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ABSTRACT
Publish-subscribe (pub-sub) systems present the state of the
art in information dissemination to multiple users.Current
XML-based pub-sub systems provide users with consider-
able flexibility allowing the formulation of complex queries
on the content as well as the structure of the streaming
messages. Messages that contain one or more matches for
a given user profile (query) are forwarded to the user. Re-
cently various approaches focused on accelerating XML path
query filtering using dedicated hardware architectures, like
FPGAs. Despite their very high throughput, FPGAs require
extensive update time while their physical resource availabil-
ity is also limited. In this paper we exploit the parallelism
found in XPath filtering systems using GPUs instead, which
are favorable platforms due to the massive parallelism found
in their hardware architecture, alongside the flexibility and
programmability of software. By utilizing properties of the
GPU memory hierarchy we can match thousands of user
profiles at high throughput, requiring minimal update time.
E�cient common prefix optimizations are also applied to
the query set. An extensive experimental evaluation shows
an average speedup of 10x (up to 2.5 orders of magnitude)
versus the state of the art software approaches.

1. INTRODUCTION
Increased demand for timely and accurate event-notification

systems has led to the wide adoption of Publish/Subscribe
Systems (or simply pub-sub). A pub-sub system is an asyn-
chronous event-based dissemination system which consists
of three components: publishers, who feed a stream of mes-
sages into the system, subscribers, who post their interests
(also called profiles), 1 and an infrastructure for matching
subscriber interests with published messages and delivering

1Here the terms “profile” and “query” are used interchange-
ably.
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matched messages to the interested subscriber.
Pub-sub systems have enabled notification services for

users interested in receiving news updates, stock prices, wea-
ther updates, etc; examples include google.news.com,
pipes.yahoo.com, and www.ticket-master.com. Such systems
have greatly evolved over time, adding further challenges
and opportunities in their design and implementation. The
wide adoption of the eXtensible Markup Language (XML)
as the standard format for data exchange has led to the
current generation of XML-enabled pub-sub systems. Here
messages are encoded as XML documents and profiles are
expressed using XML query languages, such as XPath2 [28].
Profiles can now describe requests not only on the message
values but also on the structure of the messages.

The core of the Pub-Sub system is the filtering algorithm,
which supports the complex query matching of thousands of
user profiles against a high volume of published messages.
Essentially, for each message received in the Pub-Sub sys-
tem, the filtering algorithm determines the set of user pro-
files that have one or more matches in the message. Many
software approaches have been presented to solve the XML
filtering problem [1, 7, 12, 15]. These memory-bound so-
lutions, however, su↵er from the Von Neumann bottleneck
and are unable to handle large volumes of input streams.

Our previous work [18, 19, 20] has focused on the acceler-
ation of the filtering process through dedicated, customized,
and parallel hardware on Field Programmable Gates Arrays
(FPGAs). By exploiting parallelism, FPGAs provided fil-
tering at wire-speed, where thousands of hardware query
matching engines process, in parallel, streams of XML doc-
uments as soon as received from publishers. Nonetheless,
FPGAs su↵er from extensive profile update time, where up-
dating a single user query would require re-‘compiling’ the
hardware logic of all the system, a process requiring up to
several hours. Moreover, circuits on FPGAs are limited by
the amount of available resources. For instance, using the
current generation of FPGAs, we were able to fit up to 8
thousands queries on a single FPGA.

In this paper we show how the parallelism evident in XML
path filtering can be exploited by a GPU-based XML filter-
ing engine. GPUs are favorable platforms due to the mas-
sive parallelism found in their hardware architecture, along-
side the flexibility and programmability of software. On one
hand, updating queries is a fast process requiring few sec-

2In the rest we use ‘/’ and ‘//’ as shorthands to denote the
/child:: axis and /descendant-or-self:: axis, respectively.
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onds; on the other hand, the number of matching engines
is virtually unlimited, as a single kernel can be executed as
many times as desired.

The contributions of this paper are:

• A generalized and modified version of the filtering al-
gorithm, as applied to GPUs.

• A common prefix optimization approach applied to the
list of user queries, with the goal of reducing the fil-
tering time on large query sets.

• An extensive performance evaluation of XML filtering
on GPUs versus the leading software implementations.

The rest of the paper is organized as follows: Section 2
presents related work. Section 3 provides an in depth de-
scription of the proposed GPU framework targeted for XML
query filtering, while Section 4 details the common prefix
optimization we apply and evaluates the related approaches
and parameters. Section 5 presents an experimental evalua-
tion of the GPU-based filtering as compared to the state of
the art software counterparts. Finally conclusions appear in
Section 6.

