
Programming the Convey HC-1 with ROCCC 2.0*
J. Villarreal, A. Park, R. Atadero

Jacquard Computing Inc.
(Jason,Adrian,Roby)

@jacquardcomputing.com

W. Najjar
UC Riverside

najjar@cs.ucr.edu

G. Edwards
Convey Computers

gedwards@conveycomputer.com

ABSTRACT
Utilizing FPGAs as hardware accelerators has been hampered by
both the availability of affordable platforms and the lack of
programming tools that bridge the gap between high-level
procedural programming languages and the spatial computing
paradigm that is implied on an FPGA. This paper reports on the
experiences of programming the Convey Computers HC-1 system,
a high-performance hybrid-core system consisting of eight 64-bit
Intel Xeon processors coupled with four Xilinx Virtex 5 LX 330
FPGAs, using the ROCCC 2.0 toolset, an open source C to VHDL
compilation framework specifically designed for the generation of
FPGA-based code accelerators, which address both of these
issues. The porting of the ROCCC 2.0 toolset was tested on
Dynamic Time Warping, a data mining application, and the Viola-
Jones face detection algorithm. We discuss the characteristics of
these applications and the process of accelerating these
applications through ROCCC by writing C that was compiled with
ROCCC and mapped onto the HC-1.

1. INTRODUCTION
Multiple studies have repeatedly demonstrated the potential of
FPGAs as high-performance computing platforms capable of
achieving speedups measured in orders of magnitudes. However,
their wider use has been impeded, to a large degree, by two
challenges: (1) the availability of affordable high-performance
computing platforms using FPGAs as accelerators, (2)
programming tools that can bridge the gap between high-level
procedural programming languages and the spatial computing
paradigm that is implied on an FPGA device.

This paper reports on the experience of programming the Convey
Computers HC-1 [2] systems using the ROCCC 2.0 (Riverside
Optimizing Compiler for Configurable Computing) toolset [6].
The HC-1 is a high-performance computer systems consisting of
an eight-core Intel Xeon with an FPGA coprocessor consisting of
four Xilinx Virtex 5 LX 330 FPGAs. The cores and the FPGAs
share a memory in a cache coherent mode. ROCCC is a C to
VHDL compilation framework specifically designed for the
generation of FPGA-based code accelerators.

The porting of the ROCCC toolset on the HC-1 was tested using
Dynamic Time Warping (DTW) [7], a data mining application1,
and the Viola-Jones [10] object detection algorithm, a computer
vision application.

This paper is organized as follows: Section 2 describes the HC-1
system. Section 3 describes the ROCCC 2.0 compilation
framework as well as the interfacing between the ROCCC
generated code (RGC) and the HC-1 system. Section 4 describes
the implementation of the two applications, the challenges faced
and the results obtained.

2. THE CONVEY HC-1 SYSTEM

2.1 System Architecture
The Convey HC-1 is a hybrid-core computer system that uses a
commodity two-socket motherboard to combine a reconfigurable,
FPGA-based coprocessor with an industry standard Intel 64
processor. The system architecture is shown in Figure 1. The
coprocessor supports multiple instruction sets (referred to as
“personalities”), which are optimized for different workloads and
dynamically reloaded when an application is run. Each
personality includes a base set of instructions that are common to
all personalities, as well as extended instructions that are designed
for a particular workload.
The coprocessor has a high bandwidth memory subsystem that is
incorporated into the Intel coherent global memory space.
Coprocessor instructions can therefore be thought of as extensions
to the Intel instruction set—an executable can contain both Intel
and coprocessor instructions, and those instructions exist in the
same virtual and physical address space.

2.2 Coprocessor
The coprocessor has three major sets of components, referred to
as the Application Engine Hub (AEH), the Memory Controllers
(MCs), and the Application Engines (AEs).
The AEH is the central hub for the coprocessor. It implements the
interface to the host processor and to the Intel I/O chipset, fetches
and decodes instructions, executes scalar instructions and passes
extended instructions to the AEs. The 8 Memory Controllers
support a total of 16 DDR2 memory channels, providing an
aggregate of over 80GB/sec of bandwidth to ECC protected
memory. The MCs translate virtual to physical addresses on
behalf of the AEs, and include snoop filters to minimize snoop
traffic to the host processor. The Memory Controllers support
standard DIMMs as well as Convey designed Scatter-Gather
DIMMs, which are optimized for transfers of 8-byte bursts and

* In this work W. Najjar is supported in part by NSF Awards CCF0905509 and CCF0811416.
1 The compilation and FPGA performance evaluation of the DTW algorithm has been previously reported in [7].

