
String Matching in Hardware using the FM-Index

Edward Fernandez, Walid Najjar and Stefano Lonardi

Department of Computer Science & Engineering

University of California Riverside

Riverside, CA

Abstract—String matching is a ubiquitous problem that arises in
a wide range of applications in computing, e.g., packet routing,
intrusion detection, web querying, and genome analysis. Due to
its importance, dozens of algorithms and several data structures
have been developed over the years. A recent breakthrough in
this field is the FM-index, a data structure that synergistically
combines the Burrows-Wheeler transform and the suffix array.
In software, the FM-index allows searching (exact and
approximate) in times comparable to the fastest known indices
for large texts (suffix trees and suffix arrays), but has the
additional advantage of being more space-efficient than those
approaches. In this paper, we describe the first FPGA-based
hardware implementation of the FM-index for exact pattern
matching. We report experimental results on the problem of
mapping short DNA sequences to a reference genome. We show
that the throughput of the FM-index is significantly higher than
the naïve (brute force) approach. Like the Bowtie software tool,
the FM-index can abandon early the hardware matching. It
outperforms Bowtie by two orders of magnitude∗.

I. INTRODUCTION

String matching is the problem of searching for patterns in a

long text. It is a ubiquitous problem with a wide variety of

applications: in network routing, prefixes of incoming packets

are matched to a routing table to determine the next

destination; in intrusion detection, signatures of known

network attacks are matched to incoming packets to prevent

malware from entering the system; in web querying, set of

keywords entered by users have to be matched against million

of webpages; in personal genomics, short patterns obtained

from sequencing instruments have to be matched to the

reference human genome.

Due to the importance of the matching problem, dozen of

algorithms and several data structures have been developed

since the seventies. Some of the algorithms are based on finite

automata, for instance, the Aho-Corasick algorithm [16] or the

Knuth-Morris-Pratt algorithm [17]. Other methods preprocess

the text and build indices (e.g., hash tables or search trees) to

allow faster searching. A recent breakthrough in this field is the

FM-index, which is a compressed index that combines the

properties of the suffix array [2] with the Burrows-Wheeler

transform [1]. Software tools using this index are two orders of

magnitude faster than tools relying on conventional indices like

hash tables and variations thereof.

∗
 This work has been supported in part by NSF Awards 0905509 and

0811416.

The Burrows-Wheeler transform (BWT) was initially

introduced for data compression [1]. This invertible transform

itself does not compress the text; instead it rearranges the order

of the symbols to a form that is much easier to compress with

classical encoders. The popular compression software bzip2

found on Linux/MacOS systems is based on the BWT. Years

after the seminal paper [1] was published, evidence of the

equivalence between the BWT and the suffix array [2] opened

the road to the development of the FM-index [3,4].

The FM-index is an index that contains the BWT of the text

to be searched in the form of a set of numerical arrays. The

index allows searching for a pattern using binary search (in

logarithmic time) instead of a linear time scan. Not only the

FM-index enables string matching (exact and approximate) in

times comparable to the best known indices for large texts

(suffix trees and suffix arrays), but it has the additional

advantage of being extremely space-efficient. To the best of

our knowledge, the FM-index has been used only in the

bioinformatics domain. Software tools such as Bowtie [12],

BWA [13], and SOAP2 [14] have shown to be one to two

orders of magnitude faster than older tools using classical

indices like hash tables.

In this paper, we present the first FPGA-based hardware

implementation of the FM-index. In [8] the authors describe

the implementation of the BWT on an FPGA, i.e. given a text

how to get its BWT in hardware. Our focus in this paper is the

searching for a pattern on the BWT of a text. We obtain the

BWT of a text in software and load it in memory on the FPGA.

