (ASIC). FPGAs, however, can be reconfigured and are more adaptable to changes in applications
and specifications, and hence exhibit a faster time to market. This comes at a slight cost in performance and
in area, where one functional circuit would run faster on a tailored ASIC and require fewer gates.

As traditional platforms are increasingly hitting limitations when processing large volumes of streaming
data, researchers are investigating FPGAs for database applications. Recent work has focused on the adoption
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Fig. 1. Generic overview of various steps performed in spatio-temporal querying setups.

of FPGAs for data stream processing in different scenarios. In [18] a stream filtering approach is presented
for XML documents. [30] investigated the speedup of the frequent item problem using FPGAs. In [33], the
FPGA is employed for complex event detection using regular expressions. [23] proposed a predicate-based
filtering on FPGAs where user profiles are expressed as a conjunctive set of boolean filters. [16] describes an
FPGA-based stream-mode decompression engine targeting Golomb-Rice encoded inverted indexes.

In this paper, we describe an FPGA-based setup allowing users to query spatio-temporal databases in a
very powerful and intuitive way. Figure 1 depicts a generic overview of the various steps performed in spatio-
temporal querying setups. Streams of trajectory data are harvested from devices, such as GPS and cellular
devices. Coordinates are then translated into semantic regions that partition the spatial domain; these regions
can be grid regions representing areas of interests (e.g., neighborhoods, school districts, cities). Our work is
based on the FlexTrack framework [31, 32], which allows users to query trajectory databases using flexible
patterns. A flexible pattern query is specified as a combination of sequential spatio-temporal predicates,
allowing the end user to search for specific parts of interests in trajectory databases. For example, the pattern
query “Find all taxi cabs (trajectories) that first were in downtown Munich in the morning, later passed by the
Olympiapark around noon, and then were closest to the Munich airport” provides a combination of temporal,
range and Nearest-Neighbor (NN) predicates that have to be satisfied in the specific order. Essentially, flexible
patterns cover that part of the query spectrum between the single spatio-temporal predicate queries, such
as the range predicate covering certain time instances of the trajectory life (e.g., “Find all trajectories that
passed by the Deutsches Museum area at 11pm”), and similarity/clustering based queries, such as extracting
similar movement patterns from a trajectories that cover the entire life span of the trajectory (e.g., “Find all
trajectories that are similar to a given query trajectory according to some similarity measure”).

Flexible pattern queries can also have “variable” spatial predicates, and thus substantially enhancing the
flexibility and expressive power of the FlexTrack framework. An example of a variable-enhanced query is
“Find all trajectories that started in a region, then visited the downtown Munich, then at some later point
returned to the first visited region”.

This work serves as a proof-of-concept on the performance benefits of evaluating flexible pattern queries
using FPGAs. Here we focus on the challenges of supporting hundreds (up to thousands) of variable-enhanced
flexible patterns on FPGAs in streaming (fully-pipelined) fashion. Using FPGAs all pattern query predicates
are evaluated in parallel over sequential streams of trajectories, hence resulting in over three orders of mag-
nitude speedup over CPU-based approaches. This performance property also holds even when compared to



CPU-based setups where the pre-processing of trajectories is performed beforehand using specialized indexes.
To the best of our knowledge, this work is the first detailing FPGA support for variable-enhanced flexible
pattern queries.

The remainder of this paper is organized as follows: related work is described in Section 2; the Flex-
Track query language is detailed in Section 3; the proposed FPGA-based querying architecture is detailed in
Section 4; the experimental evaluation is provided in Section 5; and the conclusions appear in Section 6.

2 Related Work

Single predicate queries (e.g., Range and NN queries) for trajectory data have been widely studied in the
past (e.g., [2, 20, 28]). In order to make the query evaluation process more efficient [8], trajectories are first
approximated using Minimum Bounding Regions (MBR) and then indexed using hierarchical spatiotemporal
indexing structures, like the MVR-tree [27] and TPR-tree [29]. However, these solutions are only efficient
to evaluate single predicate queries. For moving object data, patterns have been examined in the context of
query language and modeling issues [5, 14, 24], as well as query evaluation algorithms [7, 4, 19].

The FlexTrack system [31, 32], which our work is based on, provides a more general and powerful query
framework than previous approaches. In FlexTrack , queries can contain both fixed and variable regions, as
well as regular expression structures (e.g., repetitions, negations, optional structures) and explicit ordering of
the predicates along the temporal dimension. This system uses a hierarchical region alphabet, where the user
has the ability to define queries with finer alphabet granularity (zoom in) for the portions of greater interest,
and higher granularity (zoom out) elsewhere. In order to efficiently evaluate flexible pattern queries, FlexTrack
employs two lightweight index structures in the form of ordered lists in addition to the raw trajectory data.
Given these index structures four different algorithms for evaluating flexible pattern queries are available,
which are detailed in the next section.

The use of hardware platforms for pattern matching has been recently explored by many studies [26, 13,
12, 33]. Most of these works focus on deep packet inspection and security as applications of interest. Using
FPGAs, speedups of up to two orders of magnitude is achieved compared to CPU-based approaches, as every
data element in stream can be processed in a single hardware cycle. The works in [17, 15, 18] present a novel
dynamic programming, push down automata approach, using FPGAs and GPUs, for matching XML Path
and Twig patterns in XML documents. Using the massively parallel solution running on parallel platforms,
up to three orders of magnitude speedup was achieved versus state-of-the-art CPU bases approaches.

