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Abstract—String matching is a ubiquitous problem that arises in 
a wide range of applications in computing, e.g., packet routing, 
intrusion detection, web querying, and genome analysis. Due to 
its importance, dozens of algorithms and several data structures 
have been developed over the years. A recent breakthrough in 
this field is the FM-index, a data structure that synergistically 
combines the Burrows-Wheeler transform and the suffix array. 
In software, the FM-index allows searching (exact and 
approximate) in times comparable to the fastest known indices 
for large texts (suffix trees and suffix arrays), but has the 
additional advantage of being more space-efficient than those 
approaches. In this paper, we describe the first FPGA-based 
hardware implementation of the FM-index for exact pattern 
matching. We report experimental results on the problem of 
mapping short DNA sequences to a reference genome. We show 
that the throughput of the FM-index is significantly higher than 
the naïve (brute force) approach. Like the Bowtie software tool, 
the FM-index can abandon early the hardware matching. It 
outperforms Bowtie by two orders of magnitude∗.  

I. INTRODUCTION 

String matching is the problem of searching for patterns in a 

long text. It is a ubiquitous problem with a wide variety of 

applications: in network routing, prefixes of incoming packets 

are matched to a routing table to determine the next 

destination; in intrusion detection, signatures of known 

network attacks are matched to incoming packets to prevent 

malware from entering the system; in web querying, set of 

keywords entered by users have to be matched against million 

of webpages; in personal genomics, short patterns obtained 

from sequencing instruments have to be matched to the 

reference human genome.  

Due to the importance of the matching problem, dozen of 

algorithms and several data structures have been developed 

since the seventies. Some of the algorithms are based on finite 

automata, for instance, the Aho-Corasick algorithm [16] or the 

Knuth-Morris-Pratt algorithm [17]. Other methods preprocess 

the text and build indices (e.g., hash tables or search trees) to 

allow faster searching. A recent breakthrough in this field is the 

FM-index, which is a compressed index that combines the 

properties of the suffix array [2] with the Burrows-Wheeler 

transform [1]. Software tools using this index are two orders of 

magnitude faster than tools relying on conventional indices like 

hash tables and variations thereof.  
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The Burrows-Wheeler transform (BWT) was initially 

introduced for data compression [1]. This invertible transform 

itself does not compress the text; instead it rearranges the order 

of the symbols to a form that is much easier to compress with 

classical encoders. The popular compression software bzip2 

found on Linux/MacOS systems is based on the BWT. Years 

after the seminal paper [1] was published, evidence of the 

equivalence between the BWT and the suffix array [2] opened 

the road to the development of the FM-index [3,4].  

The FM-index is an index that contains the BWT of the text 

to be searched in the form of a set of numerical arrays. The 

index allows searching for a pattern using binary search (in 

logarithmic time) instead of a linear time scan. Not only the 

FM-index enables string matching (exact and approximate) in 

times comparable to the best known indices for large texts 

(suffix trees and suffix arrays), but it has the additional 

advantage of being extremely space-efficient. To the best of 

our knowledge, the FM-index has been used only in the 

bioinformatics domain. Software tools such as Bowtie [12], 

BWA [13], and SOAP2 [14] have shown to be one to two 

orders of magnitude faster than older tools using classical 

indices like hash tables.  

In this paper, we present the first FPGA-based hardware 

implementation of the FM-index. In [8] the authors describe 

the implementation of the BWT on an FPGA, i.e. given a text 

how to get its BWT in hardware. Our focus in this paper is the 

searching for a pattern on the BWT of a text. We obtain the 

BWT of a text in software and load it in memory on the FPGA. 

We then perform the search using our hardware 

implementation. The architecture is implemented on an FPGA 

using BRAMs as storage units. We compared the performance 

of our hardware implementation of the FM-index to a highly 

optimized hardware implementation of the naïve (brute force) 

approach. We synthesized both methods on a Xilinx Virtex 6 

LX760, and exhausted all of the available resources on the 

FPGA. We defined the throughput as the number of character 

comparisons per second. Experimental results show that the 

FM-index has significantly higher throughput than the brute 

force. This measure of throughput does not, however, entirely 

reflect the real speed of the FM-index. Since the FM-index can 

abandon matching a pattern as soon as a mismatch is detected 

(our pipelined implementation of the naïve method cannot do 

this), the FM-index is expected to be a lot faster in an end-to-

end application. We also compared our FPGA implementation 

of the FM-index to the software too Bowtie [12]. We show a 

two orders of magnitude speed-up when early abandon is 

accounted for. 