We then perform the search using our hardware

implementation. The architecture is implemented on an FPGA

using BRAMs as storage units. We compared the performance

of our hardware implementation of the FM-index to a highly

optimized hardware implementation of the naïve (brute force)

approach. We synthesized both methods on a Xilinx Virtex 6

LX760, and exhausted all of the available resources on the

FPGA. We defined the throughput as the number of character

comparisons per second. Experimental results show that the

FM-index has significantly higher throughput than the brute

force. This measure of throughput does not, however, entirely

reflect the real speed of the FM-index. Since the FM-index can

abandon matching a pattern as soon as a mismatch is detected

(our pipelined implementation of the naïve method cannot do

this), the FM-index is expected to be a lot faster in an end-to-

end application. We also compared our FPGA implementation

of the FM-index to the software too Bowtie [12]. We show a

two orders of magnitude speed-up when early abandon is

accounted for.

The paper is organized as follows. In Section 2 we

introduce data structures of the BWT. In Section 3 we describe

IEEE International Symposium on Field-Programmable Custom Computing Machines

978-0-7695-4301-7 2011
U.S. Government Work Not Protected by U.S. Copyright
DOI 10.1109/FCCM.2011.55

218

carrying out string matching using the FM-index, and we

discuss our hardware architecture and its implementation on

the FPGA. In Section 4 we report on the throughput of the FM-

index compared to the brute force approach and the Bowtie

software tool [12]. In Section 5 we discuss works related to the

BWT and the FM-index. In Section 6 we draw some

concluding remarks and highlight possible direction for future

research.

II. DATA STRUCTURES OF THE BW TRANSFORM

In this section we build up the required data structures for the

hardware implementation of the FM-Index searching. Given a

text Q we denote by BWT(Q) its transform. The BWT of a

string is generated in five steps:

1. Terminate the text Q with a unique character: “$”.

2. Generate all rotations of the text.

3. Sort all the rotations.

4. Extract the last characters of all the entries of the sorted list.

5. Join the characters in the same order they appeared in the

sorted list. The newly generated text is the BWT(Q).

Table 1 illustrates an example of deriving BWT(Q)
1
. Notice

that characters to the left of the “$”, in Table 1, form a suffix.

A suffix array indicates the position of each possible suffix in

the original string. Table 2 shows the suffix array

representation of the text Q in Table 1. For example at index 5

the suffix value is “c$” and its position in the original string is

13. The suffix at index 8 is “gctaattaggtacc$” and its position is

0 since it is the whole string.

Table 1: Example of deriving the Burrows-Wheeler Transform of
a text. The text is terminated by a “$” symbol.

Original String:
GCTAATTAGGTACC$

Rotations: Sorted Rotations:
gctaattaggtacc$ $gctaattaggtac – C
ctaattaggtacc$g aattaggtacc$gc – T
taattaggtacc$gc acc$gctaattagg – T
aattaggtacc$gct aggtacc$gctaat – T
attaggtacc$gcta attaggtacc$gct – A
ttaggtacc$gctaa c$gctaattaggta – C
taggtacc$gctaat cc$gctaattaggt – A
aggtacc$gctaatt ctaattaggtacc$ – G
ggtacc$gctaatta gctaattaggtacc – $
gtacc$gctaattag ggtacc$gctaatt – A
tacc$gctaattagg gtacc$gctaatta – G
acc$gctaattaggt taattaggtacc$g – C
cc$gctaattaggta tacc$gctaattag – G
c$gctaattaggtac taggtacc$gctaa – T
$gctaattaggtacc ttaggtacc$gcta – A
Burrows-Wheeler Transform:

CTTTACAG$AGCGTA

1
 Throughout this paper we will use examples derived from DNA

string matching because of the small alphabet size: A, G, C, and T.

Table 2: Example of deriving the suffix array of a text. The
rightmost column is the suffix array of the text.

Original String:
GCTAATTAGGTACC$

Index Sorted
Suffixes:

Suffix
Array

0 $ 14
1 aattaggtacc$ 3
2 acc$ 11
3 aggtacc$ 7
4 attaggtacc$ 4
5 c$ 13
6 cc$ 12
7 ctaattaggtacc$ 1
8 gctaattaggtacc$ 0
9 ggtacc$ 8

10 gtacc$ 9
11 taattaggtacc$ 2
12 tacc$ 10
13 taggtacc$ 6
14 ttaggtacc$ 5

The equivalence of the BWT and the suffix array

representation has been established in [3]. After generating the

suffix array (Table 2) we sort the BWT(Q) (Figure 1) and

generate the I and C tables. The sorted BWT(Q) is denoted as

SBWT(Q).

o Table-I – For every element x of the alphabet of Q,

Table-I[x] = index of its first occurrence in SBWT(Q).