2. RELATED WORK
As traditional platforms are increasingly hitting limita-

tions when processing high volumes of streaming data, re-
searchers are investigating alternative platforms for database
applications. Recent work has focused on the adoption of
Field Programmable Gate Arrays (FPGAs) for data stream
processing [21, 24, 22, 26]. The Glacier component library
is presented in [21] which includes logic circuits of common
operators such as selection, aggregation, and grouping for
stream processing. [26] investigated the speedup of the fre-
quent item problem using FPGAs, while in [24] they utilize
FPGAs for complex event detection which uses regular ex-
pressions to represent events. Predicate-based filtering on
FPGAs was investigated by [22] where user profiles are ex-
pressed as a conjunctive set of boolean filters. While FPGAs
have shown to provide advantages over traditional architec-
tures, they are limited by small resources and expensive pro-
gramming time. These two limitations have led researches
to examine GPUs, since they o↵er flexibility of reprogram-
ming.

GPUs have evolved to the point where many real-world
applications are easily implemented and run significantly
faster than on multi-core systems, thus, a large number of
recent work has investigated GPUs for the acceleration of
database applications[11, 13, 10, 3, 14, 16]. [13] the au-
thors utilized GPUs to accelerate relational joins, while in
[10] GPUs are utilized for computing Fourier transforms. In
[14] a CPU-GPU architecture is presented to accelerate tree-
search, which was shown to have low latency and support
online bulk updates to the tree. Recently, [3] proposed the
utilization of GPUs to speed-up indexing by o✏oading list
intersection and index compression operations to the GPU.
[16] proposed a similarity join algorithm designed to exploit
the parallelism and high data throughput on GPUs. For ad-
ditional details on the architecture and programming model
of GPUs, see Appendix A 3.

3We are making use of the NVIDIA CUDA model and ter-
minology, as detailed in Appendix A.

Software Approaches for XML Filtering: Several
software-based approaches have been proposed and can be
broadly classified into three categories: (1) FSM-based, (2)
Sequence-based, and (3) other. FSM-based approaches use
a single or multiple machines to represent the user profiles.
YFilter [7] built upon the work of XFilter[2], and proposed
a Non-Deterministic Finite Automata (NFA) representation
of user profiles (path expressions) which combines all profiles
into a single machine, thus reducing the number of states
needed to represent the set of user profiles. [12] proposed
a lazy Deterministic Finite Automation (DFA) which has a
constant throughput with respect to the size of the query
workload, however, lazy-DFA may su↵er from state explo-
sion depending on the number of nodes and level of recur-
sion in the XML document, and the maximum depth of the
XPath expressions.

Sequence-based approaches as in [15, 23] transform the
XML document and user profiles into sequences and employ
subsequence matching to determine which profiles have a
match in the XML sequence.

Several other approaches have been proposed [5, 9]. XTrie
[5] uses a trie-based data structure to index common sub-
strings of XPath profiles, but it only supports the /child::
axis. AFilter [4] exploits both prefix and su�x commonali-
ties in the set of XPath profiles. More recently, [9] proposed
two stack-based stream-querying (and filtering) algorithms,
LQ and EQ, which are based on lazy strategy and eager
strategy, respectively.

FPGA Approaches for XML Processing: Previous
works [6, 8, 17] that have used FPGAs for processing XML
documents have mainly dealt with the problem of pars-
ing and validation of XML documents. An XML parsing
method which achieves a processing rate of two bytes per
clock cycle is presented in [8]. This approach is only able
to handle a document with a depth of at most 5, and as-
sumes the skeleton of the XML is reconfigured and stored
in a content-addressable memory. These approaches, how-
ever, only deal with XML parsing and do not address XPath
matching.

The work in [17] proposed the use of a mixed hardware/
software architecture to solve simple XPath queries having
only parent-child axis.Our previous work [18] was the first
to propose a pure-hardware solution to the XML filtering
problem. Improvements of more than one order of magni-
tude were reported when compared to software. However,
this method is unable to handle recursion in XML docu-
ments or wildcards ‘*’ in XPath profiles.