In [26] an NFA implementation of regular expressions on FPGAs is described. [13] proposes generating
hardware code from Perl Compatible Regular Expressions. The work in [12] focuses on DFA implementations
of regular expressions, while merging commonalities among multiple DFAs. [33] proposes the use of regular
expressions for the representation of spatio-temporal queries. An FPGA implementation is detailed, allowing
the sharing of query evaluation engines among several trajectories, with a minor impact on performance.
In [3], it is investigated the use of GPUs for the fast computation of proximity area views over streams of
spatio-temporal data. Our work mainly differs from all the above works from the perspective of the query
language, described in Section 3. Specifically, we describe an investigation of the FPGA-based support of
variable-enhanced patterns.

3 The FlexTrack System

We now provide a briefly description of the pattern query language syntax, as well as the key elements in the
FlexTrack framework (for more details, see [31, 32]).



3.1 Flexible Pattern Query Language

A trajectory Tid is defined as a list of locations collected for a specific moving object over an ordered sequence
of timestamps, and is stored as a sequence of n pairs {(ls1, ts1),. . . (lsn, tsn)}, where lsi ∈ Rd is the object
location recorded at timestamp tsi (tsi−1 < tsi).

The FlexTrack uses a set of non-overlapping regions Σl that are derived from partitioning the spatial
domain. Such regions correspond to areas of interest (e.g. school districts, airports) and form the alphabet
language Σ =

⋃
l Σl = {A,B,C, ...}. The FlexTrack query language defines a spatio-temporal predicate P by

a triplet 〈op,R[, t]〉, where R corresponds to a predefined spatial region in Σ or a variable in Γ (R ∈ {Σ∪Γ}),
op describes the topological relationship (e.g. meet, overlap, inside) that the trajectory and the spatial region
R must satisfy over the (optional) time interval t := (tfrom : tto) | ts | tr. A predefined spatial region is
explicitly specified by the user in the query predicate (e.g. “the downtown area of Munich’). In contrast, a
variable denotes an arbitrary region using the symbols in Γ = {@x,@y,@z, ...}. Conceptually, variables work
as placeholders for explicit spatial regions and can be bound to a specific region during the query evaluation.

The FlexTrack language defines a pattern query Q = (S [∪ D]) as a combination of a sequential pattern
S and an optional set of constraints D. A trajectory matches Q if it satisfies both S and D parts. The D
part of Q allows us to describe general constraints. For instance, constrains can be distance-based constraints
among the variables in S and the predefined regions in Σ. And S := S.S | P | !P | P# | ?+ | ?∗ corresponds
to a sequence of spatio-temporal predicates, while D represents a collection of constraints that may contain
regions defined in S. The wild-card ? is also considered a variable, however it refers to any region in Σ, and
not necessarily the same region if it occurs multiple times within a pattern S.

The use of the same set of variables in describing both the topological predicates and the numerical
conditions provides a very powerful language to query trajectories. To describe a query in FlexTrack , the
user can use fixed regions for the parts of the trajectory where the behavior should satisfy known (strict)
requirements, and variables for those sections where the exact behavior is not known but can be described
by variables and the constraints between them.

In addition to the query language defined previously, we introduce the variable region set constraint
defined in D. A region set constraint (e.g., {@x : A,D,E}) is optional per variable, and can be only applied
to variable predicates, having the purpose of limiting the region values that a given variable can take in Σ.

Consider the following query pattern and region set over @x, Q = (S = {A.B.@x.C.?+.@x}, D = {@x :
A,D,E}). Here, @x is constrained by the regions {A,D,E}. In practice, a variable can be limited to the
neighboring regions of the fixed query predicates. Other constraints can be set by the user, hence, limiting
the number of matches of interest. From a performance perspective, the use of variable region set constraints
greatly simplifies hardware support for variable predicates separated by wildcards ?+ or ?∗, as detailed in
Section 4.

3.2 Flexible Pattern Query Evaluation

The FlexTrack system employs two lightweight index structures in the form of ordered lists that are stored in
addition to the raw trajectory data. There is one region-list (R-list) per region in Σ, and one trajectory-list
(T-list) per trajectory in the database. The R-list LI of a given region I ∈ Σ acts as an inverted index that
contains all trajectories that passed by region I. Each entry in LI contains a trajectory identifier Tid, the
time interval (ts-entry:ts-exit ] during which the trajectory was inside I, and a pointer to the T-list of Tid.
Entries in a R-list are ordered first by Tid, and then by ts-entry.

In order to fast prune trajectories that do not satisfy pattern S the T-list is used. For each trajectory
Tid in the database, the T-list is its approximation represented by the regions it visited in the partitioning



space Σ. Each entry in the T-list of Tid contains the region and the time interval (ts-entry:ts-exit ] during
which this region was visited by Tid, ordered by ts-entry. In addition, entries in T-list maintain pointers to
the ts-entry part in the original trajectory data. With the above described index structures, there are four
different strategies for evaluating flexible pattern queries:

1. Index Join Pattern (IJP): this method is based on a merge join operation performed over the R-lists for
every fixed predicate in S. The IJP uses the R-lists for pruning and the T-lists for the variable binding.
This method is the one chosen as comparison to our proposed solution, since it usually achieves better
performance for a wide range of different types of queries;

2. Dynamic Programming Pattern (DPP): this method performs a subsequence matching between every
predicate in S (including variables) and the trajectory approximations stored as the T-lists. The DPP
uses mainly the T-lists for the subsequence matching and performs an intersection-based filtering with
the R-lists to find candidate trajectories based on the fixed predicates in S;

3. Extended-KMP (E-KMP): this method is similar to DPP, but uses the Knuth-Morris-Pratt algorithm [11]
to find subsequence matches between the trajectory representations and the query pattern;

4. Extended-NFA (E-NFA): this is an NFA-based approach to deal with all predicates of our proposed
language. This method also performs an intersection-based pruning on the R-lists to fast prune trajectories
that do not satisfy the fixed spatial predicates in S.