For example, in Figure 1, A, C, G, and T appear at

index 1, 5, 8, and 11 in SBWT(Q).

o Table-C – For each index n in BWT(Q) and for each

character x in the alphabet Table-C[n,x] = number of

occurrences of x in BWT(Q) in the range [0, n-1]. As

an example, consider index n = 10 in the C-Table in

Figure 1, column A has a value of 3 because there are

three occurrences of A in the range n = 0 to n = 9.

III. PATTERN SEARCHING USING THE FM-INDEX IN

HARDWARE

The FM-index is a pattern searching technique that operates on

the BWT. The FM-index consists of two pointers: top and

bottom. We discuss the top and bottom pointers in the context

of suffix arrays because of the inherent equivalence of BWT

and suffix arrays. The indices between the top and bottom
pointers are all the suffix locations where a pattern occurs on

the text. Top points to an index of the suffix array element

where a specific pattern is first located. The bottom pointer

limits where the pattern can be last found. If bottom points to

an index that is less than or equal to an index pointed by top,
then the pattern does not occur on the text.

219

$ A A A A C C C G G G T T T T

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

SBWT(Q) for Q = GCTAATTAGGTACC$

I-table
A C G T

1 5 8 11

C-table

Index BWT(Q) A C G T

0 C 0 0 0 0

1 T 0 1 0 0

2 T 0 1 0 1

3 T 0 1 0 2

4 A 0 1 0 3

5 C 1 1 0 3

6 A 1 2 0 3

7 G 2 2 0 3

8 $ 2 2 1 3

9 A 2 2 1 3

10 G 3 2 1 3

11 C 3 2 2 3

12 G 3 3 2 3

13 T 3 3 3 3

14 A 3 3 3 4

15 Total 4 3 3 4

Figure 1: I-table stores the first occurrence of each character on
the sorted BWT(Q). The C-table stores the count of each
character on a previous location. The leftmost column of the C-
table is the indices of the suffix array.

A. Searching and Locating a Pattern

Pattern searching using the FM-index starts with initializing the

top and bottom pointers to the first and last indices of the C-

table respectively. To search for a pattern, we process one

character at a time, beginning with the last character of the

pattern. The top and bottom pointers move to different suffix

array indices according to the current character processed and

the current index where the top and bottom pointers are

indexing. To compute the new location of the pointers, we

follow Equation 1 for the top and bottom pointer respectively.

Figure 2: Example of searching the pattern “TAGG” on the
string “GCTAATTAGGTACC” using the FM-index. After the
4th iteration the pattern is found because the index of the top
pointer is less than the bottom pointer.

Figure 2 shows an example of searching the pattern

“TAGG” on the example string in Table 1. We initialize the top
and bottom pointers to 0 and 15 respectively. We begin with

the last character, G, of the pattern. We then apply Equation 1

four times corresponding to four characters of the pattern. After

the fourth iteration, the top and bottom pointers are at index 13

and 14 respectively. Since the index of the top pointer is less

than the index of the bottom pointer, the pattern TAGG occurs

on the string.

Three methods are described in [3] to identify the location

of the search pattern once its existence has been determined:

o Use characters from BWT(Q) of the text instead of the

pattern to trace back the end of the text using Equation 1.

The number of steps Equation 1 is applied is the location

where the pattern occurs on the text. Main advantage of

this method is that no additional storage is required.