In [19] we presented a new approach for matching complex
path profiles that supports the /child:: axis and /descendant-
or-self:: axis 4, wildcard (‘*’) node tests and accounts for re-
cursive elements in the XML document. In [20] we consider
complex twig matching on FPGAs (i.e. the query profiles
can be modeled as complex trees). Both approaches, proved
very e�cient for matching path and twig profiles, however,
they are static in the sense that query profiles must be com-
piled and o✏oaded to the FPGA beforehand. If queries are
added or queries are modified, the query compilation and
FPGA synthesis step must be performed. FPGA synthesis,
which includes place and route is a time-consuming process
and cannot be done in a online fashion. Furthermore, com-
pared to CPUs and GPUs, FPGAs have a small memory

4
In the rest of the paper we shall use ‘/’ and ‘//’ as shorthand to

denote the /child:: axis and /descendant-or-self:: axis, respectively.



thus limiting the number of query profiles that can be pro-
cessed at a given time. Thus, in this paper, we propose to
use GPUs for the XML filtering problem, which o↵er the
flexibility of fast recompilation while exploiting the paral-
lelism found in the application.

3. PATH FILTERING FRAMEWORK
In this section, we go over the details of the path filter-

ing algorithm as introduced in [19], however applied here to
GPUs.

3.1 Algorithm Details
Path queries expressed in the XPath language consist of

several nodes, with each pair sharing a parent/child or an-
cestor/descendant relation. A path of length J is said to
have matched if a sequence of nodes in the XML document
sharing the same relations and tags in the query has oc-
curred; this is only true if the sub-path of length J-1 has
matched.

Due to the tree nature of XML documents, we make use
of a stack-based approach for filtering, where each path is
matched using one stack. A single pass is required over the
XML document, such that the top of the stack is updated
at every open(tag) (push event) and close(tag) (pop event)
of the document. The stack width is determined by the
path length, and every entry in the stack holds a boolean
value, indicating, at a given node of the document tree, the
match state of the sub-path of length the column number
respective to that entry. A‘1’ in the last column of the stack
indicates that the totality of the path has been detected in
the document.

Figure 1(a) shows the tree representation of a sample
XML document as it is processed. Figures (b) - (g) show
several (two-node) queries and the top of the stack filtering
mechanisms as it is being updated upon an open ‘b’ event.
Using Figure 1, we visit some properties of path queries as
applied to the stacks:

• path root nodes: as these do not depend on a previ-
ous node, a ‘1’ is pushed onto their respective column
of the stack (the first column) upon encountering a
node with similar tag as part of the XML document
(left column of Figure 1(b), vs. no e↵ect in 1(d)).

• parent-child relations: these result in a diagonally
upwards propagation of a ‘1’. In Figure 1(c), a ‘1’ pre-
viously stored in the root column propagates upwards
to the right column upon a push, due to an open ‘b’
event. Note that an open ‘b’ event does not su�ce to
store a ‘1’ in a ‘b’ column (see of Figure 1(d)).

• ancestor-descendant relations: these result in a
vertically upwards propagation of a ‘1’ in columns to
which query nodes followed by ‘//’ are mapped. Once
a ‘1’ is pushed onto the column based on the two pre-
viously listed properties, and as long as it has not been
popped, the ‘1’ is always pushed onto higher following
tops of stack as the document is processed (see Figure
1(f)).

• path leaf nodes: A ‘1’ stored in the column to which
a query leaf node is mapped, implies a successfully
matched query. This occurs through a ‘1’ propagat-
ing upwards from the root column, through all middle

columns, to the leaf. Figures 1(c), (e) and (g) exhibit
matched query states.

• wildcard nodes: these imply a level of freedom where
any document node is valid for a propagating ‘1’. See
Figure 1(e).

Paths of any depth can be mapped to stacks, where each
two columns are related using the above properties.

More examples and algorithm details can be found in [19].

3.2 Levels of Parallelism
Since an XML-enabled pub-sub system involves multiple

profiles processed over the same document data stream, par-
allel architectures are suitable for accelerating its filtering
performance. Using our proposed stack-based approach, two
levels of parallelism are extracted, namely:

• Inter-query parallelism - where all queries (stacks)
can be processed in a parallel fashion.

• Intra-query parallelism - where updating the state
of all nodes within a query (top of stack) can be achieved
in parallel.

In the remainder of this section we focus on the details of
mapping the previously described filtering algorithm onto
GPUs, while utilizing the inherent levels of parallelism.

3.3 Parallel Path Filtering on GPUs
With the filtering algorithm applied to an FPGA-based

accelerator [19], the XML documents are directly streamed
to the accelerator, and no external memories are required.
Stacks are implemented using custom circuitry, where sev-
eral optimizations are applied to reduce the width of stacks.
Such a setup and optimizations are not directly applicable
to GPUs, where the XML document has to be stored in the
GPU memory, as it is being processed by software imple-
mentations of the stack and its properties.