The paper is organized as follows. In Section 2 we 

introduce data structures of the BWT. In Section 3 we describe 
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carrying out string matching using the FM-index, and we 

discuss our hardware architecture and its implementation on 

the FPGA. In Section 4 we report on the throughput of the FM-

index compared to the brute force approach and the Bowtie 

software tool [12]. In Section 5 we discuss works related to the 

BWT and the FM-index. In Section 6 we draw some 

concluding remarks and highlight possible direction for future 

research. 

II. DATA STRUCTURES OF THE BW TRANSFORM 

In this section we build up the required data structures for the 

hardware implementation of the FM-Index searching. Given a 

text Q we denote by BWT(Q) its transform. The BWT of a 

string is generated in five steps: 

1. Terminate the text Q with a unique character: “$”.  

2. Generate all rotations of the text.  

3. Sort all the rotations. 

4. Extract the last characters of all the entries of the sorted list. 

5. Join the characters in the same order they appeared in the 

sorted list. The newly generated text is the BWT(Q).  

Table 1 illustrates an example of deriving BWT(Q)
1
. Notice 

that characters to the left of the “$”, in Table 1, form a suffix. 

A suffix array indicates the position of each possible suffix in 

the original string. Table 2 shows the suffix array 

representation of the text Q in Table 1. For example at index 5 

the suffix value is “c$” and its position in the original string is 

13. The suffix at index 8 is “gctaattaggtacc$” and its position is 

0 since it is the whole string. 

Table 1: Example of deriving the Burrows-Wheeler Transform of 
a text. The text is terminated by a “$” symbol. 

Original String:  
GCTAATTAGGTACC$ 

Rotations: Sorted Rotations: 
gctaattaggtacc$ $gctaattaggtac – C 
ctaattaggtacc$g aattaggtacc$gc – T  
taattaggtacc$gc acc$gctaattagg – T 
aattaggtacc$gct aggtacc$gctaat – T  
attaggtacc$gcta attaggtacc$gct – A  
ttaggtacc$gctaa c$gctaattaggta – C  
taggtacc$gctaat cc$gctaattaggt – A  
aggtacc$gctaatt ctaattaggtacc$ – G  
ggtacc$gctaatta gctaattaggtacc – $  
gtacc$gctaattag ggtacc$gctaatt – A  
tacc$gctaattagg gtacc$gctaatta – G 
acc$gctaattaggt taattaggtacc$g – C  
cc$gctaattaggta tacc$gctaattag – G  
c$gctaattaggtac taggtacc$gctaa – T  
$gctaattaggtacc ttaggtacc$gcta – A  
Burrows-Wheeler Transform: 

CTTTACAG$AGCGTA 

                                                           
1
 Throughout this paper we will use examples derived from DNA 

string matching because of the small alphabet size: A, G, C, and T. 

Table 2: Example of deriving the suffix array of a text. The 
rightmost column is the suffix array of the text. 

 

Original String:  
GCTAATTAGGTACC$ 

Index Sorted  
Suffixes: 

Suffix 
Array 

0 $ 14 
1 aattaggtacc$ 3 
2 acc$ 11 
3 aggtacc$  7 
4 attaggtacc$  4 
5 c$  13 
6 cc$  12 
7 ctaattaggtacc$   1 
8 gctaattaggtacc$  0 
9 ggtacc$  8 

10 gtacc$ 9 
11 taattaggtacc$  2 
12 tacc$  10 
13 taggtacc$  6 
14 ttaggtacc$  5 

 

The equivalence of the BWT and the suffix array 

representation has been established in [3]. After generating the 

suffix array (Table 2) we sort the BWT(Q) (Figure 1) and 

generate the I and C tables. The sorted BWT(Q) is denoted as 

SBWT(Q). 

o Table-I – For every element x of the alphabet of Q, 

Table-I[x] = index of its first occurrence in SBWT(Q). 