However, its drawback is the potentially large number of

steps that could lengthen the search time.

o Store the suffix array elements that indicate the positions

where the suffixes are located. Upon locating the

existence the pattern, the suffix array element that

corresponds to that suffix array index is the location of

the pattern. The main advantage of this approach is the

immediate availability of pattern locations. However, its

disadvantage is the storage area of all suffix array

elements could be huge for very large texts.

o Store only samples of the suffix array and trace back

until we reached a sampled suffix array element. We add

the number of steps Equation 1 is used during the trace

back and the location indicated by the sampled suffix

Topnew = C-table[n, Topcurrent] + I-table[n]

Bottomnew = C-table[n, Bottomcurrent] + I-table[n]

Equation 1 – Updating of Top and Bottom pointers
using the I-table and C-table..

220

array element. The sum is the location of the pattern on

the text.

The last approach is clearly the best approach which

combines the advantages of the first two methods and limits

their disadvantages. We implemented the last method in our

hardware to locate the patterns in the text.

Figure 3: Example of locating the pattern “TAGG” on the string
“GCTAATTAGGTACC” using the third approach. After the 2nd
iteration the pattern is located on position 6 of the text.

To continue our example, we locate where the pattern

occurs in the text shown in Figure 3. The figure shows the

sampled suffix array elements and how the pattern “TAGG” is

located on the sample string. After identifying that the pattern

appears in the text, we check if the top points to a sampled

suffix array element. If not, we utilize Equation 1 for the top

pointer using the BWT character as the symbol for the C and I

tables. We also increment a counter that tracks the number of

steps performed. We continuously use Equation 1 and

increment the counter until the top pointer index a sampled

suffix array element. Figure 3 shows that the pattern “TAGG”

is located after the end of the second iteration where the top

pointer indexes a sampled suffix array element.

Suppose we search for the pattern “CCGA” on the example

string shown in Table 1. Beginning from the last character, the

top and bottom pointers move until the second iteration where

the pointers index the same suffix array element. This pattern

search is shown in Figure 4. In this example, we show that the

FM-index does not have to look at all the characters of the

pattern when it identifies the pattern does not appear on the text

from its preliminary search.

Figure 4: Example of searching the pattern “CCGA” on the
string “GCTAATTAGGTACC” using the FM-index. After the
2nd iteration the pattern is not found because the top and bottom
pointers index the same suffix array location.

B. Architecture

The pattern is placed on a shift register, where the last

character is fed as input to the architecture shown in Figure 5.

A text is placed on the FPGA using its memory resources. Two

memory banks are used to store the C and I tables. The top and

bottom pointers address the C-table. The outputs of the

memory bank of the C-table are four values referring to the

columns of A, C, G, and T. These values are inputs to a

multiplexor and the current character symbol, n, is used as the

selector. The same symbol n also addresses the I-table.

Figure 5: Block diagram for searching a pattern on a text using
the FM-index.

The output of the I-table and the multiplexors of the C-table

are added to compute the new values of top and bottom. The

new pointers are then used as addresses in the next iteration.

An additional multiplexor is used for initializing the top and

bottom pointers as addresses of the C-table. Figure 5 shows the

block diagram showing the architecture for searching using the

FM-index.

The number of bits required to implement the C-table is the

product of the text size (in number of characters), the size of

221

the alphabet and the logarithm of the text size. The text size

corresponds to the number of rows of the C-table, the size of

the alphabet corresponds to the number of columns, and the

logarithm of the text section length corresponds to the number

of bits per element of each column entry of the C-table. The

number of bits required to implement the I-table is product of

the logarithm of the text size and the size of the alphabet.

The block diagram in Figure 5 is modified to support

locating a pattern that appears in the text (Figure 6). Additional

storage is required for the sampled suffix array elements, flag

bits and the BWT characters of the text section length. The

flags indicate if a character is sampled. The BWT(Q)

characters (BWT_char in Figure 6) are used to address the I-

table and to select the data from the C-table when the

occurrence of the pattern in the text is established. Lastly, a

finite state machine is required to facilitate the transfer of data

from the different storage structures (Figure 7).

