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Abstract—Hardware supported multithreading can mask
memory latency by switching the execution to ready threads,
which is particularly effective on irregular applications. FPGAs
provide an opportunity to have multithreaded data paths cus-
tomized toeach individual application. In this paper we describe
the compiler generation of these hardware structures from a C
subset targeting a Convey HC-2ex machine. We describe how this
compilation approach differs from other C to HDL compilers. We
use the compiler to generate a multithreaded sparse matrix vector
multiplication kernel and compare its performance to existing
FPGA, and highly optimized software implementations.

I. INTRODUCTION

Because of their poor spatial and temporal locality, irregu-
lar applications pose a serious challenge to high performance
computing: long memory latencies defeat any potential gains
from a parallel execution. Hardware supported multithreading,
as in the MTA architecture [1], can mask memory latency by
switching to ready threads and without relying on a cache
memory architecture. The rapid context switching between
independent threads increases the concurrency which is, by
Little’s Law, the product of bandwidth and latency.

In FPGA-based code accelerators a frequently executed
code segment, a loop nest, is expressed as a hardware data
path through which data values are streamed. By customizing
the data path to that specific application, these structures
have been shown to achieve very large speedup. The vast
majority of applications benefiting from FPGA acceleration
have been of regular nature, most of them relying on streaming
data. Two common features of such applications are high
spatial (streaming data) and temporal (sliding window) locality.
Most of the C to HDL tools that have been developed to
generate FPGA accelerators, from high-level languages, (such
as ImpulseC [2], ROCCC [3], etc.) specifically target such
applications.

Irregular applications exhibit very poor locality and hence
would not be ideal candidates for FPGA acceleration. How-
ever, a multithreaded data path can be implemented on an
FPGA with a data path customized to each specific application.
Such an execution achieves a high level of efficiency, through
the customization of the data path, as well as a high level of
parallelism, through the masking of latency. In this paper we
describe the implementation of a new tool whose objective
is to generate multithreaded data path on FPGAs from C for
irregular applications.

The main contributions of this paper are:

• A taxonomy of irregular applications and the con-
straints they pose on the compiler.

• A compiler implementation generating multithreaded
data paths that support irregular applications with
dynamic workloads; to our knowledge the first such
compiler.

• Demonstration of the compiler using sparse matrix
vector multiplication (SpMV).

• An experimental evaluation of the compiler on the
Convey HC-2ex.

The rest of this paper is organized as follows: Section II
provides background information on multithreaded architec-
tures, irregular applications, and SpMV. Section III shows the
related work. Section IV is a discussion on how irregular ap-
plications with dynamic workloads can be compiled from C to
VHDL. An explanation of how a SpMV kernel is compiled is
given in Section V to show the compilers applicability. Section
VI describes a series of experiments and results including a
comparison to current FPGA, and Software designs. Finally
conclusions are given in Section VII.

II. BACKGROUND

A. Multithreaded Architectures

Graph and sparse linear algebra algorithms are two ex-
amples of a growing category of irregular applications that
exhibit very poor or no spatial or temporal locality and hence
cannot benefit from modern cache architectures. Multithreaded
architectures offers an alternative paradigm for improving their
performance.

Among the early multithreaded architecture designs is the
Horizon architecture [4] which used 256 custom processors
connected to global memory. Studies showed an average of
50 to 80 clock cycles for a memory access, but most all
of the requests could be fulfilled within 128 cycles. With
this knowledge the Horizon’s custom processors were built
to support 128 concurrent threads, and could context switch
in one cycle. Whenever a thread made a memory request the
latency could be masked by having the processors handle other
ready threads.

In the 1990s the Tera Corporation, later Cray, developed
such a design as a commercial machine. The Tera MTA
[1], [5], [6] again had 256 processors all sharing 64 GB
of memory organized as a distributed NUMA architecture
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connected to the processors via a sparsely populated regular
topoly interconnection network. To lower network traffic it
forced instruction requests through a shared cache. Processors
ran at 220 MHz, and could issue one memory request per
cycle. A later design, the Cray XMT [7] machine, increased
the number of supported processing cores to 8192, and the
clock frequency to 500 MHz.