4 Proposed Hardware Solution

4.1 Compiling Queries to Hardware

In this work, pattern queries are evaluated in hardware on an FPGA device. As trajectories are compared
against hundreds, and potentially thousands, of pattern queries, manually developing custom hardware code
becomes an extremely tedious (and error prone) task. Unlike software querying platforms, where a single
(or set of) generic kernel can be used for the evaluation of any query pattern, hardware is at an advantage
when each query pattern is mapped to a customized circuit. Customized circuitry has the benefits of only
utilizing the needed resources out of all (limited) on-chip resources. Furthermore, the throughput of the query
evaluation engines is limited by the operational frequency (hardware clock) which can in-turn be optimized
to maximize performance.

For this purpose, a software tool written in C++ was developed from scratch (more than 6,500 lines of
code), taking as input a set of user-specified pattern queries Q, and automatically generating a customized
Hardware Description Language (HDL) circuit description (see Fig. 2). A set of compiler options can be
specified, such as the degree of matching accuracy (reducing/eliminating false positives), and whether to
make use of certain resource utilization (common prefix) and performance (clustering) optimizations.

Utilizing a query compiler provides the flexibility of software (ease of expression of queries from a user
perspective), and the performance of hardware platforms (higher throughput), while no compromises are
introduced.

4.2 High Level Architecture Overview

As depicted in Fig. 2, assuming an input stream of pairs 〈location, timestamp〉, the first step consists of
translating the location onto semantic data; specifically, the region-IDs are of interest, using which the query
patterns are expressed. The computational complexity of translating locations to regions depends on the
nature of the map, and are discussed below:



Fig. 2. Query-to-hardware tool flow.

1. Regions defined by a grid map: in this case, simple arithmetic operations are performed on the
locations. These can be performed at wire speed (no stalling) on an FPGA;

2. Polygon-shaped regions: in this case, there are several well-defined point-in-polygon algorithms and
their respective hardware implementations available (e.g., see [6, 9, 10, 25]). However, none of these can
operate at wire speed when the number of polygons is large. Here, the locations of vertices are stored off-
chip in carefully designed data structures. The latter are traversed to locate the minimal set of polygons
against which to test the presence of the locations.

As the design of an efficient location-to-region-ID block is orthogonal to pattern query matching, in this
work a grid map is assumed, and the location-to-region-ID conversion is abstracted away and computed
offline. The input stream to the FPGA consists of 〈region-ID, timestamp〉 pairs. A high level overview of the
generated FPGA-based architecture is depicted at the right-hand side of Fig. 2.

An event detector controller translates the 〈region-ID, timestamp〉 pairs to 〈region-ID, ts-entry, ts-exit〉
tuples. The latter are then passed to decoders which transform the region-ID into a one-hot signal, and
evaluate comparisons on entry and exit timestamps as needed by pattern queries. Making use of decoders
greatly reduces resource utilization on the FPGA, as computations are centralized and redundancies are
eliminated.

Next, a set of flexible pattern query evaluation engines are deployed, providing performance benefits
through the following two parallelization opportunities:

1. Inter-pattern parallelism: where the evaluation of all pattern queries is achieved in parallel. This
parallelism is available due to the embarrassingly parallel nature of the pattern matching problem;

2. Intra-pattern parallelism: where the match states of all nodes within a pattern are evaluated in
parallel.

The throughput of pattern query matching engines is limited to one event per cycle. Given the current
assumed streaming mechanism, events are less frequent than region-IDs.



(a) (b)

Fig. 3. (a) Query matching engines respective to the pattern query A.B.?∗.A, and (b) an event-by-event overview of
the matching of the query.

Lastly, once a trajectory is done being streamed into the FPGA, the match state of each pattern query is
stored in a separate buffer. This in turn allows the match states to be streamed out of the FPGA from the
buffer as a new trajectory is queried (streamed in), hence, exploiting one more parallelism opportunity.

A description of the hardware query matching engines follows. While the discussion focuses on predicate
evaluation, timing constraints are evaluated in a similar manner in the region-ID decoder, and are hence
left-out of the discussion for brevity.