For example, in Figure 1, A, C, G, and T appear at 

index 1, 5, 8, and 11 in SBWT(Q).  

o Table-C – For each index n in BWT(Q) and for each 

character x in the alphabet Table-C[n,x] = number of 

occurrences of x in BWT(Q) in the range [0, n-1]. As 

an example, consider index n = 10 in the C-Table in 

Figure 1, column A has a value of 3 because there are 

three occurrences of A in the range n = 0 to n = 9. 

III. PATTERN SEARCHING USING THE FM-INDEX IN 

HARDWARE 

The FM-index is a pattern searching technique that operates on 

the BWT. The FM-index consists of two pointers: top and 

bottom. We discuss the top and bottom pointers in the context 

of suffix arrays because of the inherent equivalence of BWT 

and suffix arrays. The indices between the top and bottom 
pointers are all the suffix locations where a pattern occurs on 

the text. Top points to an index of the suffix array element 

where a specific pattern is first located. The bottom pointer 

limits where the pattern can be last found. If bottom points to 

an index that is less than or equal to an index pointed by top, 
then the pattern does not occur on the text. 
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$ A A A A C C C G G G T T T T 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

SBWT(Q) for Q = GCTAATTAGGTACC$ 
 

I-table 
A C G T 

1 5 8 11 

 

C-table 

Index BWT(Q) A C G T

0 C 0 0 0 0 

1 T 0 1 0 0 

2 T 0 1 0 1 

3 T 0 1 0 2 

4 A 0 1 0 3 

5 C 1 1 0 3 

6 A 1 2 0 3 

7 G 2 2 0 3 

8 $ 2 2 1 3 

9 A 2 2 1 3 

10 G 3 2 1 3 

11 C 3 2 2 3 

12 G 3 3 2 3 

13 T 3 3 3 3 

14 A 3 3 3 4 

15 Total 4 3 3 4 
 

Figure 1: I-table stores the first occurrence of each character on 
the sorted BWT(Q). The C-table stores the count of each 
character on a previous location. The leftmost column of the C-
table is the indices of the suffix array. 

 

A. Searching and Locating a Pattern  

Pattern searching using the FM-index starts with initializing the 

top and bottom pointers to the first and last indices of the C-

table respectively. To search for a pattern, we process one 

character at a time, beginning with the last character of the 

pattern. The top and bottom pointers move to different suffix 

array indices according to the current character processed and 

the current index where the top and bottom pointers are 

indexing. To compute the new location of the pointers, we 

follow Equation 1 for the top and bottom pointer respectively.  

 

 

Figure 2: Example of searching the pattern “TAGG” on the 
string “GCTAATTAGGTACC” using the FM-index. After the 
4th iteration the pattern is found because the index of the top 
pointer is less than the bottom pointer.  

Figure 2 shows an example of searching the pattern 

“TAGG” on the example string in Table 1. We initialize the top 
and bottom pointers to 0 and 15 respectively. We begin with 

the last character, G, of the pattern. We then apply Equation 1 

four times corresponding to four characters of the pattern. After 

the fourth iteration, the top and bottom pointers are at index 13 

and 14 respectively. Since the index of the top pointer is less 

than the index of the bottom pointer, the pattern TAGG occurs 

on the string. 

Three methods are described in [3] to identify the location 

of the search pattern once its existence has been determined: 

o Use characters from BWT(Q) of the text instead of the 

pattern to trace back the end of the text using Equation 1. 

The number of steps Equation 1 is applied is the location 

where the pattern occurs on the text. Main advantage of 

this method is that no additional storage is required. 

However, its drawback is the potentially large number of 

steps that could lengthen the search time. 

o Store the suffix array elements that indicate the positions 

where the suffixes are located. Upon locating the 

existence the pattern, the suffix array element that 

corresponds to that suffix array index is the location of 

the pattern. The main advantage of this approach is the 

immediate availability of pattern locations. However, its 

disadvantage is the storage area of all suffix array 

elements could be huge for very large texts. 

o Store only samples of the suffix array and trace back 

until we reached a sampled suffix array element. We add 

the number of steps Equation 1 is used during the trace 

back and the location indicated by the sampled suffix 

Topnew = C-table[n, Topcurrent] + I-table[n] 

Bottomnew = C-table[n, Bottomcurrent] + I-table[n] 

 

Equation 1 – Updating of Top and Bottom pointers 
using the I-table and C-table..  
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array element. The sum is the location of the pattern on 

the text. 