3.3.1 GPU Streaming Processor Kernel
Every Streaming Processor on the GPU is associated with

the task of updating the top of a single stack column (at a
time), to which a query node is mapped. For every XML
document tag opened, the operations performed by every
SP on the top of the stack at a given column are as detailed
in Procedure 1 GPU Kernel (omitting boundary cases for
simplicity purposes).

Where:

• A ‘1’ propagates diagonally upwards if the previous
column holds a ‘1’ at current level � 1, and:

– the column tag is a wildcard.

– or the column tag is identical to the XML docu-
ment tag opened.

• A ‘1’ propagates vertically upwards if the column
holds a ‘1’ at current level � 1, and the tag mapped
to the column is followed by ‘//’ in the path query (is
ancestor).

• The Column ID is computed at run time using CUDA
constructs (as block number⇥block size⇥thread ID).
When computation on the GPU is complete, the CPU
side selectively extracts final query match states from
the global match state array.



(a) (b) (c) (d) (e) (f) (g)

Figure 1: Sample XML document event (Open ‘b’) shown in (a) alongside corresponding query stack updates
at the respective top of the stacks (b) - (g). Query nodes and relations are portrayed in gray above the
column they respectively map to.

Procedure 1 GPU Kernel
1 current level 0
2 matched 0
3 for all XML document events do
4 if pop event then
5 current level - -
6 else
7 current level ++
8 if ‘1’ propagates diagonally upwards OR vertically

upwards then
9 stack[current column][current level] 1

10 matched = 1
11 end if
12 end if
13 end for
14 if current column is a leaf column then
15 match state[column ID] = matched
16 end if
17 return

3.3.2 Streaming Processor Personalities
As noted earlier, every instance of the GPU kernel requires

knowledge of the query node mapped to the stack column
it processes. The CPU parses all queries and sends to the
GPU device memory a pre-processed form of all the queries
as an array, where each entry represents a query node, and
corresponds to a single kernel instance. Figure 2(b) repre-
sents a generic view of a query node representation, namely
a Streaming Processor (SP) personality, on which the kernel
instance functionality depends.

A personality consists of a single bit to indicate whether
the node is a query leaf, one bit to indicate the relation-
ship (parent, ancestor) between the node and the following
one in the query, and a 7-bit representation of the tag ID.
The previous column index entry refers to the index of the
previous stack column in the block; 5-9 bits are required
since GPU blocks can hold 32 to 512 kernel instances. For
the moment, it is assumed that query nodes are mapped to
contiguous stack columns. However, this assumption will no
longer hold starting Section 4.

3.3.3 Efficient Use of the GPU Memory Hierarchy
As described earlier, the filtering algorithm only depends

on the events and tags of XML documents, rather than con-
tent. In order to minimize transfer from CPU to GPU and
utilized memory space, the CPU would compress the XML
document events into an optimized representation that is

(a) (b)

Figure 2: GPU Input format: (a) shows the storage
format of every XML document event as streamed
to the GPU, whereas (b) depicts the format of SP
personalities, representing a query path node and
its stack mapping.

then transferred to the GPU. Each compressed entry is 8-
bit wide as shown in Figure 2(a), with one reserved bit indi-
cating the event type (push/pop), and the remaining seven
bits representing the corresponding tag ID. Every XML doc-
ument node is translated into such an entry.

As the pre-processed XML is read by all SPs, it is then
transferred to the global device memory of the GPU. Since
the XML document is read-only, small documents could fit
into the cached constant memory. However, our experiments
show that minimal speedup was achieved with such small
documents mapped to the constant cache. We thus only
utilize the global memory to map XML streams of all sizes.

SP personalities are also transferred to the global memory
of the GPU. However, since every SP will read its personality
once, this is done initially, and the personality is stored in
the SP registers.

Every group of SPs forms a Streaming Multiprocessor
(SM) on the GPUs. SPs within an SM communicate through
a small low-latency shared memory, exclusive to every SM.
Stacks are stored in this fast shared memory of every SM
because columns of a single stack are continuously updated,
processed each by a single SP, and interdependent. The
maximum stack depth is set at compile time to allocate the
required amount of shared memory.

With the completion of processing on the GPU, the match
state of every query is written once to the global memory
and streamed back to the CPU.

4. COMMON PREFIX OPTIMIZATION
In this section we go over an evaluation of common pre-

fix optimizations applied to the query set, with the goal of
reducing the GPU processing time. With every SP process-
ing one column at a time, reducing the number of columns
across all queries will linearly a↵ect the execution time on
large query sets.



Figure 3: Sample query set shown initially, followed
by the stack column dependencies for each query
stack independently; these dependencies determine
the propagating path of a ‘1’ . A tree representa-
tion of all the queries as grouped by common pre-
fixes is then portrayed. Finally, the query nodes are
mapped to GPU blocks with a restriction on the
block size.