Figure 6: Block diagram for searching and locating a pattern on
a text using the FM-index.
Figure 6 shows the modified block diagram to support locating

the pattern on the text. The top pointer addresses the additional

memory of the sampled suffix array elements, flags, and

BWT(Q) characters. Additional multiplexors are needed to

select whether a search pattern character or a BWT(Q)

character is used for the C and I tables. The selector for these

multiplexors is the Loc_en control signal from the finite state

machine.

Figure 7 shows the diagram of the finite state machine

controller. It has four states: The Init state initializes the top

and bottom pointers. This state asserts the init signal used as

multiplexor select for initialization. The Search phase is where

the top and bottom pointers move in finding the pattern on the

text. A counter is set on the Search phase to execute a number

of times equal to the length of the pattern. If the bottom pointer

addresses a location that is equal or less that the top pointer at

any time instant, then the pattern does not occur on the text and

the state machine goes back to the Init phase. If the bottom

pointer addresses a location that is greater than the top pointer

at the end of the count, then the next state is the Check Flag
indicating that the pattern appears on the text. This state asserts

the loc_en signal so that the C and I tables use the BWT(Q)

characters as the multiplexor instead of pattern characters. The

Check flag state checks if a character position is a sampled

suffix array element. If the position is sampled, then it returns

to the Init phase otherwise it moves to the Increment state. The

Increment state adds one to a counter that indicates the number

of steps the trace back occurred. After the Increment state, it

returns again to the Check Flag state.

Figure 7: Controller used for architecture.

IV. IMPLEMENTATION AND EVALUATION

A. Hardware Implementation

We performed experiments to determine whether there are any

advantages to splitting one large text, with a single set of C and

I tables, into multiple text sections with one set of C and I

tables for each section. In this experiment, we start with a text

of 262,144 characters corresponding to 16 modules of 16K

characters each, or 32 modules of 8K characters, or 64 modules

of 4K characters etc. We sample the suffix array every 32

elements and the search pattern length is 36 characters. A text

section corresponds to one hardware module. The length of the

text in one module ranges from 1K to 16K characters.

We synthesized with place and route our implementations

on a Xilinx Virtex 6 (XC6VLX760) FPGA. Figure 8 shows the

operating frequency and slices utilized (as % of total slices) for

increasing text section length per module. Increasing the

section size, from 1K to 16K characters, decrease the operating

frequency by 20%. This is due to larger adder sizes and larger

module circuits. The percentage of slices required for these

decreases from 25% to 2.5%. This is because more logic is

required for processing multiple FM-indices compared to a

single unit for one long text section length. Looking at both

graphs, it is better to implement the FM-index on an FPGA

using longer text lengths.

222

Figure 8: Operating frequency and area versus text section
length. Note that the frequency decreases by only 20% as the text
section size increases from 1K to 16K. Logic area decreases
exponentially as we increase the text subsection length.

B. Maximizing Resource Utilization

The objective of our implementation is to maximize the

throughput of the design. In the FM-index algorithm, as in

BWT, the search for the pattern is applied to the whole text.

Therefore the larger the text that can be fitted on the FPGA the

higher the effective throughput. We have also attempted to

maximize the clock frequency by pipelining the

implementations.

Table 3: Resource utilization and Frequency of FM-index

Modules BRAM-18
Utilization (%)

Slices
(%)

Freq
(MHz)

Throughput
(1012 CC/s)

Size No.
of

FM-1K 352 1,430 (99.0%) 35 251 84.31
FM-2K 168 1,366 (94.8%) 19 244 81.10
FM-4K 126 1,422 (98.7%) 13 241 112.40
FM-8K 58 1,422 (98.7%) 8 213 100.13
FM-16K 27 1,432 (99.4%) 4 201 88.55

We experimentally evaluate the tradeoffs between smaller

text sections having larger clock frequencies and larger text

sections with smaller clock frequencies. Table 3 shows the

resource utilization, operating frequencies and throughput of

the five FM-index implementations with a pattern length of 36

on the Virtex 6 LX760, which has a total of 1,440 BRAM-18.

Note that we have used a mix of BRAM-18 and BRAM-36 but

are reporting the total number in BRAM-18.