The last approach is clearly the best approach which 

combines the advantages of the first two methods and limits 

their disadvantages. We implemented the last method in our 

hardware to locate the patterns in the text.  

 

 
 

 

 
 

Figure 3: Example of locating the pattern “TAGG” on the string 
“GCTAATTAGGTACC” using the third approach. After the 2nd 
iteration the pattern is located on position 6 of the text. 

To continue our example, we locate where the pattern 

occurs in the text shown in Figure 3. The figure shows the 

sampled suffix array elements and how the pattern “TAGG” is 

located on the sample string. After identifying that the pattern 

appears in the text, we check if the top points to a sampled 

suffix array element. If not, we utilize Equation 1 for the top 

pointer using the BWT character as the symbol for the C and I 

tables. We also increment a counter that tracks the number of 

steps performed. We continuously use Equation 1 and 

increment the counter until the top pointer index a sampled 

suffix array element.  Figure 3 shows that the pattern “TAGG” 

is located after the end of the second iteration where the top 

pointer indexes a sampled suffix array element. 

Suppose we search for the pattern “CCGA” on the example 

string shown in Table 1. Beginning from the last character, the 

top and bottom pointers move until the second iteration where 

the pointers index the same suffix array element. This pattern 

search is shown in Figure 4. In this example, we show that the 

FM-index does not have to look at all the characters of the 

pattern when it identifies the pattern does not appear on the text 

from its preliminary search. 

 

Figure 4: Example of searching the pattern “CCGA” on the 
string “GCTAATTAGGTACC” using the FM-index. After the 
2nd iteration the pattern is not found because the top and bottom 
pointers index the same suffix array location. 

B. Architecture 

The pattern is placed on a shift register, where the last 

character is fed as input to the architecture shown in Figure 5. 

A text is placed on the FPGA using its memory resources. Two 

memory banks are used to store the C and I tables. The top and 

bottom pointers address the C-table. The outputs of the 

memory bank of the C-table are four values referring to the 

columns of A, C, G, and T. These values are inputs to a 

multiplexor and the current character symbol, n, is used as the 

selector.  The same symbol n also addresses the I-table. 

 

 

Figure 5: Block diagram for searching a pattern on a text using 
the FM-index. 

The output of the I-table and the multiplexors of the C-table 

are added to compute the new values of top and bottom. The 

new pointers are then used as addresses in the next iteration. 

An additional multiplexor is used for initializing the top and 

bottom pointers as addresses of the C-table. Figure 5 shows the 

block diagram showing the architecture for searching using the 

FM-index. 

The number of bits required to implement the C-table is the 

product of the text size (in number of characters), the size of 
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the alphabet and the logarithm of the text size. The text size 

corresponds to the number of rows of the C-table, the size of 

the alphabet corresponds to the number of columns, and the 

logarithm of the text section length corresponds to the number 

of bits per element of each column entry of the C-table. The 

number of bits required to implement the I-table is product of 

the logarithm of the text size and the size of the alphabet. 

The block diagram in Figure 5 is modified to support 

locating a pattern that appears in the text (Figure 6). Additional 

storage is required for the sampled suffix array elements, flag 

bits and the BWT characters of the text section length. The 

flags indicate if a character is sampled. The BWT(Q) 

characters (BWT_char in Figure 6) are used to address the I-

table and to select the data from the C-table when the 

occurrence of the pattern in the text is established. Lastly, a 

finite state machine is required to facilitate the transfer of data 

from the different storage structures (Figure 7).  

 

 

 

Figure 6: Block diagram for searching and locating a pattern on 
a text using the FM-index. 
Figure 6 shows the modified block diagram to support locating 

the pattern on the text. The top pointer addresses the additional 

memory of the sampled suffix array elements, flags, and 

BWT(Q) characters. Additional multiplexors are needed to 

select whether a search pattern character or a BWT(Q) 

character is used for the C and I tables. The selector for these 

multiplexors is the Loc_en control signal from the finite state 

machine. 