B. Sparse Matrix Vector Multiplication

Because of its poor locality, Sparse Matrix Vector multi-
plication (SpMV) is a memory bound application exhibiting a
low Flop/Byte ratio. Its performance depends on architectures
continually suppling their cores or accelerators with relevant
matrix and vector data. Multiple storage formats were de-
veloped to improve cache and memory performance. Some
of the more common include: coordinate (COO), compressed
sparse row/column (CSR / CSC), and ELLPACK. COO uses
three arrays to store only the non-zero elements (NZEs). One
array holds the sparse array elements values, another holds
their row positions, and the last holds the column positions.
CSR and CSC improve the memory utilization by compressing
either the row or column array. Using CSR as an example, the
column, and value arrays are sorted by row number, and all
elements from one row are kept adjacent to each other. The
row array is compressed and points only to the start position
of each row, which reduces the overall memory utilization.
ELLPACK was developed for vector machines. It zero pads
rows to improve memory accesses, but it is done at the cost
of extra computations and storage. Other formats have been
explored and tested. We point the interested reader to [8] for
further details.

SpMVs importance has created many customized ap-
proaches for software architectures and GPUs. Software op-
timizations like blocking a matrix at the thread, register and
cache levels, or pipelining, or prefetching were explored in
[9]. These optimizations were done for five architectures: two
AMD, and one Intel out-of-order superscalar architecture, the
Sun Niagra2, and the IBM STI Cell machine. The performance
of different sparse matrix formats on GPUs is explored in [10].
The impact of memory structures, such as texture memory,
played in GPU performance is evaluated. [11] used the ELL
format to block row lengths, which allowed tuning of threads
for individual GPUs.

III. RELATED WORK

A. Hardware Compilers, and Tools

A number of High Level Synthesis (HLS) tools have been
designed aimed at compiling high-level languages (HLLs),
such as C/C++, to hardware description languages (HDLs),
such as VHDL, Verilog, SystemC or SystemVerilog. Their
objective being to bridge the semantic gap between HLLs and
HDLs and make the development of FPGA-based accelerators
more accessible to traditionally teained application developers.

HLS compilers such as Impulse C [2], ROCCC [14], and
AutoPilot (later Vivado) [12], [15]) work with a subset of C
to create custom IP accelerators. These tools do not specify a
full system, but assist in creating the individual components of
a RTL design. Catapult C [13] supports most C++ syntax and

constructs (pointers, classes, templates) when generating cus-
tom cores. HLS tools do not need to use established languages.
Bluespec [16] uses SystemVerilog to describe hardware at a
level above typical HDL languages.

ROCCC [3] is a C to VHDL compiler that targets streaming
(regular) applications that can analyzed and for which it gen-
erate optimized data paths. It attempts to minimize a kernels
outgoing memory requests, minimize its area, and maximize
its clock frequency. Developers write the kernel in C and the
compiler applies optimizations at two levels each with its own
intermediate representation (IR); Hi-CIRRF and Lo-CIRRF
[17]. Hi-CIRRF identifies FPGA components, which will be
needed during execution. It marks and inserts these into the IR
as C macros. Its also responsible for duplicating the kernels
logic, depending on user specifications, for parallel execution,
such as loop unrollng. Lo-CIRRF generates a data flow graph
(DFG) as another IR, which becomes the kernels data path.
Control systems are built around the DFG to manage execution
flow and memory requests.

The CHAT [18], [19] compiler uses the same underlying
tools as ROCCC for Hi-CIRRF and Lo-CIRRF compilation,
but it targets irregular applications. Initially, it focused on
irregular kernels with a deterministic number of threads, and
each thread has a deterministic workload. In this work we
extend these capabilities to kernels where the workload is non-
deterministic.

B. SpMV on FPGA

Current FPGA architectures are ideally suited for applica-
tions with streaming data. One approach is to locally store the
vector and stream in the sparse matrix data. While modern
high-end FPGAs have large on-chip memories in the form of
BlockRAM (BRAM) [20] these are not sufficient for storing
large data structures as required by HPC applications. The
FPGA used in this work, the Xilinx Virtex6 LX760, has
about 26 MBits of BRAM on-chip. However, all the BRAM
space is not available for the user application, some is used
for interfacing to memory and other support functions. As
heterogeneous architectures, such as the Convey HC-1/HC-2
[27], become widely available, research is shifting toward end-
to-end implementations. In [28] a SpMV personality is develop
for a HC-1. In the design all matrix and vector data is stored
in global memory which the FPGA accesses through multiple
channels. The design caches memory requests locally in case
data needs to be reused, but SpMV can be very irregular. The
paper reports performance results that are up to 40% of the
HC-1’s peak. Their design uses 32 individual engines which
can produce a peak of 9.6 Gflop/sec.