4.1 Motivation
Figure 3 depicts a sample query set. These are queries

that will be filtered on the GPU. The stack column depen-
dencies are shown for each query stack separately; these de-
pendencies determine the propagating path (through columns)
of a ‘1’ within each stack. One observation is that Q0 and
Q1 share the prefix a/b/c/, and thus the first three columns
of their respective stacks behave identically. On the other
hand, Q2 shares the prefix a/b/ with both Q0 and Q1. We
can now build a tree representing all stacks merged at the
common prefix nodes, such that tree nodes represent stack
columns and query nodes (see Figure 3). This tree will con-
sist of the minimum number of stack columns required to
match all queries. In Figure 3 we see that queries Q0, Q1and
Q2 require at least 6 stack columns for filtering, in contrast
to the initial 11 when not merged.

Note that using our proposed approach, su�xes cannot
be shared by queries since a ‘1’ propagating into a column
reflects the match state specific to the sub-path formed by
the initial remaining query nodes.

A query node followed by ‘/’ is di↵erent from a node fol-
lowed by ‘//’; similarly wildcards are treated as separate
nodes.

4.2 Implementations
When executing on the GPU, kernels are grouped into

blocks that run on a single SM, even if the the number of
threads within a block exceeds the number of Streaming Pro-
cessors. Shared memories can only be accessed by threads
within a single block. Using our approach, stack columns
are stored in the shared memory of SMs. A CUDA limita-
tion imposes that blocks hold 32 to 512 threads, a parameter
passed at run-time; moreover all blocks are of the same size.
With this limitation in mind, the tree, representing the min-
imum number of nodes (i.e. stack columns required), will
be split if the number of tree nodes is larger than the block
size, hence replicating common tree nodes across blocks, as
described below.

For the sake of this example, we show in Figure 3 the
mapping of Q0, Q1 and Q2 into blocks of size 5. Block 0 is
able to hold both Q0 and Q1, whereas Q2 is solely mapped
to block 1. As all blocks are of fixed size, the remaining two
slots in block 1 are empty and will not compute any useful
data. Q0, Q1 and Q2 require 10 nodes (2 blocks) instead of
the minimal 6.

The fixed-sized block limitation implies that some of the
minimal tree nodes will be mapped to more than a single
block when the block is smaller than the tree; for instance,
a/b/ was computed in both blocks.

Moreover, the mapping of queries into fixed-size blocks
is not unique. For instance, block 0 holding Q0 and Q2,
and block 1 holding Q1, would result in one empty node (in
block 1).

We look into the problem of mapping query nodes into
blocks, while minimizing the number of required blocks. We
take the minimal tree as a reference, even though this min-
imum cannot be achieved, as the assumed query set size is
much larger than the maximum block size (tens of thousands
of queries vs. block size at most 512).

The first approach we employ executes the following steps:

1. Sort all queries (by tag ID)

2. Instantiate a new GPU block

(a) Pop the query at the top of the sorted list

(b) Find the block o↵set of the last common tag with
the previously inserted query (if any)

(c) Append the remaining query nodes to the block,
linking the first su�x node to the node at the
index as found in (b)

(d) Repeat (a)-(c) until the popped query doesn’t fit
in the block

3. Repeat step 2 on the remaining queries

Nodes are linked using the ‘previous column index’ por-
tion of the representation described in Figure 2(b). Stack
columns of a single query are no longer contiguous in the
shared memory, as columns are now shared across tags.

The sorting step will insure that queries popped linearly
will share prefix nodes.

We also looked into a variant of that approach, where,
instead of linearly popping queries from the sorted list, we
greedily pick the query sharing the longest of common prefix
with its neighbor, place it in the block, and fill the block with
its neighboring queries. This approach runs much slower
than the initial one (few seconds vs. tens of seconds), while
providing minimal improvement. Therefore, for the remain-
der of this discussion, we focus on the initial placement tech-
nique.

One artifact of placing queries into blocks is fragmenta-
tion. Here, blocks exhibit empty slots where queries wouldn’t
fit. Using the above approaches however, for the test queries
in Section 4.3, the average wasted nodes per block was a lit-
tle over a single node. Therefore, we can deduce that the
e↵ect of fragmentation is minimal.

4.3 Evaluation
In this section, we evaluate the common prefix optimiza-

tion on distinct queries generated using the YFilter query
generator [7], based on the following dtd’s:

• DBLP, representing bibliographic information and tends
to have more bushy trees [25].