Figure 7 shows the diagram of the finite state machine 

controller. It has four states: The Init state initializes the top 

and bottom pointers. This state asserts the init signal used as 

multiplexor select for initialization. The Search phase is where 

the top and bottom pointers move in finding the pattern on the 

text. A counter is set on the Search phase to execute a number 

of times equal to the length of the pattern. If the bottom pointer 

addresses a location that is equal or less that the top pointer at 

any time instant, then the pattern does not occur on the text and 

the state machine goes back to the Init phase. If the bottom 

pointer addresses a location that is greater than the top pointer 

at the end of the count, then the next state is the Check Flag 
indicating that the pattern appears on the text. This state asserts 

the loc_en signal so that the C and I tables use the BWT(Q) 

characters as the multiplexor instead of pattern characters. The 

Check flag state checks if a character position is a sampled 

suffix array element. If the position is sampled, then it returns 

to the Init phase otherwise it moves to the Increment state. The 

Increment state adds one to a counter that indicates the number 

of steps the trace back occurred. After the Increment state, it 

returns again to the Check Flag state. 

 

 
Figure 7: Controller used for architecture. 

IV. IMPLEMENTATION AND EVALUATION 

A. Hardware Implementation 

We performed experiments to determine whether there are any 

advantages to splitting one large text, with a single set of C and 

I tables, into multiple text sections with one set of C and I 

tables for each section. In this experiment, we start with a text 

of 262,144 characters corresponding to 16 modules of 16K 

characters each, or 32 modules of 8K characters, or 64 modules 

of 4K characters etc. We sample the suffix array every 32 

elements and the search pattern length is 36 characters. A text 

section corresponds to one hardware module. The length of the 

text in one module ranges from 1K to 16K characters.  

We synthesized with place and route our implementations 

on a Xilinx Virtex 6 (XC6VLX760) FPGA. Figure 8 shows the 

operating frequency and slices utilized (as % of total slices) for 

increasing text section length per module. Increasing the 

section size, from 1K to 16K characters, decrease the operating 

frequency by 20%. This is due to larger adder sizes and larger 

module circuits. The percentage of slices required for these 

decreases from 25% to 2.5%. This is because more logic is 

required for processing multiple FM-indices compared to a 

single unit for one long text section length. Looking at both 

graphs, it is better to implement the FM-index on an FPGA 

using longer text lengths. 
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Figure 8: Operating frequency and area versus text section 
length. Note that the frequency decreases by only 20% as the text 
section size increases from 1K to 16K. Logic area decreases 
exponentially as we increase the text subsection length. 

B. Maximizing Resource Utilization 

The objective of our implementation is to maximize the 

throughput of the design. In the FM-index algorithm, as in 

BWT, the search for the pattern is applied to the whole text. 

Therefore the larger the text that can be fitted on the FPGA the 

higher the effective throughput. We have also attempted to 

maximize the clock frequency by pipelining the 

implementations. 

Table 3: Resource utilization and Frequency of FM-index 

Modules BRAM-18  
Utilization (%) 

Slices 
(%) 

Freq 
(MHz) 

Throughput 
(1012 CC/s) 

Size No. 
of 

 

FM-1K 352 1,430 (99.0%) 35 251 84.31 
FM-2K 168 1,366 (94.8%) 19 244 81.10 
FM-4K 126 1,422 (98.7%) 13 241 112.40 
FM-8K 58 1,422 (98.7%) 8 213 100.13 
FM-16K 27 1,432 (99.4%) 4 201 88.55 

 

We experimentally evaluate the tradeoffs between smaller 

text sections having larger clock frequencies and larger text 

sections with smaller clock frequencies. Table 3 shows the 

resource utilization, operating frequencies and throughput of 

the five FM-index implementations with a pattern length of 36 

on the Virtex 6 LX760, which has a total of 1,440 BRAM-18. 

Note that we have used a mix of BRAM-18 and BRAM-36 but 

are reporting the total number in BRAM-18. 

Table 4: Overhead due to text overlap for search string length 36 

 

Module 
Size 

Total 
Characters 

Overlap 
Characters 

Overlap 
Overhead  

FM-1K 360448 24570 6.8% 

FM-2K 344064 11690 3.4% 

FM-4K  475136 8750 1.8% 

FM-8K  475136 3990 0.84% 

FM-16K 442368 1820 0.41% 

 

Having the text partitioned across multiple modules requires 

that segments of the text be replicated in contiguous modules. 