4.3 Evaluating Patterns with No Variables

We now describe the case of pattern queries with no variables. This approach is borrowed from the NFA-based
regular expression evaluation as proposed in [13, 26]. Figure 3(a) depicts the matching engine respective to the
pattern query A.B.?∗.A, and Fig. 3(b) details the matching steps of that query given a stream of region-ID
events. Each query node is implemented as:

1. A one-bit buffer (implemented using a flip-flop, depicted in grey in Fig. 3(b)), indicating whether the
pattern has matched up to this node. All nodes are updated simultaneously, upon each region-ID event
detected at the input stream;

2. Logic preceding this buffer, to update the match state (buffer contents).

As each buffer indicates whether the pattern has matched up to that predicate, a query node can be in a
matched state if, and only if:

1. All previous (non-wildstars ?∗) predicates up to itself have matched. Wildstars are an exception since
they can be skipped by definition (zero or more). To perform this check, it suffices to check the match
state of the first previous non-wildstar node (see the node bypass in Fig. 3(a));

2. The current event (as noted by the region-ID decoder) relates to the region of that respective node. Wild-
cards are an exception, since by definition, they are not tied to a region-ID. Centralizing the comparisons
and making use of a decoder helps considerably reducing the FPGA resource utilization respective to this
inter-node logic (see the AND-gates in Fig. 3(a)). This is in contrast to reading the multi-bit encoded
region-ID and performing a comparison locally;

3. It is a wildstar/wildplus (?∗/?+), and it was in a match state at some point earlier. Wildstar and wildplus
are aggregation nodes that, once matched, will hold that match state (see the OR-gate prior to the ?∗

node in Fig. 3(a)).



(a) (b)

Fig. 4. Query matching engines respective to the pattern query A.@x.B.@x, (a) without and (b) with a region set
constraint {C,D,E} on @x. To handle variables in hardware, the first instance of a given variable in a query forwards,
alongside the incoming match state, (a) the event detector’s output encoded (multi-bit) region-ID, and (b) a one-hot
signal consisting of bits respective to each region in the set of the variable. Every later instance of that variable in the
query (here, the last query node) would match the event detector’s ((a) encoded, and (b) multiple decoded) region-ID
to the forwarded region-ID. If these match, then the region-ID is again forwarded, and the variable instance indicates
a matched state.

Looking closer at Fig. 3(b), each cell reflects the match state of a query node. All cells in a column are
updated in parallel upon an event at the input stream. A ‘1’ in a cell indicates that the query has matched
up to that node; for a query to be marked as matched, a ‘1’ should propagate from the first node (top row) to
the last node (bottom row). As wildstar (and wildplus) nodes act as aggregators, they hold a matched state
once activated; hence, a ‘1’ can propagate “horizontally” only at wildstar (and wildplus) nodes. Grey cell
contents indicate matched states that did not contribute to the detected matched query state in red color,
but could contribute to later matches. The ‘1’ depicted in red color in Fig. 3(b) indicates that the query was
detected in the input stream.

4.4 Evaluating Patterns with Variables and without Wildstar/Wildplus Predicates

Supporting variables in pattern query matching requires an added level of memory saving. The basic rule of
variables is that all instances of a given variable need to match the same region-ID for a variable to be in a
match state. When no aggregator nodes ?+/?∗ are used, the distance between these two region-IDs occurring
is the number of nodes between the variable instances in the query.

One possible way for software systems to handle this would be to store, at each variable node (in a matched
state), all the region-IDs encountered throughout the stream. A post-processing step would carefully intersect,
for each variable, all stored region-IDs vectors. While that is a valid approach, storing region-IDs for each
variable node of each pattern query is problematic as streams are longer. Furthermore, this is not needed
unless aggregator nodes ?+/?∗ occur in between variable occurrences; these cases are detailed in Sections 4.5
and 4.6. As FPGAs allow the deploying of custom matching engines for each pattern, matching pattern queries
at streaming (no-stall) mode can be achieved here, with no post processing.

To handle variables in hardware, the first instance of a given variable in a pattern query forwards the
event detector’s output encoded (multi-bit) region-ID alongside the incoming match state (see the second
node in Fig. 4(a)). Some cycles later (depending on the location of variable instances in the pattern), every
instance of that variable in the query would match the event detector’s region-ID to the forwarded region-ID.
If these match, then the region-ID is again forwarded, and the variable instance indicates a matched state.
Stated in other terms, at a variable node (instance) in a query, a match state is indicated if the current region
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Fig. 5. (a) Query matching engine respective to the pattern query A.@x.B.@x {@x : C,D,E}, such that the variable
region set constraint is implemented as a “relaxed” OR. This relaxation helps save considerable hardware resources
(compare to Fig. 4(b)). (b) An event-by-event overview of the matching of the query resulting in a false positive, due
to the OR-based implementation of the variable region set constraint.

was encountered earlier (given a fixed implied distance), and all match state propagation checks in between
were valid (implying the distance).

Note that an encoded region-ID is used since it is smaller in bit size than a decoded ID, and any region can
potentially satisfy the pattern query variable (i.e., variables are essentially a subset of wildcards). Also note
that non-variable predicates buffer the forwarded region-ID, though no manipulation of the latter is required.
Additionally, one set of region-ID buffers is required per variable, starting from the first occurrence of that
variable.

The same solution is applicable to pattern queries containing variables with region sets. Figure 4(b) shows
the matching logic for the pattern A.@x.B.@x where @x is constrained by the regions {C,D,E}. Here, instead
of storing the encoded region-ID in the variable buffers, the latter would hold, for each region in the set, a
single bit. At the first occurrence of a variable, the buffer holds a one-hot vector, because input stream events
are relative to one region only. Upon later instances of that variable, AND-ing the incoming region set buffer
with specific bits of the region-ID decoder output will help indicating for which regions (if any) the pattern
matches.