Substantial work, in implementing sparse matrix operations
on FPGAs, has focused on the floating-point Multiply Accu-
mulate (MAc) engine. Since that engine is heavily pipelined,
to achieve a high clock rate, it presents a challenge when an
unknown number of values must accumulated. Some of the
more common designs are outlined here. Adder tree structures
[21], [22] with a feedback loops are used to handle multiple
row elements in one cycle. Here the number of non-zero
elements within the row must be larger than the number of
channels into the adder tree. If this is not the case zero padding
is typically used to adapt the row size. Other approaches are



Fig. 1. A taxonomy of irregular applications where the number of threads
and the workload size are deterministic or not.

based on statically assigning partial dot-products to multiple
processing engines [23], [24]. A control unit is used to manage
the communication, and ensure proper execution. Here MAcs
may be limited by the number of matrix rows they can manage,
typically one or two rows at a time. However, in [25] multiple
MAcs are routed onto one FPGA which allows support for
more rows in parallel. Research in [26] lead to an accumulation
reduction circuit that can handle an arbitrary number of rows.
A control unit arbitrates the data flow between the floating-
point addition unit and temporary buffers.

IV. COMPILER DESIGN

This section describes the CHAT compiler’s design. It
provides a taxonomy for parallel irregular applications. The
compiler’s semantics for non-deterministic workloads is dis-
cussed, and data path construction for irregular applications
with dynamic workloads is explained.

A. A Taxonomy of Irregular Applications

The CHAT compiler builds multithreaded kernels for par-
allelizable irregular applications. These parallel irregular ap-
plications can be further classified by the hardware structures
needed for execution. Four classes are proposed as shown in
Figure 1. Classes are based on whether or not the number
of threads, and the number of memory requests per thread
(workload) are determinable.

Applications with a deterministic number of threads are
compiled to reduce, or eliminate redundant execution. Appli-
cations with a non-deterministic number of threads need FPGA
constructs to prevent redundancy. Consider breadth first search.
During graph traversal nodes A and B could both point to node
C. Without synchronization two threads could be generated to
processes node C. Performance would decrease exponentially
as each thread then generates more redundant threads.

Applications with a deterministic workload, number of
memory requests per thread, can assign threads in round robin
fashion to Processing Elements (PEs). Applications with non-
deterministic workloads can have variable memory requests.
Stalls could occur with round-robin assignment because of

(a) Thread with a static workload

(b) Thread with a dynamic workload

Fig. 2. Compilable FPGA kernels with static and dynamic workloads. The
highlighted region shows a threads workload.

unbalanced threads. A Thread Management Unit (TMU), local
to the FPGA, can ensure a balanced execution by dynamically
assigning threads as PEs become available. This paper explores
the compilation of custom TMUs for FPGA kernels.

B. Compiler Syntax

In CHAT a for-loop supports a subset of its traditional C
functionality. The loop has a very strict purpose, which is to
define how data streams (array) will be accessed. CHAT only
supports one loop index per for-loop declaration. However,
once declared these indices can be read freely in the loop body.
Nested for-loops are supported for more complex kernels.

The structure for kennels with static workloads is shown
in Figure 2(a). Multiple variables can be used to route logic
through the data path, but all logic must be defined within the
innermost for-loop’s body. As shown, variables a and b are
indices to the out data stream, but they could also be used
to index other streams. Both a and b must start at a static
position and go to a variable position, which must be set before
the execution begins. Because this variable cannot change, all
threads will have the same workload though they may have
different data.

The new compiler semantics support kernel constructs for
dynamic workloads. Kernel logic can be defined outside the
innermost for-loop, and it removes restrictions on a inner
for-loop’s initialization and condition sections as shown in
Figure 2(b). Threads can support dynamic workloads because
a loop’s start and end conditions can change during execution.
A thread’s body is defined by the lowest for-loop with static
start and end conditions at runtime. In Figure 2(b) a threads
workload is defined by the outermost for-loop’s body.

C. Data Path Construction

To support threads with dynamic workloads the compiler
must generate additional FPGA constructs. For this purpose a
Thread Management Unit (TMU) is introduced, and the data
path is broken into two parts; thread management, and pro-
cessing. Both are custom generated by the compiler for each



Fig. 3. Compressed Sparse Row (CSR) format for sparse matrix representa-
tion with three arrays.

kernel. The TMU maintains threads needing to be processed
and dispatches them to aPE. A PE can handle multiple threads
in parallel, which ensures enough request are generated to
mask long memory latencies. A PE manages the states for
all threads that are assigned to it. Once a thread completes the
PE sends its output back to the TMU. The TMU then sends
the output on to global memory and removes the thread.