This introduces some area overhead as shown in Table 4 for a 

search string length of 36. More overlaps occur for longer 

pattern lengths because we need to repeat longer end sections 

of the text. These overlaps are deducted from the total text 

characters placed on the FPGA, which reduces the effective 

length of the text. As can be see in Table 3, the FM-4K 

achieves the highest throughput and will be used in the 

comparison with the brute force approach and software 

implementations. 

V. PERFORMANCE EVALUATION  

In this section we evaluate the performance of the FM-index, 

first by comparing it to a “naïve” or brute force implementation 

[11], and second by evaluating the expected number of 

character matches that would be performed for each search 

pattern. 

A. Comparison to the Brute Force Approach 

We compared the FM-index implementations to a brute force 

approach [11] that uses direct character comparisons between a 

pattern and a text. It takes a set of search strings (patterns) 

storing them in registers on the FPGA. The text is streamed 

into shift registers and compared to the pattern registers. A 

signal is asserted when a match occurs at a specific location. 

To maximize parallelism, the text is divided into a multiple 

concurrent streams. It is also implemented on a Xilinx Virtex 6 

LX760 FPGA with search string lengths of 36. We also utilized 

92% of logic slices so that we could place the most number of 

patterns. 

Table 5: Character comparisons (CC) per second for FM-index 
and Brute Force implementations. 

 Freq (MHz) CC/cycle Throughput 
(1012  CC/s) 

FM-4K 241 466,386 112.40 

Brute force 342 200,880 68.75 

 

Table 5 shows the total number of character comparisons 

performed of the FM-index and brute force respectively. For 

the FM-index we have used the FM-4K implementation as it 

has the highest effective throughput. For the FM-index we 

compute the throughput as the product of the text size and the 

operating clock frequency.  
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B. Expected Number of Character Comparisons 

In the FM-index algorithm each character of the search pattern 

is matched against the whole text section at once. These 

matches are done sequentially. However, at the first mismatch 

the search is terminated (“early abandon”) and a new search 

pattern is initiated. Therefore, given a pattern of length p, 

unless there is match, the number of character comparisons is c 
< p. In the previous section we derived the raw throughput in 

terms of character comparisons the hardware can deliver every 

cycle. However, this throughput does not reflect the ability of 

the algorithm to abandon the search and hence the expected run 

time. In [15] the authors prove that the expected shared prefix 

between any two substrings in a random text, e, is e = log(n)/E, 

where E is the entropy of the random source generating the text 

and n is the text size. Using the DNA alphabet and the text 

section lengths used in this paper, the expected length of the 

common prefix ranges from 5 (n = 1K) to 7 (n = 16K), as 

shown in Table 7. One can expect than very soon after this 5-7 

matches to see a mismatch, and therefore abandon the search.  

Table 5: Expected length of shared suffixes between two 
substrings for a specific text length. 

Text section 
length 

Expected length 
of shared suffix 

(e) 
1K 5 
2K 5.5 
4K 6 
8K 6.5 
16K 7 

 

C. Comparison to Software 

We compare our FM-index hardware implementation to the 

Bowtie [12] software tool used for mapping DNA sequences to 

a reference genome. In this experiment we executed the 

software tool using only one core of a Quad-core Intel Xeon at 

2.5GHz with 12 MB cache. We measured the execution time of 

searching one thousand DNA sequences with lengths of 36, 72 

and 108 on a section of the E-coli genome with a length of 

490,000 characters. We compare the total execution times of 

the software tool to the execution time of the hardware 

implementation based on throughput on Table 8.  

Table 6: Execution times of Bowtie and FPGA Implementation 
with the number of matching DNA sequences on the E-coli 

genome in percent. 

Pattern 
Length 

Software 
run time 

(ms) 

FM-index on FPGA 

Run time 
(ms) 

Sequences 
occurring on 
section (%) 

Speed 
up 

36 11.5 0.0586 6 196 
72 7.5 0.0602 3 124 

108 7.5 0.0565 1 133 

 

The values of the expected length of the shared suffix (or 

prefix) reported in Table 5 assume a random text. To account 

for the non-random nature of most real text and take a 

pessimistic approach to the evaluation of the FM-index on 

FPGAs, we have used have doubled these values. We 

computed separately the execution times for non-existing (no 

match) and existing patterns (a match is found). The cost in 

cycles in searching for a non-existing pattern is twice the 

expected shared suffix length for a 4K module shown in Table 

5. For existing patterns the full pattern length is the cost in 

cycles for the search. Table 6 shows that the FPGA achieved a 

speed up ranging from 124 to 196 compared to software 

execution times.  