The above approach is similar to replicating the matching engine for each region in the variable region set
constraint. For instance, the query in Fig. 4(b) can be seen as three queries, namely A.C.B.C, A.D.B.D and
A.E.B.E. However, the above approach offers much better scalability when multiple variables are used per
pattern: replicating the pattern for each combination of variable regions would result in an exponential increase
in resource utilization versus employing the aforementioned style of propagating buffers. Another advantage
of the propagating region set variable buffers, when dealing with wildstar/wildplus pattern predicates, is
described in the following.

We now describe an alternative “relaxed” implementation of the variable region set constraint, with
the goal of saving considerable hardware resources, though at the expense of introducing false positives.
Instead of keeping a propagating buffer holding information on each region in the set, the match state
can be updated if any of the regions in the set are decoded using a simple OR-gate. Figure 5(a) depicts
the gate-level implementation of the query A.@x.B.@x {@x : C,D,E}, such that the variable region set
constraint is implemented as an OR. Thus, history keeping is minimized, as no exact region information is
kept per variable. While this mechanism introduces false positives (as described in Fig. 5(b)), the latter can be
tolerable depending on the application. Otherwise, a post-processing software step can be performed only on
the patterns marked as matched by the FPGA hardware. This approach, however, helps fitting substantially
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Fig. 6. Event-by-event matching of the pattern query @x.@y.?+.@x.@y {@x : A,B,C,D} {@y : A,B,C,D}. The
resulting match in (a) is a false positive; whereas enough state is saved in (b) at the aggregator node (?+) to eliminate
that false positive.

more query engines on the FPGA, a benefit accentuated as the number of variables and the variable region
sets’ size increase.

4.5 Evaluating Patterns with a Single Variable and with Wildstar/Wildplus Predicates

The remainder of this discussion is applicable to both wildplus and wildstar query nodes. As detailed earlier
(Fig. 3(a)), wildplus nodes act as aggregator nodes. When no variables are used, the only propagating
information across nodes is a single bit value. In that case, a simple OR gate would suffice for aggregation
(state saving).

When a wildplus predicate is located in between two instances of a variable, all values of the region-ID
buffer should be stored, and forwarded to the next stages (nodes). Keeping that history is required in order to
not result in false negatives. However, due to performance and resource utilization constraints, storing all that
history is not desired. Using variable region set constraints, this limitation can be overcome by simply OR-ing
the propagating buffer similarly to the match state buffer. This approach would store the information needed,
and no history is lost. No false positives are generated, thus pattern evaluation is achieved at streaming mode.

4.6 Evaluating Patterns with Multiple Variables and with Wildstar/Wildplus Predicates

When more than one variable predicate is used in a pattern query, and with wildplus nodes in between
instances of both these variables, the previous mechanism can lead to false positve matches, as even more state
should be saved than discussed earlier. Figure 6(a) shows an event-by-event example of a pattern matching
resulting in a false positive match. Each cell in the grid holds the values stored inside each respective variable
buffer. Buffers for the variable @x are used at each pattern node, whereas buffers for the variable @y span
from the second pattern node (i.e. the first @y node), up to the last pattern node.

As described earlier, the wildplus node is the only node in the pattern query allowing horizontal prop-
agation of matched states. This is due to the nature of wildplus nodes which hold a matched state. As the
variable buffers are OR-ed at that wildplus node, they will store the information of the union of all variable



buffers encountered at that node. Looking at the ?+ row in Figure 6(a), notice that the variable buffers for
both @x and @y hold an increasing number of regions. That level of stored information is not sufficient, as
it will be shortly shown to result in a false positive.

Upon the D event, both variable buffers did not propagate to the second instance of @x. That is because
the @x variable buffer does not reflect that the previous instance of @x held the value of D (yet). However,
on the next event A, the variable buffers propagated, and the @x variable buffer was masked with the event
region. Hence, B was removed from the @x variable buffer. The @y variable buffer remains unmodified, since
the @x node is not allowed to modify it.

Finally, at the last event C, focusing at the second instance of @y (i.e. the last pattern predicate), a match
is shown for @x=A and @y=C. While @x and @y did hold these values at some point, looking closer at the
input stream, A and C were initially separated by B, though the query requires that the distance between
@x and @y is 1 (back-to-back regions visited).

In order to not result in false positives, the level of history kept at the aggregator node has to be increased.
Instead of only storing the union of all variable buffers, the information at the wildplus node should be the
set of all variable buffers encountered. To reduce storage, that solution can be simplified such that, for each
@x variable value, a list of all corresponding @y values are stored (as shown in Fig. 6(b)). Focusing on the
aggregator row, every value of @x is associated with a list of @y values. These can be deduced from the
propagating variable buffers into the wildplus node. Note that @x=A is associated with @y=B. Therefore,
the tuple @x=A, @y=C cannot result in a match, as is the case in Fig. 6(a).

Nonetheless, implementing this solution in hardware is extremely costly in terms of resource utilization
(and impact on the critical path/performance), especially with larger region sets and many variables per
pattern. Furthermore, this solution does not scale with many variables, and does not hold with more aggregator
nodes.

Another approach to eliminate false positives in such cases is a brute-force implementation of each query
using all variable region-set combinations. For instance, the query S = @x.@y.?+.@x.@y {@x : A,B}{@y :
C,D} can be implemented as four simpler queries, namely:

1. S1 = A.C.?+.A.C
2. S2 = A.D.?+.A.D
3. S3 = B.C.?+.B.C
4. S4 = B.D.?+.B.D

This approach is encouraging when the number of variables and the size of the region sets is relatively
small. Otherwise, the implied resource utilization increases too much, even though each query is built using
simple matching engines (no propagating variable buffers). Nonetheless, the common prefix (among similar
pattern queries) optimization helps with the scalability.