Table 4: Overhead due to text overlap for search string length 36

Module
Size

Total
Characters

Overlap
Characters

Overlap
Overhead

FM-1K 360448 24570 6.8%

FM-2K 344064 11690 3.4%

FM-4K 475136 8750 1.8%

FM-8K 475136 3990 0.84%

FM-16K 442368 1820 0.41%

Having the text partitioned across multiple modules requires

that segments of the text be replicated in contiguous modules.

This introduces some area overhead as shown in Table 4 for a

search string length of 36. More overlaps occur for longer

pattern lengths because we need to repeat longer end sections

of the text. These overlaps are deducted from the total text

characters placed on the FPGA, which reduces the effective

length of the text. As can be see in Table 3, the FM-4K

achieves the highest throughput and will be used in the

comparison with the brute force approach and software

implementations.

V. PERFORMANCE EVALUATION

In this section we evaluate the performance of the FM-index,

first by comparing it to a “naïve” or brute force implementation

[11], and second by evaluating the expected number of

character matches that would be performed for each search

pattern.

A. Comparison to the Brute Force Approach

We compared the FM-index implementations to a brute force

approach [11] that uses direct character comparisons between a

pattern and a text. It takes a set of search strings (patterns)

storing them in registers on the FPGA. The text is streamed

into shift registers and compared to the pattern registers. A

signal is asserted when a match occurs at a specific location.

To maximize parallelism, the text is divided into a multiple

concurrent streams. It is also implemented on a Xilinx Virtex 6

LX760 FPGA with search string lengths of 36. We also utilized

92% of logic slices so that we could place the most number of

patterns.

Table 5: Character comparisons (CC) per second for FM-index
and Brute Force implementations.

 Freq (MHz) CC/cycle Throughput
(1012 CC/s)

FM-4K 241 466,386 112.40

Brute force 342 200,880 68.75

Table 5 shows the total number of character comparisons

performed of the FM-index and brute force respectively. For

the FM-index we have used the FM-4K implementation as it

has the highest effective throughput. For the FM-index we

compute the throughput as the product of the text size and the

operating clock frequency.

223

B. Expected Number of Character Comparisons

In the FM-index algorithm each character of the search pattern

is matched against the whole text section at once. These

matches are done sequentially. However, at the first mismatch

the search is terminated (“early abandon”) and a new search

pattern is initiated. Therefore, given a pattern of length p,

unless there is match, the number of character comparisons is c
< p. In the previous section we derived the raw throughput in

terms of character comparisons the hardware can deliver every

cycle. However, this throughput does not reflect the ability of

the algorithm to abandon the search and hence the expected run

time. In [15] the authors prove that the expected shared prefix

between any two substrings in a random text, e, is e = log(n)/E,

where E is the entropy of the random source generating the text

and n is the text size. Using the DNA alphabet and the text

section lengths used in this paper, the expected length of the

common prefix ranges from 5 (n = 1K) to 7 (n = 16K), as

shown in Table 7. One can expect than very soon after this 5-7

matches to see a mismatch, and therefore abandon the search.

Table 5: Expected length of shared suffixes between two
substrings for a specific text length.

Text section
length

Expected length
of shared suffix

(e)
1K 5
2K 5.5
4K 6
8K 6.5
16K 7

C. Comparison to Software

We compare our FM-index hardware implementation to the

Bowtie [12] software tool used for mapping DNA sequences to

a reference genome. In this experiment we executed the

software tool using only one core of a Quad-core Intel Xeon at

2.5GHz with 12 MB cache. We measured the execution time of

searching one thousand DNA sequences with lengths of 36, 72

and 108 on a section of the E-coli genome with a length of

490,000 characters. We compare the total execution times of

the software tool to the execution time of the hardware

implementation based on throughput on Table 8.

Table 6: Execution times of Bowtie and FPGA Implementation
with the number of matching DNA sequences on the E-coli

genome in percent.