Figure 1: The Convey HC-1 System Architecture

mailto:najjar@cs.ucr.edu
najjar
First Workshop on the Intersections of Computer Architecture and Reconfigurable Logic
(CARL 2010), Atlanta, Georgia, December 5, 2010. Co-located with MICRO-43.

mailto:najjar@cs.ucr.edu

provide near peak bandwidth for non-sequential 8-byte accesses.
The coprocessor therefore provides a much higher peak
bandwidth, and often can deliver a much higher percentage of that
bandwidth, than what is available to commodity processors.
The infrastructure provided by the AEH and MCs is common to
all personalities, ensuring that access to coprocessor memory,
memory protection, and communication with the host processor
are always available.
The Application Engines (AEs) implement the extended
instructions that deliver performance for a personality. The AEs
are connected to the AEH by a command bus that transfers
opcodes and scalar operands, and to the memory controllers via a
network of point-to-point links that provide very high sustained
bandwidth. Each AE instruction is passed to all four AEs. How
they process the instructions depends on the personality. For
instance, a personality that implements a vector model might
implement multiple arithmetic pipelines in each AE, and divide
the elements of a vector across all the pipelines to be processed in
parallel.

2.3 Personalities
A personality defines the set of instructions supported by the
coprocessor, as well as the behavior of those instructions. A
system may have multiple personalities installed and can switch
between them dynamically to execute different types of code, but
only one personality is active on a coprocessor at any one time.
Each installed personality includes the loadable bit files that
implement a coprocessor instruction set, a list of the instructions
supported by that personality, and an ID used by the application to
load the correct image at runtime.
A scalar instruction set is available to all personalities. These
instructions include scalar arithmetic, conditionals, branches, and
other operations required to implement loops and manage the
operation of the coprocessor. In addition to the scalar instructions,
each personality includes extended instructions that may be
unique to that personality. Extended instructions are designed for
particular workloads, and may include only the operations that
represent the largest portion of the execution time for an
application. For instance, a personality designed for seismic
processing may implement 32-bit complex vector arithmetic
instructions.
Coprocessor instructions use virtual addresses compatible with the
Intel® 64 specification, and coherently share memory with the
host processor. The host processor and I/O system can access
coprocessor memory and the coprocessor can access host memory.
The virtual memory implementation provides protection for
process address spaces as in a conventional system. Figure 2
shows the architecture of a coprocessor personality.
The common elements to all personalities--Instruction Set
Architecture, instruction dispatch interface and virtual memory--
ensure that compilers and other tools can be leveraged across
multiple personalities, while still allowing customization for
different workloads.

2.4 Personality Development Kit
The Personality Development Kit is a set of tools and
infrastructure that enables a user to develop a custom personality
for the HC-1 system. A set of generic instructions and defined
machine state in the Convey ISA allows the user to define the
behavior of the personality. Logic libraries included in the PDK
provide the interfaces to the scalar processor, memory controllers
and to the management processor for debug. The user develops
custom logic that connects to these interfaces. Functional

verification of the personality is done using the Convey
architectural simulator, which allows users to verify the design
using the application to drive the simulation. The PDK also
includes a tool-flow to ease the process of generating the FPGA
image to run on the system.

3.THE ROCCC 2.0 TOOLSET
3.1 ROCCC 2.0 Program Structure
ROCCC 2.0 supports a bottom-up modular approach to hardware
accelerator design in which components are written in a strict
subset of C and used to build larger components and systems. The
ROCCC 2.0 compiler generates VHDL for two types of C code,
which are referred to as modules and systems.
Modules are concrete hardware blocks that perform a computation
on a known number of inputs in a fixed delay and are fully
pipelined, generating a fixed number of outputs every clock cycle.
Once compiled through ROCCC, modules are available for
integration in larger code through standard C function calls.
ROCCC also supports the importing of module code from other
sources, such as predefined VHDL or FPGA-specific netlists.
Figure 3 shows an example ROCCC module that takes an integer
and returns that integer to the 10th power. Modules require a
definition of a struct that identifies all of the inputs and outputs to
the hardware block. Variables of the struct with the suffix “_in”
are identified as inputs and variables with the suffix “_out” are
identified as outputs. The computation of a module must be
described in a function that both takes and returns an instance of
this struct. The function performs the computation and must read
from all of the inputs and assign a value to all outputs. When
compiled, modules are placed in a database (as an integral part of
the ROCCC GUI) and accessible to other ROCCC code, with all
properties such as latency reported to the user.
ROCCC systems are critical loops that perform extensive
computations on large streams of data or windows in memory.
Generic memory interfaces are created for each input and output
stream detected in the system code and configured based upon
their use. Data reuse between consecutive loop iterations is
detected and used to minimize the number of memory fetches
generated. Systems can utilize all available modules, which
integrate directly into the pipelined structure created. The loops
contained in system code are heavily optimized to extract
parallelism and maximize throughput, and the hardware generated
can further be guided by explicit user control of optimizations.
ROCCC supports both integers of any bit width and floating point
values through the addition of intrinsic cores. The hardware