In order to better evaluate the benefits of each of the above approach, a study on the resulting false
positives versus resource utilization is performed in Section 5. In summary, when pattern queries make use
of two or more variables, and with an aggregator node in between the occurrences of these variables, the
proposed approaches are:

1. Making use of propagating variable buffers: this approach results in the least false positives;
2. Implementing region set constraints as an OR: the number of false positives here is a superset

of the above case, and resource utilization is minimal. False positives are a superset, since the condition
(OR check) to allow a match to propagate through a variable node is a superset of the first approach’s
variable node conditions (propagating buffers);

3. A brute-force mapping approach: this approach map each query as the combination of all variable
region-sets. It has no false positives, but does not scale well with more variables and larger region sets.



5 Experimental Evaluation

We now present an extensive experimental evaluation of the proposed hardware architecture. We first describe
the datasets used in the experiments, followed by the experimental setup. We then detail a thorough design
space exploration on the proposed architecture, alongside a study on matching accuracy. Finally, we show the
performance evaluation between the proposed architecture solutions with the CPU-based software approach.

5.1 Dataset Description

In our experimental evaluation, we use four real trajectory datasets. The first two datasets are the Trucks
and Buses from [1]. Both datasets represent moving objects in the metropolitan area of Athens, Greece. The
Trucks dataset has 276 trajectories of 50 trucks where the longest trajectory timestamp is 13,540 time units.
The Buses dataset has 145 trajectories of school buses with maximum timestamp 992. The third dataset,
CabsSF, consists of GPS coordinates of 483 taxi cabs operating in the San Francisco area [22] collected over a
period of almost a month. The fourth dataset, GeoLife, contains GPS trajectory data generated from people
that participated in the GeoLife project [34] during a period of over three years. This dataset has 17,621
trajectories with a total distance of about 1.2 million kilometers and duration of more than 48,000 hours.

5.2 Experiments Setup

For simplicity of the experimental evaluation, we partition the spatial domain in uniform grid sizes. These
grid cells become the alphabet for our pattern queries. In order to generate relevant pattern queries for each
dataset, we randomly sample and fragment the original trajectories using a custom trajectory query generator.
The length and location of each fragment are randomly chosen. These fragments are then concatenated to
create a pattern query. We generate up to 2,048 pattern queries with different number of predicates, variables,
and wildcards. The location of each variable and wildcard inside the query are randomly chosen.

Our FPGA platform consists of a Pico M-501 board connected to an Intel Xeon processor via 8 lanes of
PCI-e Gen. 2 [21]. We make use of one Xilinx Virtex 6 FPGA LX240T, a low to mid-size FPGA relative
to modern standards. The PCIe hardware interface and software drivers are provided as part of the Pico
framework. The hardware engines communicate with the input and output PCIe interfaces through one
stream each way, with dual-clock BRAM FIFOs in between our logic and the interfaces. Hence, the clock
of the filtering engine is independent of the global clock. The PCIe interfaces incur an overhead of ≈8% of
available FPGA resources.

The RAM on the FPGA board is not residing in the same virtual address space of the CPU RAM. Data is
streamed from the CPU RAM to the FPGA. Since the proposed solution does not require memory offloading,
RAM on the FPGA board is not used. Xilinx ISE 14 is used for synthesis and place-and-route. Default settings
are set.

5.3 Design Space Exploration

Here we discuss the resource utilization and achievable performance (throughput) of the hardware engines.
Figure 7(a) shows the resource utilization, and Fig. 7(b) shows the respective frequencies of the hardware
engines, such that the number of queries (varying from 32, 64, 128, ... up to 2,048 queries), the query length
(4 and 8 predicates), and number of variables in a pattern query (0 and 1 variable, in this last case a variable
with a region set of 5 regions is assumed).



(a) (b)

Fig. 7. (a) Resource utilization and (b) respective frequencies/throughput of the hardware engines, such that the
number of queries is doubled, the query length is doubled, and variable predicate is present or not in the pattern
query.

As the query compiler applies the common prefix optimization, and further resource sharing techniques
are exercised by the synthesis/place-and-route tools, resource utilization does not double as the number of
queries is doubled. Rather, a penalty of approximately 70% occurs.

Similarly, as the query length is doubled, an average increase of 80% in resources is found. However, adding
one variable to each query results in, on average, doubling resource utilization. Note that the propagating
buffer approach is employed for variable matching, and that these buffers propagate from the first occurrence
of the variable to the last.

Overall, up to several thousands of query matching engines can fit on the target Xilinx V6LX240T FPGA,
a mid- to low-size FPGA. While these numbers address the scalability of the proposed matching engines,
Fig. 7(b) details the respective achievable performance in terms of:

1. Operational frequency (MHz): measured as a function of the critical path, i.e., the longest wire
connection of the FPGA circuit. This number is obtained post the place-and-route process of the FPGA
tools;

2. Throughput (GB/s): as the query matching engines process one 〈region-ID, timestamp〉 pair per hard-
ware cycle, the FPGA throughput can be deduced from the circuit’s operational frequency, given that
the size of each input pair is 8 Bytes (2 integers). Nonetheless, this computed throughput is respective to
the FPGA circuitry, and might not reflect the end-to-end (CPU-FPGA and back) performance, which is
platform dependent. The end-to-end measurements are discussed in the sequence.