Pattern
Length

Software
run time

(ms)

FM-index on FPGA

Run time
(ms)

Sequences
occurring on
section (%)

Speed
up

36 11.5 0.0586 6 196
72 7.5 0.0602 3 124

108 7.5 0.0565 1 133

The values of the expected length of the shared suffix (or

prefix) reported in Table 5 assume a random text. To account

for the non-random nature of most real text and take a

pessimistic approach to the evaluation of the FM-index on

FPGAs, we have used have doubled these values. We

computed separately the execution times for non-existing (no

match) and existing patterns (a match is found). The cost in

cycles in searching for a non-existing pattern is twice the

expected shared suffix length for a 4K module shown in Table

5. For existing patterns the full pattern length is the cost in

cycles for the search. Table 6 shows that the FPGA achieved a

speed up ranging from 124 to 196 compared to software

execution times.

One of the limitations of the FM-index hardware

implementation is its dependence on the size of the memory

available on the FPGA. In fact, the throughput that is achieved

with our implementation is directly proportional to the memory

size and the clock frequency. It is to be expected therefore that

with future FPGA technologies and designs that the throughput

will rise very rapidly.

VI. RELATED WORKS

The Burrows Wheeler transform is an algorithm that

converts an input data to another form that is easily

compressible and reversible to its original form [1]. The

transform is done by listing all the cyclic permutations of the

string, sorting that list and extracting the last characters of each

entry and putting them together on the same order it appeared

on the sorted list. The transform can be easily compressed

because the sorted list has the same elements contiguous to

each other.

 Suffix arrays are essentially related to the Burrows-

Wheeler transform of a string. A suffix array is a data structure

that lists all the locations of the suffixes of a string that is

sorted lexicographically [2]. It allows fast string matching

because of the ordered arrangement of the suffixes on the list.

However, the disadvantage of suffix arrays is the time and

space needed to construct the data structure.

The equivalence of the Burrows-Wheeler transform and

suffix arrays rely on the sorting of rotations of the string

terminated by a special unique character. Because of this, the

Burrows-Wheeler transform essentially becomes a compressed

version of the suffix array [3][4].

Since the introduction of the FM-index, it has been a

subject for improvements and optimizations. One area that the

algorithm could be improved is to make it independent of the

number of character symbols. Huffman compression could be

first applied on the text resulting to a new text where the

Burrows-Wheeler transform could be performed. The result is

a text independent of the number of character symbols. [5]

The FM-index could also be improved in terms of its

implementation on a host system. One optimization is to split

the text into fixed block sizes and indexing each block

separately [6]. The section of the text in each block overlaps

each other so that the entirety of the text could still be searched.

Another optimization is executing pattern searching using the

FM-index on multiple cores [7]. Multiple cores could operate

on different memory blocks containing contiguous text sections

to achieve parallelism and higher throughput.

224

The Burrows-Wheeler transform of a string has also been a

focus of hardware implementations where the central concern

is the sorting of suffixes. An architecture composed of

comparators, registers, shifters and multiplexors was described

to perform sorting of the suffixes [8]. It improves the weavesort

approach where shift left, shift right, and swap are performed

on registers based on comparisons of register contents [9].

Another hardware implementation is using a bitonic sorting

algorithm [10] where the comparisons of the list entries are not

data dependent making it suitable for hardware

implementations.

VII. CONCLUSION AND FUTURE REASEARCH

This study discusses and shows in detail the first

implementation of the FM-index in hardware. It is compared to

the brute force approach and it is shown that the FM-index has

a higher effective throughput than the brute force. This is due

to the higher number of character comparisons per cycle

performed by the FM-index even though it operates on a lower

operating.

Furthermore, the FM-index does not need to perform all

character comparisons compared to the brute force approach.

As soon as one character from the search pattern is mismatched

the search can be terminated (early abandon) and a new one

initiated, hence reducing the total search time.

Comparison to the Bowtie [12] software tool shows a two

orders of magnitude speed-up of the FM-index on FGPA when

accounting for early abandon property of this algorithm.