Parallelism can be improved by increasing the number of
generated PEs, which is tunable to individual architectures by
way of compiler arguments. While the number of PEs can be
increased there is one TMU generated. The TMU creates the
start and end conditions for a thread and dynamically assigns
it to an available PE. This maintains a balanced execution. A
Thread with a disproportionally large workload will occupy
one PE while the other PEs handle multiple threads. Because
the workload can be unbalanced the kernel does not guarantee
in-order thread completion. Each PEs hold a busy flag high to
prevent additionnal threads from being assigned. When all PEs
are busy the TMU backloads threads to quickly assign them
later.

Identification of kernels with dynamic workloads is done
during the compiler’s Hi-CIRRF pass. The compiler uses a
for-loop’s initialization, and condition section to make this
determination. Consider the inner loop from Figure 2(b). It
is initialized with values from stream C, and its condition is
dependent upon stream D. When this happens the compiler
inserts a TMU macro into the IR and links it to streams C

and D. Lo-CIRRF takes the macro and build a custom TMU
for the kernel.

V. MULTITHREADED SPMV EXAMPLE

As a proof of concept we use the compiler to generate a
custom multithreaded FPGA Sparse Matrix Vector multipli-
cation (SpMV) kernel targeting a Convey HC-2ex machine.
In this section we outline the sparse matrix data structure
used.,one method a kernel developer could use to write the
FPGA’s SpMV code, how the code is compiled to an FPGA
circuit, and how each of the FPGA components interact. This
section also outlines how the TMU creates and manages
threads. This section concludes with how the kernel is inte-
grated into the HC-2ex.

Fig. 4. The source code used to generate a custom multithreaded SpMV
kernel.

A. Compressed Sparse Row

Multiple matrix formats can be used to store sparse ma-
trices to memory, and each has its tradeoffs. Compressed
Sparse Row (CSR) is a very common representation used
by both FPGA and software developers. The format stores
only relevant matrix information in memory, which limits the
unnecessary work done by accelerators and processors. The
main draw for CSR is that independent, and hence parallel,
threads can be easily identified and generated.

Figure 3 shows a matrix stored in CSR format. All the
matrice’s non-zero elements are kept in the V alue array.
Another array, of the same size, is used to store the column
positions of the values: the Column array. A one-to-one
relationship exists between data points with matching index
positions. CSR requires a unique data arrangement for both
these arrays. All elements corresponding to the same row must
be adjacent to each other, and the elements for row i must come
before elements for row i+ 1. It is not required for elements
within a row to be sorted by their column values. The third
array in CSR, called the RowPtr array, is used to delineate the
row elements. Each value in this array represents the starting
position of a row. Two adjacent values can be used by a thread
to request and processes all elements within a single row of
the matrix.

B. SpMV Kernel Code

Sample code for a SpMV kernel is shown in Figure 4. This
is, line for line, the code used by the compiler. All arrays are
treated as streams of data into the FPGA. Most (row, val,
col) are accessed in a streaming (regular) fashion. The vec

array is accessed by the col array and as such is treated as
an irregular accesses. Thread workloads are determined by the
row stream with the two adjacent elements giving start and
end positions. Threads are issued in order, but they are not
required to have the same workload size. Thus the out array
can write to memory out-of-order. The kernel writes whenever
a thread finishes. The designer can unroll the outer for-loop to
generate multiple PEs yielding higher parallelism.

C. Convey HC-2ex

Convey Computers [27] built the first heterogeneous FPGA
machines with a shared cache coherent virtual memory space
between software (CPU execution) and hardware (FPGA ex-
ecution). The base HC machines, HC-1 and HC-2, use four
Virtex-5 LX330 FPGAs as coprocessors while the HC-1ex and



Fig. 5. Each PE is assigned a thread. It requests the necessary data (Column,
Vector, and Value) from global memory. Returned data values are pushed
through the multiply pipeline, and summation unit.

HC-2ex machines use four Virtex-6 LX760 FPGAs. The main
draw is the shared global memory space [29], [30]. Memory
allocated by the host processor can be directly accessed by the
FPGA. Memory space is divided between the CPU processors,
and the FPGA coprocessor, and performance could depend
on where the memory is allocated. With 128 GB per region,
its large enough that the CPUs can setup new jobs while the
FPGA finishes processing others. A coprocessor has four large
FPGAs, which are called Application Engines (AEs). Each
AE interfaces to eight Memory Controllers (MCs) via a full
crossbar, which supports memory request reordering. Each MC
has 2 ports (identified as even or odd) that can read or write
eight bytes per cycle at 150 MHz [31]. Thus each AE has 16
memory ports which deliver a peak bandwidth of 19.2 GB/s.
The coprocessor’s peak bandwidth is about 80 GB/s.