• Treebank, representing tagged English sentences and
tends to have deep recursive subtrees [25].



Figure 4: Percentage of reduced nodes vs. minimal
tree, resulting from the common prefix optimiza-
tion, with varying block sizes, on 32,000 queries.
The mixed queries are generated from a set of four
dtd’s.

• SwissProt, a curated protein sequence database pro-
viding a high level of annotations, a minimal level of
redundancy and high level of integration with other
databases [25].

• XMark, as part of the XML Benchmark Project [27].

We show in Figure 4 the percentage of reduced nodes
compared to the minimal tree, resulting from the common
prefix optimization, with varying block sizes. We perform
our study on 32,000 queries of length 4 and length 8, while
doubling the block size; queries are of class DBLP, Tree-
bank and Mixed queries, the latter consisting of unrelated
queries as generated by four dtd’s (DBLP, Treebank, Swis-
sProt, XMark). The purpose of the Mixed query set is to
study the e↵ect of the common prefix optimization on an
un-biased set of queries exhibiting fewer overall commonal-
ities.

As expected, larger block sizes provide more improvement,
as there are fewer replicated nodes across blocks. Blocks of
size 256 and 512 nodes result in an almost minimum num-
ber of nodes based on the minimum tree. On the other
hand, length 4 and length 8 queries exhibit similar respec-
tive behavior, such that length 8 queries are always one step
(block size) behind in terms of improvement; that is due to
the fact that length 8 queries are likely to result in double
the amount of query nodes.

Figure 5 shows the overall resulting remaining nodes from
applying the common prefix optimization, as percentage of
the original query set, with varying block sizes. The remain-
ing nodes are nodes to be computed on the GPU, including
the empty block nodes resulting from fragmentation. For all
used query sets, length 4 queries result in the most reduc-
tion (mean of 71%). On the other hand, length 8 queries
result in an average of 45% reduction, less than length 4
queries, due to the longer su�xes. This reduction will al-
most linearly a↵ect the execution time, as discussed in the
upcoming Section.

5. PERFORMANCE EVALUATION
For the remainder of this section, the performance of the

GPU-based approaches is measured on an NVIDIA TESLA

Figure 5: Percentage of resulting remaining nodes
when applying the common prefix optimization, ver-
sus the original respective query sets (of size 32,000
queries each). The shown percentages includes
empty GPU block nodes due to fragmentation.

Figure 6: Total execution time filtering 32K queries
over a 50MB DBLP XML document, highlighting
pre-processing time on the CPU (with the common
prefix optimization applied) , and GPU processing
time (scaled by 1/4). The query set consists of
length (L) 4 and 8 queries, while varying block sizes
(B).

C1060 GPU (total of 30 SMs comprising of 8 SPs each). The
CPU-based approaches were run on a quad core 2.33GHz
Intel Xeon machine with 8GB of RAM running Linux Red
Hat 2.6.

5.1 Effect of the GPU Block Size
When applying the common prefix optimization, increased

block sizes result in a further reduced query set, as seen ear-
lier. However, due to the contention on the available com-
puting resources and the limited amount of available shared
memory per SM, larger block sizes can negatively a↵ect per-
formance when executing on the GPU.

We show in Figure 6 the total execution time required
to filter 32K queries over a 50MB DBLP XML document,
while highlighting pre-processing time on the CPU (with
the common prefix optimization applied) , and the corre-
sponding GPU processing time (scaled by 1/4 for presen-
tation purposes). The query set consists of length 4 (L4)
and length 8 (L8) queries, while varying the GPU block size
(B32 . . . B512).

The pre-processing time depends solely on the query set,



Figure 7: GPU throughput (MB/s) of filtering over
a 50MB DBLP XML document, while doubling the
number of queries. Data is shown for length 4 (L4)
and length 8 (L8) queries, with the common prefix
optimization ON (Opt) and OFF (Unopt).

and requires an average of 750ms for queries of length 4,
versus 1,040ms for length 8 queries, less than 4% on average
of the overall execution time.

On one hand, while resource contention is less consider-
able, a block size of 32 results in the most processing time
due to the least optimized query set. However, utilizing
larger block sizes can negatively a↵ect GPU processing time,
even though the resulting query set is smaller. Block sizes
of 64 and 256 result in the least processing time for queries
of length 4 and 8, respectively.

For the remainder of this study, we set the block size to
128, as being a middle point, providing e↵ective common
prefix optimization (Figures 3, 5), and less resource con-
tention than in larger block sizes.