As the number of queries increases, frequency/throughput is initially around the 250MHz/2GBs mark.
Fluctuations are due to the heuristic-based nature of the FPGA tools, though generally a trend is deduced.
As the number of queries becomes too large, frequency drops considerably for queries with variables. The drop
is not as steep for queries with no variables; the reason being that queries with variables can be thought of
as longer queries (due to the propagating buffers). This drop in frequency occurs because of the large fan-out
from the region-ID decoder to the many sinks, being the query nodes and propagating buffers.



Fig. 8. Scalability of the each of the following three implementations of 100 queries of length 6 holding variables:
variable as OR, propagating buffer, and all combinations.

Replicating the region-ID decoder (and event detector) helps reducing fan-out, and will potentially elimi-
nate it. Each region-ID decoder is then connected to a set of queries. We refer to a region-ID decoder and its
connected queries as a cluster. Note that each query belongs to exactly one cluster. The query compiler is
developed to take as input parameter the cluster size, as a function of query nodes. Thorough experimentation
shows that clusters need not hold less than 1,024 or even 512 query nodes (data omitted due to lack of space).
Larger clusters result in performance deterioration; smaller clusters do not offer any benefits in performance,
rather present an increase in resource utilization (due to the replication of the region-ID decoder and event
detector per cluster).

5.4 Query Engine Implementations and False Positives

As described in previous sections, a query holding variables can be evaluated in one of three ways, namely:

1. Variable as OR: implementing the region set constraints as ORs (resulting in most false positives);
2. Propagating buffer: making use of propagating buffers (false positives arise only when using multiple

variables alongside wildstar/wildplus nodes);
3. All combinations: brute-force mapping of each query as the combination of all variable region sets (no

false positives).

Figure 8 illustrates the resource utilization of 100 queries of length 6 holding variables, implemented in
each of the aforementioned three approaches. The varied factors are the number of variables in each pattern
query, and the respective region set size.

When implementing a variable as OR, each variable node is replaced with a simpler OR node. Thus, as
expected (see Fig. 8), increasing the number of variables has almost no effect on resource utilization. The
same applies to increasing the region set size. On the other hand, the propagating buffer technique starts off
as utilizing slightly less than double the resources of the variable as the OR approach. Furthermore, doubling
the region set size results in a 50% area penalty. Doubling the number of variables per pattern query exhibits
similar behavior.



Fig. 9. Matching accuracy (100-false positives %) for each implementation of 100 long queries, over three datasets,
namely Trucks, Buses and CabsSF.

Finally, when transforming a query into a set of queries based on all combinations of the region sets,
resource utilization starts off as more than double that of the propagating buffer technique. Doubling the
number of variables naturally has a steeper effect than doubling the region set size on resource utilization.
Note that the common prefix optimization helps with the scalability of this approach. Nonetheless, when
using two variables with region set size of 15, the resulting circuitry did not fit on the FPGA. Practically, it
is best to make use of this approach for critical pattern queries where false positives are not tolerated.

We now evaluate the number of false positive matches for each of the three query engine implementations
previously discussed. In this experiment, as shown in Fig. 9, the matching accuracy (100-false positives %) is
recorded for each implementation of 100 long queries, over three datasets, namely Trucks, Buses and CabsSF
(the results for the GeoLife dataset follow the same pattern). Queries are generated using our query generator
tool, where each query contains two variables, as well as one or more aggregator (?∗/?+) nodes. Note that
the Propagating buffers approach does not result in any false positives, unless multiple variables are used
alongside aggregators.

As expected by its design, the All combinations approach results in no false positives. However, while the
Variable as OR technique results in the most false positives (as expected), the matching accuracy varies from
high (93.2%), to somewhat low (48.8%). On the other hand, matching accuracy is close to perfect (> 99.8%)
for the Propagating buffers implementation, even as false positives increase as a result of the Variable as OR
implementation. No false positives are recorded on the Trucks dataset when making use of the propagating
buffers.

While the mileage of the Variable as OR implementation may vary, its scalability is key. Even when false
positives are not tolerable, query matching engines can employ this technique, where the FPGA would be
used as a pre-processing step with the goal of reducing the query set. The same applies for the propagating
buffers implementation technique, where the query set would be reduced the most. Since the performance of
CPU-based software approaches scales linearly with the number of pattern queries, reducing the query set
has desirable advantages, especially that the time required for this pre-processing FPGA step is negligible.

5.5 Performance Evaluation

In the last set of experiments, we compare the performance evaluation between our proposed architecture
solutions and the CPU-based software approach. Figure 10 shows the end-to-end (CPU-RAM to FPGA and
back) throughput of length 4 queries with 1 variable. Throughput is lower from the FPGA filtering core for



Fig. 10. End-to-end (CPU-RAM to FPGA and back) throughput of queries of length 4 with 1 variable. The throughput
of the FPGA filtering core is drawn in red line.

smaller trajectory files since steady state is not reached, and communication setup penalty is not hidden. For
larger files, throughput is closer to the FPGA core’s, given the physical limitations. Note that the throughput
of the FPGA setup is independent of the trajectory file contents, as well as query structure (given a certain
operational circuit frequency).