D. Processing Element

The bulk of the SpMV’s work is done by the processing
element (PEs). These engines operate independently and the
number of PEs is limited by the resources available to the
FPGA. Each thread assigned to a PE will generate one output,
which is the sum-of-products for the row. One thread is
generated for each matrix row, and it holds the start and end
position for the memory requests. As requests are fulfilled the
data is sent to a summation unit which produces the final sum-
of-products. One PE can manage the requesting, multiplying,
and summing of multiple threads (rows) concurrently.

The major components of a PE are shown in Figure 5. Each
PE must manages the memory requests to the column, value,
and vector arrays. The Convey architecture supports the in-
order return of all memory requests. The reordering is done by
a crossbar that interfaces the HC-2ex’s FPGAs to the memory
modules. Because memory is returned in-order the kernel can
use FIFO buffers to store data.

When assigned a new thread the PE will raise a busy flag

Fig. 6. Thread Management Unit: the output write data and row requests
are combined into one memory channel. A control unit handles the conflicts
when multiple resources need to use the channel.

and incrementally request memory locations from the column
and value arrays. When all the requests for that thread have
been issued, the flag is lowered and a new thread is assigned to
the PE. This is done even though all the data of the prior thread
has not yet been returned. Workloads are balanced across PEs
because they do not accept new threads until all requests
are issued. FIFO buffers within each PE are large enough to
support the outstanding memory requests. As memory returns
the data for the column array it is used to generate the memory
requests for the vector array. The data returned for the value
array is held in buffer until the corresponding vector request
is fulfilled.

As data is returned from memory it is buffered in the Value
and Vector FIFOs with its thread id. For this kernel a thread id
is the row’s index. The summation unit uses the thread ids to
manage concurrent threads. As reported in Section III-B SpMV
reductions circuits have been widely studied. Our compiler
uses a circuit similar to the one described in [26]. It handles
multiple rows concurrently, and can read a new element every
cycle. However, the circuit assumes data for one row is sent,
in its entirety, before another row begins. This assumption
holds for the kernel and Convey HC-2ex architecture. This
reduction circuit is only needed if the kernel is compiled for
floating point operations, which require multiple cycles for
each multiplication-addition.

E. Thread Management

The Convey HC-2ex has 4 Virtex 6 LX760 FPGAs, called
application engines (AEs). Figure 7 shows the SpMV kernel
layout for one HC-2ex AE. The design can be replicated to
all four AEs at runtime. Each AE has 16 memory channels,
and each PE requires 3 memory channels; for the column,
value, and vector requests. Memory channels are the designs
bottleneck, which is limited to 5 PEs per AE.

Control registers in the AE specify the number of threads
(rows) needed by the SpMV kernel. The registers also specify



Fig. 7. The MT-FPGA architecture on one AE. Control signals specify the number of jobs (length), and the base addresses of the sparse matrix arrays. All
memory channels of the AE are utilized.

the base addresses for all streams used by the kernel. These
values can be assigned unique values when multiple AEs are
used. Each AE can processes a subset of the overall matrix.

One thread management unit (TMU) communicates with
the 5 PEs. It creates thread workloads with values from the row
pointer array as described in Section V-A. Access to the row
pointer incurs the same memory latency as all other requests.
The TMU buffers threads when all PEs are busy. Assignment
is done dynamically in round robin fashion.

As PE threads complete the output value is buffered by
the TMU until it can be written back to global memory. The
TMU manages 5 out streams (one per PE) as well as the row

stream. Reads and writes to these two streams are infrequent,
occurring once per thread, compared to the column, value,
and vector streams. The TMU uses one memory channel, and
interleaves its read and write requests as shown in Figure 6.
Read and write request conflicts are resolved by a control unit
in favor of the write data, which prevents a deadlock.

F. FPGA Implementation

Integrating a kernel into the HC-2ex requires all memory
requests to communicate with Convey’s memory interface.
Designs are placed and routed varying the number of kernel
PEs. Area utilization (including the wrapper) for a single
AE is shown in Table I. The design uses only one third of
the available slices and BRAMs because it is limited by the
memory channels. As discussed in the above each PE requires
3 channels, and the TMU interleaves its requests though the
remaining channel.

TABLE I. FPGA UTILIZATION WHEN VARYING THE NUMBER OF PES.

PE(s) Slices (118,560) BRAMs (720)
1 25,788 (21%) 107 (14%)
2 29,040 (24%) 133 (18%)
3 32,638 (27%) 179 (24%)
4 36,520 (30%) 209 (29%)
5 39,395 (33%) 239 (33%)

VI. EXPERIMENTAL RESULTS

In this section we describe our experimental methodology,
and report results for the compiled multithread FPGA kernel

Fig. 8. Sustained Gflop/s on a dense matrix as function of the number of
non-zero elements.