5.2 Throughput Characteristics
We show in Figure 7 the GPU throughput (MB/s) of fil-

tering over a 50MB DBLP XML document, while doubling
the number of queries. Data is shown for length 4 (L4) and
length 8 (L8) queries, with the common prefix optimization
ON (Opt) and OFF (Unopt).

The throughput starts o↵ as constant for all query sets,
until it halves at every query doubling step. That point
di↵ers from one query set to another, based on the final
query set size (query nodes), and is a↵ected by the over-
all available resources on the GPU. When the the latter is
under-utilized (small query sets), throughput is constant.
Conversely, when over-utilized, the wall-clock time (thus
throughput) is directly proportional to the query set size.

For a given optimization setup (on/o↵), throughput is
higher for length 4 queries, as expected. Interestingly, the
throughput is higher for optimized length 8 queries com-
pared to length 4 unoptimized queries.

On average, applying the common prefix optimization in-
creases throughput by a factor of 1.6x.

5.3 Speedup vs. Software Approaches
We measured the performance for two CPU-based ap-

proaches, namely YFilter and FiST, by measuring the run-
ning time for for queries of length 4 and 8. Our results show

Figure 8: GPU speedup over YFilter when filtering
over a 50MB DBLP XML document, as the number
of queries is doubled. Data is shown for length 4
(L4) and length 8 (L8) queries, with the common
prefix optimization ON (Opt) and OFF (Unopt).
Slowdown is depicted for speedup values less than
‘1’.

that YFilter and FiST have similar behavior for most test
cases; thus, for the remainder of this paper, we will focus
solely on YFilter.

We show in Figure 8 the GPU speedup over YFilter when
filtering over a 50MB DBLP XML document, as the number
of queries is doubled. Data is shown for length 4 (L4) and
length 8 (L8) queries, with the common prefix optimization
ON (Opt) and OFF (Unopt).

As the GPU is underutilized, the speedup over software
is constant and highest. Beyond those respective points,
speedup halves as the number of queries doubles, until slow-
down is depicted.

Overall, software processing results in lower throughput
for length 8 queries, as the GPU speedup is considerably
higher for those corresponding query sets. Filtering length
8 queries results in up to 2.5 orders of magnitude speedup
(300x), with an average of 40x; filtering length 4 queries
results in up to 10x speedup, with an average of 2x.

6. CONCLUSIONS
In this paper, we presented an XML-based pub-sub filter-

ing framework and algorithm fit for GPUs, exploiting the
parallelism found in XPath filtering systems. GPUs are
favorable platforms due to the massive parallelism found
in their hardware architecture, alongside the flexibility and
programmability of software. By utilizing properties of the
GPU memory hierarchy, matching thousands of user profiles
is achieved at high throughput, requiring minimal update
time. E�cient common prefix optimizations are also ap-
plied to the query set. Through an extensive experimental
evaluation, we show up to 2.5 orders of magnitude speedup
(300x) for length 8 queries, with an average speedup of 40x
versus the state of the art software approaches. Filtering
for queries of length 4 results in up to 10x speedup, with an
average of 2x.
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APPENDIX
A. GPU ARCHITECTURES & PROGRAM-

MING MODEL
Graphics Processing Units (GPUs) are emerging as com-

putational platforms comprising of several hundreds of sim-
ple processors operating in a parallel fashion. While in-
tended to be used solely for graphic applications, they are
generally employed to accelerate solving general purpose
problems of SIMD (Single Instruction Multiple Data) type,
thus referred to as General Purpose GPUs (GPGPUs).

GPGPUs are used as co-processors to which the main
CPU passes a stream of data; the GPGPU then processes
the data with minimal memory footprint, and returns the
processing results to the CPU.

Figure 9 shows a high level view of a generic GPU archi-
tecture 5. Streaming Processors (SPs) are simple processor
cores that are clustered. Each cluster of SPs is referred to as
a Streaming Multiprocessor (SM), such that all SPs within
one SM execute instructions from the same memory block.
When used with SIMD applications, all SPs on the GPU
perform one common operation (at a time) on thousands of
data elements.

Furthermore, all SPs within one SM communicate using
a low latency shared memory structure. The SM also com-
prises of a constant cache, being a low-latency read-only
memory, caching a (limited by size) read-only portion of the
device global memory. The constant cache can be used for
broadcast-type read operations, where all SPs require read-
ing the same element from global memory. Finally, com-
munication across SPs is achieved through the high latency
global memory.

The programmer specifies the kernel that will be running
on each of the SPs; however, when spawning the kernels
onto the GPU, more instances of the kernel (threads) can be
executed than the number of physical processing elements
(SPs). The GPU manages switching threads on and o↵.
Moreover, the number of physical cores is abstracted away
from the programmer, and is only used at runtime.