Figure 11 depicts the FlexTrack (software) IJP throughput (MB/s) resulting from matching for 2,048
queries with varying properties on the Fig. 11(a) Trucks and Fig. 11(b) GeoLife datasets. Pre-processing
(index building) time is excluded. When considering simple queries, throughput is initially higher for the
larger dataset (GeoLife), where processing steady-state is reached. Increasing query complexity (adding vari-
ables/wildcards) greatly decreases throughput. Note that where the FPGA end-to-end execution time is in
the milliseconds range, software operates in the tens of seconds (up to several minutes) range, and is greatly
affected by the query structure and dataset contents; hence the considerable speedup (over three orders of
magnitude) and benefits of the FPGA setup. It should be noted that the proposed FPGA solution does not
result in false positive matches for any of the queries considered in Fig. 11.

6 Conclusions

The wide and increasing availability of collected data in the form of trajectory has lead to research advances
in behavioral aspects of the monitored subjects. Using trajectory data harvested by devices, such as GPS,
RFID, and mobile devices, complex pattern queries can be posed to select trajectories based on specific
events of interest. However, as the complexity of the posed pattern queries increases, so do computational
requirements, which are not easily met using traditional CPU-based software platforms.

In this paper, we present the first proof-of-concept study on FPGA-based architectures for matching
variable-enhanced complex patterns, with a focus on stream-mode (single pass) filtering. We describe a tool
for automatically generating hardware constructs using a set of pattern queries, abstracting away ramifications
of hardware code development and deployment. A thorough design space exploration of the hardware archi-
tectures shows that the proposed solution offers good scalability, fitting thousands of pattern query matching
engines on a Xilinx V6LX240T FPGA, a mid- to low-size FPGA. Increasing the number of variables and
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Fig. 11. FlexTrack (software) IJP throughput (MB/s) resulting from matching for 2,048 queries with varying prop-
erties on the (a) Trucks and (b) GeoLife datasets. Increasing query complexity (adding variables/wildcards) greatly
decreases throughput.

wildcards is shown to have linear effect on the resulting circuit size, and negligible on performance. This
behavior does not happen in CPU-based solutions, since performance is greatly affected from such pattern
query characteristics.

When handling pattern queries with (a) no variables, (b) one variable, or (c) no wildcards with two or
more variables, the proposed hardware architecture is able to process the trajectory data in a single pass.
When two or more variables occur in a pattern query alongside wildcards, the proposed solution may have
the drawback of resulting in false positive matches (though these are minimal in practice). Nonetheless, a
no-false-positive solution is proposed, though being limited in scalability.

As part of our future research, we are working on enhancing the proposed framework to allow online
pattern query updates. In this way, the deployed generic pattern query engines will support any pattern
query structure and node values. A stream of bits forwarded to the FPGA will program the connections
between deployed pattern query nodes. It should be noticed that this approach is different to the Dynamic
Partial Reconfiguration (DPR), where the bit configuration of the FPGA itself is updated.
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24. M. A. Sakr and R. H. Güting. Spatiotemporal Pattern Queries in Secondo. In Proc. Int’l Symp. on Advances in

Spatial and Temporal Databases (SSTD), pages 422–426. Springer, 2009.
25. J. Schmittler, S. Woop, D. Wagner, W. J. Paul, and P. Slusallek. Realtime Ray Tracing of Dynamic Scenes on an

FPGA Chip. In Proc. ACM Conf. on Graphics Hardware (HWWS), pages 95–106, 2004.
26. R. Sidhu and V. K. Prasanna. Fast Regular Expression Matching Using FPGAs. In Proc. the Annual IEEE Symp.

on Field-Programmable Custom Computing Machines (FCCM), pages 227–238, 2001.
27. Y. Tao and D. Papadias. MV3R-Tree: A Spatio-Temporal Access Method for Timestamp and Interval Queries.

In Proc. Intl. Conf. on Very Large Data Bases (VLDB), pages 431–440, 2001.
28. Y. Tao, D. Papadias, and Q. Shen. Continuous Nearest Neighbor Search. In Proc. Intl. Conf. on Very Large Data

Bases (VLDB), pages 287–298, 2002.
29. Y. Tao, D. Papadias, and J. Sun. The TPR*-Tree: An Optimized Spatio-Temporal Access Method for Predictive

Queries. In Proc. Intl. Conf. on Very Large Data Bases (VLDB), pages 790–801, 2003.
30. J. Teubner, R. Müller, and G. Alonso. FPGA Acceleration for the Frequent Item Problem. In Proc. IEEE Int’l

Conf. on Data Engineering (ICDE), pages 669–680, 2010.
31. M. R. Vieira, P. Bakalov, and V. J. Tsotras. Querying Trajectories Using Flexible Patterns. In Proc. Int. Conf.

on Extending Database Technology (EDBT), pages 406–417, 2010.
32. M. R. Vieira, P. Bakalov, and V. J. Tsotras. FlexTrack: a System for Querying Flexible Patterns in Trajectory

Databases. In Proc. Int’l Symp. on Advances in Spatial and Temporal Databases (SSTD), pages 475–480, 2011.
33. L. Woods, J. Teubner, and G. Alonso. Complex Event Detection at Wire Speed with FPGAs. Proc. VLDB

Endow., 3(1-2):660–669, 2010.
34. Y. Zheng, X. Xie, and W.-Y. Ma. GeoLife: A Collaborative Social Networking Service Among User, Location and

Trajectory. IEEE Data Engineering Bulletin, 33(2):32–40, 2010.