Fig. 9. Sustained Gflop/s (bar) and sustained % of memory throughput (line),
on a 2K x 2K dense matrix, as the number of PEs is increased.

(MT-FPGA) on a Convey HC-2ex. Experiments consider scala-
bility, and throughput. MT-FPGA is compared to a cache based
FPGA kernel, and optimized multicore CPU implementations.

A. Experimental Setup

Chosen benchmarks are taken from the University of
Florida Sparse Matrix Collection [32]. Table II outlines the
relevant information about each matrix: its dimension, the
number of non-zero elements, the ratio of non-zero elements
to the row size, the sustained performance (DP Gflop/s) and



TABLE II. CHARACTERISTICS OF THE BENCHMARKS MATRICES USED AND THE ACHIEVED PERFORMANCE ON THE MT-FPGA.

Sparse Matrix Application Domain Rows non-zero nnz/row DP Gflop/s % of Peak
Dense n/a 2,000 4,000,000 2,000 4.34 72%
dw8192 Electromagnetic 8,192 41,746 5.10 1.73 28%
epb1 Thermal 14,734 95,053 6.45 2.50 41%
raefsky1 Fluid Dynamics 3,242 294,276 90.77 3.32 55%
psmigr 2 Economics 3,140 540,022 171.98 2.66 44%
scircuit Motorola circuit 170,998 958,936 5.61 2.20 36%
torso2 2D model of a torso 115,967 1,033,473 8.91 3.38 56%
mac econ fwd500 Macroeconomic Model 206,500 1,273,389 6.17 2.30 38%
cop20k A Accelerator cavity design 121,192 1,362,087 11.24 0.60 10%
cant FEM cantilever 62,451 2,034,917 32.58 3.64 60%
mc2depi Markov Model 525,825 2,100,225 3.99 2.00 33%
pdb1HYS 1HYS Protein Bank 36,417 2,190,591 60.15 3.43 57%
consph FEM spheres 83,334 3,046,907 36.56 3.68 61%
nd25k 2D / 3D problem 72,000 14,393,817 199.91 3.27 54%
cage15 Directed Graph 5,154,859 99,199,551 19.24 3.61 60%
Average 2.89 48%

the efficiency (% of Peak) are for the MT-FPGA architecture.
Benchmarks are chosen for direct comparisons with the results
reported by other approaches [28], [9]. Extra benchmarks are
included, nd25k and cage15, to evaluate our approach on
very large matrices. Matrices vary in size from 41 thousand
to nearly 100 million non-zero elements (NNZ). Irregularity
within a matrix varies from a few non-zero elements per
row to hundreds of non-zero elements per row. The ”Dense”
benchmark is a dense matrix stored in the CSR format. We use
it in Section VI-B to eliminate spurious performance behavior
during our baseline measurements. By using a dense matrix we
remove all irregularity from the benchmark and it is considered
a reference point when measuring the sustained throughput.

Performance is reported as Double Precision (DP)
GFLOPS/s1 using all 20 PEs on all four AEs. Each PE is
capable of two floating-point operations per cycle, with 20 PEs
at 150 MHz the peak rate is 6 Gflop/s. Efficiency is reported
as the % of peak performance achieved.

(2 ⇤ nnz � nrows)/(execution time) (1)

(2 ⇤ nnz)/(execution time) (2)

When computing the FLOPs/s in this paper we use Equa-
tion 1. All non-zero elements in the matrix must be multiplied
by a vector element; nnz multiplications. Each row must sum
all these products;, hence nnz � nrows additions. However,
Equation 2 is used by some papers to report throughput. Any
results using Equation 2 throughout this paper will be explicitly
stated.

B. Sustained Throughput

The MT-FPGA is designed to scale to large problem sizes
that require a large number of memory requests, which can
be used to mask latency. Early stages of the execution will
be dominated by memory requests until the kernel’s TMU can
buffer extra threads. This startup cost will be aggregated over
the execution time, and its effect will be lessened with larger
matrices. However, this cost can negatively effect smaller
matrices. To determine a ”large enough” matrix we run a series

1In the rest of the paper all references to floating-point operations are in
double precision.

Fig. 10. DP Gflop/s comparison of the cache based design in [28] and the
MT-FPGA architecture. Since the benchmarks used in [28] were small, we
repeat the execution to achieve close to 1 million non-zero elements.