Finally, the programmer specifies the number of instances
of the kernel that are grouped to execute on a single SM.
This group of kernels is referred to as the block. As the
block size grows, the amount of shared memory available
per block is reduced, and contention to computing resources
increases; on the other hand, as the block size shrinks, the
computational resources are under-utilized. The block size
is determined per application basis.

B. XML OVERVIEW
An XML document has a hierarchical (tree) structure that

consists of markup and content. Markup also referred to as
tags begin with the character ‘<’ and end with a ‘>’. There
are two types of tags, ‘start-tags’ (for example <author>)
and ‘end-tags’ (for example </author>). Nodes in an XML
document begin with a ‘start-tag’ and end with a corre-
sponding ‘end-tag’. XML documents consist of a root node
and sub-nodes, which can be arbitrarily nested. Figure 10(a)
shows a small XML document example, while Figure 10 (b)
shows the XML document’s tree representation. Note that
the document order corresponds to the preorder traversal of

5We are making use of the NVIDIA CUDA model and ter-
minology.

Figure 9: High-level GPU architecture overview.

the document tree (shown by the numbers next to the tree
nodes). In this example, the ‘author’ node in the XML tree
representation corresponds to the start-tag < author > and
end-tag < /author >, while ‘Yanlei Diao’ corresponds to
a value (the content of the ‘author’ node). In this paper,
we shall use the terms ‘tag’ and ‘node’ interchangeably. For
simplicity, Figure 10(b) shows the tags/nodes (i.e. the struc-
tural relationship between nodes) in the XML document of
Figure 10(a), but not the content (values). The values can
be thought as special leaf nodes in the tree (not shown).

C. XPATH QUERY LANGUAGE
XPath [28] is a popular language for querying and se-

lecting parts of an XML document. In this paper, we ad-
dress a core fragment of XPath that includes node names,
wildcards, and the /child:: and /descendant-or-self:: axis
6. The grammar of the supported query language is given
below. The query consists of a sequence of location steps,
where each location step consists of a node test and an axis.
The node test is either an node name, or a wildcard ‘*’(
wildcards can match any node name). The axis is a binary
operator that specifies the hierarchical relationship between
two nodes. We support two common axes, the child axis
and the descendant axis. The child axis, denoted by ‘/’,
specifies that an node must be a child of another node in
the XML tree, such that two node are one level apart in the
tree. The ancestor-descendant axis, denoted by ‘//’ speci-
fies that a node must be a descendant of another node in
the XML tree representation.

Lets consider two examples, ‘a/b’ and ‘a//b.’ Let level(x)
denote the level of a node ‘x’ in a XML tree.

In ‘a/b’, the child axis specifies:

• The start-tag and end-tag of node ‘b’ must be con-
tained within the start-tag and end-tag of node ‘a’,
and

• level(a) - level(b) = 1

6We use ‘/’ and ‘//’ as shorthand to denote the /child:: axis
and /descendant-or-self:: axis, respectively.



Figure 10: Example XML Document and XML Path Queries, (a) Example XML Document, (b) XML Tree
Representation, (c) Example XML Path Queries.

While, in ‘a//b’, the descendant axis specifies:

• The start-tag and end-tag of node ‘b’ must be con-
tained within the start-tag and end-tag of node ‘a’,
and

• level(a) - level(b) � 1

Example path queries are shown in Figure 10 (c). Con-
sider Q1 (/dblp/book/edition) in 10 (c) which is a path
query of depth three, and specifies a structure which con-
sists of nodes ‘dblp’, ‘book’ and ‘edition’ where each node
is separated by a ‘/’ operator. This query is satisfied by
nodes (dblp, 1), (book,10), and (edition, 14) in the XML
tree shown in Figure 10(b). Q2 (/dblp//url) is a path query
of depth two, and specifies a structure which consists of two

nodes, ‘dblp’ and ‘url’ are separated by the ‘//’ operator.
Q2 specifies that the node ‘url’ must be descendant of the
‘dblp’ node, and the two nodes should be one or more levels
apart. For example, the nodes (dblp,1) and (url,9) in Fig-
ure 10(b) satisfy this query structure. Q3 (/dblp/*/title) is
a path query of depth three, and specifies a structure that
consists of two nodes and a wildcard (which matches any
node). This query has two matches in the XML tree in
Figure 10(b). The nodes (dblp,1), (article,2), and (title,5)
satisfy one match, while nodes (dblp,1), (book,10), and (ti-
tle,13) satisfy another match for Q3.