One of the limitations of the FM-index hardware 

implementation is its dependence on the size of the memory 

available on the FPGA. In fact, the throughput that is achieved 

with our implementation is directly proportional to the memory 

size and the clock frequency. It is to be expected therefore that 

with future FPGA technologies and designs that the throughput 

will rise very rapidly. 

VI. RELATED WORKS 

The Burrows Wheeler transform is an algorithm that 

converts an input data to another form that is easily 

compressible and reversible to its original form [1]. The 

transform is done by listing all the cyclic permutations of the 

string, sorting that list and extracting the last characters of each 

entry and putting them together on the same order it appeared 

on the sorted list. The transform can be easily compressed 

because the sorted list has the same elements contiguous to 

each other. 

 Suffix arrays are essentially related to the Burrows-

Wheeler transform of a string. A suffix array is a data structure 

that lists all the locations of the suffixes of a string that is 

sorted lexicographically [2]. It allows fast string matching 

because of the ordered arrangement of the suffixes on the list. 

However, the disadvantage of suffix arrays is the time and 

space needed to construct the data structure.  

The equivalence of the Burrows-Wheeler transform and 

suffix arrays rely on the sorting of rotations of the string 

terminated by a special unique character. Because of this, the 

Burrows-Wheeler transform essentially becomes a compressed 

version of the suffix array [3][4]. 

Since the introduction of the FM-index, it has been a 

subject for improvements and optimizations. One area that the 

algorithm could be improved is to make it independent of the 

number of character symbols. Huffman compression could be 

first applied on the text resulting to a new text where the 

Burrows-Wheeler transform could be performed. The result is 

a text independent of the number of character symbols. [5] 

The FM-index could also be improved in terms of its 

implementation on a host system. One optimization is to split 

the text into fixed block sizes and indexing each block 

separately [6]. The section of the text in each block overlaps 

each other so that the entirety of the text could still be searched. 

Another optimization is executing pattern searching using the 

FM-index on multiple cores [7]. Multiple cores could operate 

on different memory blocks containing contiguous text sections 

to achieve parallelism and higher throughput.  
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The Burrows-Wheeler transform of a string has also been a 

focus of hardware implementations where the central concern 

is the sorting of suffixes. An architecture composed of 

comparators, registers, shifters and multiplexors was described 

to perform sorting of the suffixes [8]. It improves the weavesort 

approach where shift left, shift right, and swap are performed 

on registers based on comparisons of register contents [9]. 

Another hardware implementation is using a bitonic sorting 

algorithm [10] where the comparisons of the list entries are not 

data dependent making it suitable for hardware 

implementations.  

VII. CONCLUSION AND FUTURE REASEARCH 

This study discusses and shows in detail the first 

implementation of the FM-index in hardware. It is compared to 

the brute force approach and it is shown that the FM-index has 

a higher effective throughput than the brute force. This is due 

to the higher number of character comparisons per cycle 

performed by the FM-index even though it operates on a lower 

operating.  

Furthermore, the FM-index does not need to perform all 

character comparisons compared to the brute force approach. 

As soon as one character from the search pattern is mismatched 

the search can be terminated (early abandon) and a new one 

initiated, hence reducing the total search time. 

Comparison to the Bowtie [12] software tool shows a two 

orders of magnitude speed-up of the FM-index on FGPA when 

accounting for early abandon property of this algorithm. 

Future directions of this research immediately point to 

improving the operating frequency that reduces the throughput 

of the FM-index. Furthermore, we could also improve how 

data is stored in the C-table, because of the existence of 

redundant data. We could store a longer text section length on 

the available resources of the FPGA by removing this 

redundant data that will result to a higher throughput. 

The FM-index discussed in this paper is only limited to 

exact string matching. We could further extend the FM-index 

implementation to approximate string matching where 

mismatches between pattern and text is allowed.  
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