Fig. 11. Efficiency comparison of the cache based design in [28] and MT-
FPGA architecture. The design in [28] uses 32 PEs across all FPGAs compared
to the 20 for the MT-FPGA.

of test with dense matrices stored in CSR format. By using
dense matrices irregularity during execution or in the memory
system can be eliminated, which yields a more accurate startup
cost estimate. All tests fully utilize the Convey HC-2ex; 20
PEs across all 4 AEs. Matrices vary in size from 10 thousand
non-zero elements (NZEs) to 5.76 million NZEs. Results are
shown in Figure 8. Sustained throughput quickly approaches
4 GFLOPs/s with 1 million NZEs, and then it slowly rises to



a peak of 4.5 GFLOPs/s. Overall MT-FPGA sustains 75% of
its peak throughput. Based on these results 1 million NZEs is
the point where matrices are ”large enough” to be unaffected
by the startup costs.

To study how well MT-FPGA scales and how well the
memory system copes with a large number of memory re-
quests, we run a series of test varying the number of PEs.
Starting with a single AE the number of engines is increased
from one to five, and once full the number of AEs is increased
up to four. All tests use a dense 4 million element (2000 x
2000) matrix. The results are shown in Figure 9. The bar chart
reports the sustained GFLOPs/s, and the red line reports the
percentage of peak throughput sustained. The efficiency with
a small number of engines is very close to optimal, which
suggests the number of memory requests is not high enough
to saturate the memory. However, it slowly drops to 80% as
one AE is filled with five PEs. The design scales linearly from
one (5 PEs) to three AEs (15 PEs), but drops again slightly
with the fourth AE. These results shows that MT-FPGA will
scale well at 80% efficiency so long as the memory system
can handle the requests.

C. MT-FPGA vs. FPGA caching

The compiled MT-FPGA kernel is compared to the FPGA
architecture described in [28]. Both use Convey machines
with the same memory system. Peak memory bandwidth (80
GB/s), and clock frequency (150 MHz) are identical. The only
difference is with the FPGA used. [28] use a Convey HC-1
(Virtex 5 LX330), and MT-FPGA uses a larger HC-2ex (Virtex
6 LX760). SpMV is a memory bound application, and both
FPGAs offer sufficient size for their designs.

MT-FPGA uses memory masking to fully utilize the mem-
ory bandwidth. [28] takes a different approach, which relies on
caching matrix and vector data locally to the FPGA. Caches
are structured, with efficient line sizes, for an equal number
of reads to each of the memory’s SGDIMMs. Vector caches
are maintained for each processing element (PE), and a matrix
cache is shared across all PEs within an AE.

Throughput comparisons are done with the matrices chosen
in [28]. However, these matrices were typically small. Only 2
were larger than 500 thousand NZEs, and only one of those
was above 1 million NZEs. Because of this two sets of tests
were run for MT-FPGA. The first test measured throughput
on a single execution of the matrix. The second test did
repeated executions to compensate for the smaller sizes. The
number of runs were repeated until the number of NZEs was
above 1 million elements. For example the dw8192 matrix has
41,746 NZEs. It was run 24 times resulting in 1,001,904 NZEs.
Figure 10 reports the throughput comparison results. Results
are copied directly in [28] which used Equation 2. For equal
comparison MT-FPGA results use the same equation and are
slightly higher than those reported in Table II.

When executing a matrix one time MT-FPGA averages a
higher throughput across all benchmarks, and with multiple
runs MT-FPGA delivers a higher throughput for all but one
benchmark. The exception is psmigr 2, which is more densely
packed than the other matrices and benefits more from caching.
Because our approach targets large matrices we consider
torso2 case (the only one above 1 million elements) most

telling. Here performance drops dramatically for the caching
architecture while MT-FPGA sustains 3.4 Gflop/s of 56.7% of
peak.

MT-FPGA achieves better performance with fewer PEs (20
compared to 32 in [28]), which results in much higher effi-
ciency. Measurements are shown in Figure 11. Peak throughput
for MT-FPGA is 6 GFLOPs/s while the caching approach
peaks at 9.6 GFLOPS/s. MT-FPGA’s results for the single
execution case average 47%, and its results for repeated exe-
cution average 55%. The best performing benchmark for [28]
achieves 41% efficiency, and the average for all benchmarks
is 27%.