Future directions of this research immediately point to

improving the operating frequency that reduces the throughput

of the FM-index. Furthermore, we could also improve how

data is stored in the C-table, because of the existence of

redundant data. We could store a longer text section length on

the available resources of the FPGA by removing this

redundant data that will result to a higher throughput.

The FM-index discussed in this paper is only limited to

exact string matching. We could further extend the FM-index

implementation to approximate string matching where

mismatches between pattern and text is allowed.

REFERENCES

[1] M. Burrows and D.J. Wheeler, “A Block-sorting Lossless Data

Compression Algorithm,” SRC Research Report, May, 1994.

[2] U. Manber and G. Myers, “Suffix Arrays: A New method for

On-line String Searches,” SIAM Journal of Computing, pp. 935-

948. 1993.

[3] P. Ferrragina and G. Manzini, “Opportunistic Data Structures

with Application” In Proceeding of 41
st
 IEEE Symposium on

Foundations of Computer Science, pp. 390-398, 2000.

[4] P. Ferrragina and G. Manzini, “An Experimental Study of an

Opportunistic Index,” In Proceeding of 12
th

 ACM-SIAM

Symposium on Discrete Algorithms, pp. 269-278, 2001.

[5] S. Grabowski, G. Navarro, R. Przywarski, A. Salinger and V.

Makinen, “A Simple Alphabet-Independent FM-

Index,”International Journal of Foundations of Computer

Science, Vol. 17, No. 6, pp. 1365-1384, 2006.

[6] D. Zhang, Y. Zhang, and J. Chen, “Efficient Construction of

FM-index using overlapping block processing for large scale

text,” In Proceedings of the 29
th

 European Conference on IR

Research, pp. 113-123, 2007.

[7] D. Zhang, Y. Zhang, S. Liu, and X. Huang, “Parallelization of

the FM-Index,” In Proceedings of 10
th

 IEEE International

Conference on High Performance Computing and

Communications, 2008.

[8] J. Martinez, R. Cumplido, and C. Feregrino, “An FPGA-based

Parallel Sorting Architecture for the Burrows-Wheeler

Transform,” In Proceedings of International Conference on

Reconfigurable Computing and FPGAs”, 2005.

[9] A. Mukherjee, N.Motgi, J. Becker, A. Friebe, C. Haberman, and

M. Glesner, “Prototyping of Efficient Hardware Algorithm for

Data Compression in Future Communication Systems,” In

Proceedings of 12
th

 IEEE Workshop on Rapid System

Prototyping, pp. 58, 2001.

[10] P. Szecowka and T. Mandrysz, “Towards Hardware

Implementation of BZIP2 Data Compression Algorithm,” In

Proceedings of Mixed Design of Integrated Circuits and

Systems, pp. 337-340, 2009.

[11] E. Fernandez, W. Najjar, E. Harris and S. Lonardi, “Exploration

of Short Reads Genome Mapping in Hardware, In Proceeding of

20
th

 International Conference on Field Programmable Logic and

Application, 2010.

[12] B. Langmead, C. Trapnell, M. Pop, and S. Salzberg, “Ultrafast

and Memory-Efficient Alignment of Short DNA sequences to

the Human Genome,” Genome Biology, 2009.

[13] H. Li and R. Durbin, “Fast and Accurate Short Read Alignment

with Burrows-Wheeler Transforms,” Bioinformatics, 2009.

[14] R. Li, C. Yu, Y. Li, T. Lam, S. Yiu, K. Kristiansen, and J.

Wang, “SOAP2: An Improved Ultrafast Tool for Short Read

Alignment,” Bioinformatics, 2009.

[15] A. Apostolico and W. Szpankowski, Self-alignments in words

and their applications, Journal of Algorithms, Volume 13, Issue

3, September 1992.

[16] A. Aho and M. Corasick. Efficient String Matching: An Aid to

Bibliographic Search. Communication of the ACM, June Vol.

18, No. 6, pp330-340, 1975.

[17] D. Knuth, J. Morris, and V. Pratt, “Fast Pattern Matching in

Strings,” SIAM Journal of Computing, 1977.

225