D. MT-FPGA vs. Multicore

In this section we compare the performance of MT-FPGA
with the multicore architectures reported in [9]. Table III
reports important architecture information about the multicore
machines. Before running the experiments MT-FPGA was not
expected to outperform the multicore architectures, but results
are included for comparative purposes. The goal for this paper
is compiling custom multithreaded FPGA kernels, and the
focus was not strictly on performance. However, the multicore
machines targeted performance, and were customized for each
architecture. They run at much higher clock frequencies (GHz
compared to a FPGA’s MHz), and have more dedicated hard-
ware. However, MT-FPGA did fair well with the multicore
architectures. It beat a few CPUs in raw throughput, and
offered comparable throughput to most of the others.

This was achieved in spite of the CPUs being highly
optimized. Software optimizations are done at three levels.
The first set of optimizations targets kernel parallelization.
Execution threads are blocked to ensure an evenly distributed
workload. In the NUMA and Cell architectures threads are
statically assigned to minimize communication. The second set
of optimizations target the kernel’s data structures. The sparse
matrix vectors, and the result vector are blocked according
to the cache line. To reduce memory requirements register
blocking is used where adjacent non-zero elements are joined
together into one set of coordinates. Heuristics are used to
improve processing time. Matrices with less than 64K columns
use 16 bit indexes instead of 32, or 64 bits. Finally low-level
kernel optimizations are considered. A custom kernel is used
for each architecture. The Cell processor’s kernel uses software
pipelining to mask the instruction latency, and it also uses
branchless execution. Explicit software prefetching is used in
the out-of-order processors. Other common loop optimizations
are also performed.

Sustained throughput is shown in Figure 12. MT-FPGA
achieves an average throughput higher than the AMD Santa
Rosa and Intel Clovertown CPUs. Its throughput is comparable
to the AMD Barcelona and the Sun Niagara 2, but could only
sustain about half the throughput of the STI Cell machine.
However, with the high clock frequency and dedicated hard-
ware those machines sustain a small fraction of their overall
throughput. Peak throughput for the multicore machines re-
neges from 17.6 to 74.7 GFLOPs/s while the FPGA peaks at
only 6 GFLOPs/s. Figure 13 shows the percentage of peak
performance each machine achieves. MT-FPGA’s efficiency
is over 30% in seven of the eight benchmarks, over 50% in



TABLE III. ARCHITECTURE SPECIFICATIONS FOR THE CPUS AND GPU COMPARED TO IN THIS PAPER.

Architecture Cores (Sockets) Clock (GHz) Peak (DP GFLOPS/s)
AMD - Opteron2214 (Santa Rosa) 4 (2) 2.2 17.6
AMD - Opteron 2356 (Barcelona) 8 (2) 2.3 73.6
Intel - Xeon E5345 (Clovertown) 8 (2) 2.3 74.7
Sun - Niagara 2 16 (2) 1.16 18.7
STI - Cell QS20 16 (2) 3.2 29

Fig. 12. Sustained throughput (DP Gflop/s) for multicores CPUs, and MT-FPGA.

Fig. 13. Efficiency (reported as % of peak) for multicores CPUs, and MT-FPGA.

four and averages 48%. The highest efficiencies are achieved
by the STI Cell and the Sun Niagara with averages between
15% and 25% which are less than half that of MT-FPGA.
As heterogeneous FPGA architectures, which are in their
infancy, improve the efficiency may or may not change, but
the throughput potential likely will.

VII. CONCLUSION

The multithreaded execution model, by rapidly switching
to ready threads, allows the masking of long memory latencies.
It can achieve a high degree of concurrency, equal to the
product of the memory latency and the number of outstanding
memory requests. For irregular applications that suffer from
very poor spatial and temporal locality, this model can alleviate
the impact of memory latency while increasing parallelism.

FPGAs provide an opportunity to customize a data path
to each individual computation hence achieving a higher
efficiency, albeit at a lower clock speed. Traditionally, FPGA-
based accelerators have been used for highly regular streaming
applications.

In this paper we presented a compiler that generates
customized multithreaded data paths on FPGAs for irregular
applications with dynamic workloads. We outline how a thread
management unit is created, and how it dynamically balances
threads across multiple processing elements. Results show that
multithreading as a FPGA paradigm is valid for irregular
applications. Using a Sparse Matrix Vector multiplication as a
proof of concept, we show the MT-FPGA kernel outperformed
a cache based FPGA kernel in both overall throughput and ef-
ficiency. Compared to highly optimized multicore architectures
the MT-FPGA kernel has higher or comparable throughput to
four tested architectures, and about half the throughput of the
STI Cell architecture. However, efficiency is more than double
that of the closest multicore architecture. The multithreaded
design scales to very large matrices. On matrices over 3
million non-zero elements it achieved 50% efficiency and over
3 GFLOPs/s throughput for each. However, performance is
limited by startup costs on matrices smaller than one million
elements.
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