Figure 2 : FPGA Personality Architecture

support for these operations can
come from a variety of known
library components, such as
Xilinx CoreGen [11], as long as
the compiler is made aware of
their existence.

3.2 Compilation Flow
ROCCC code goes through
several phases when being
compiled into hardware. First,
high level transformations are
performed and information is
collected. This is then passed in
an intermediate format we refer
to as Hi-CIRRF (Compiler
Intermediate Representation for
Reconfigurable Fabrics) that is
then further optimized to extract
parallelism and is transformed
into a pure data-flow graph that
represents the constructed
hardware.
At each stage of compilation the

user has control over both the choice and scope of optimizations
to perform. At the high level, a large number of standard software
optimizations are performed such as constant propagation and
scalar replacement. Also, users have the choice of choosing
additional optimizations such as loop unrolling. Unlike software
compilers, ROCCC offers greater control over loop unrolling and
allows users to select individual loops to be unrolled in a user-
defined order along with the amount they should be unrolled.
This allows for users to maximize the bandwidth of the platform
they are targeting.
In addition to standard compiler optimizations, there are high
level optimizations that are specifically targeted to generating
hardware. ROCCC can generate a one dimensional hardware
systolic array from C code that is written as a wavefront algorithm
on a two dimensional array if the user enables systolic array
generation. Similarly, temporal common subexpression
elimination will find common expressions across loop iterations
and replace them with feedback variables, decreasing the amount
of area used by the generated circuit.
At the high level, streams and memories are identified by
analyzing array accesses inside of loops. Information regarding
the window size and reuse patterns of each stream is collected and
passed to the low level hardware generation. The user has the
option of tuning each stream as appropriate for the targeted
platform.
At the low level, users may select if generated integer arithmetic
truncates bits at every step or increases precision until operations
are performed. For example, if two eight bit integers are
multiplied together and then added to a sixteen bit integer the user
can chose if the multiplication is stored in a sixteen bit integer and
then added with another sixteen bit integer to have a final result of
seventeen bits or if the multiplication is truncated to eight bits
before being added to the sixteen bit number. Additionally, users
have the option of transforming long chains of arithmetic
operations into a balanced tree structure or keeping the generated
hardware as a chain. This optimization is left as a choice to the
user as floating point operations may produce different, but still
correct, results than software when the order of operations is
different than software.

Fine grained control over pipelining is achieved by allowing the
user to select weights for various operations as they correspond to
the actual cost of these operations on the platform being targeted.
ROCCC will traverse over the data flow graph and combine
instructions into the same pipeline stage if the combined weight is
less than the maximum weight per cycle as defined by the user,
allowing the user to directly control the number of pipeline stages
generated and trade-off latency and clock speed as appropriate.

3.3 Interfacing to Platforms
On a CPU the interface implicit in all ISAs is that of a large and
uniformly accessible memory (not necessarily a flat address
space). The communication to/from the outside world is done via
memory mapped I/O. There is no equivalent standard model with
FPGAs. Building on the experience acquired with the first version
of ROCCC, it was clear that the code generated by the compiler
should be made, as much as possible, platform agnostic to prevent
a blow up in complexity of the compiler. The ROCCC 2.0
compiler supports two abstractions for interfacing to external
devices: a randomly addressed memory and a stream.
A memory interface is generated for each stream that was detected
during compilation. If the window of accesses for a stream is a
noncontiguous memory block, for example a 3x3 sliding window
over a picture, a memory interface and address generator is
created to read consecutive windows. If the window of access for
a stream is strictly contiguous we generate a stream interface that
acts as a fifo and does not generate addresses to fetch.
ROCCC code treats memories as being word addressable, where
the word size is determined by the size of the individual elements
in the stream in the original C code. For example, if the original
C code read from an array of 8-bit integers, the generated memory
interface would create an address and issue a fetch for each 8-bit
value that needed to be read, regardless of the underlying
platform.
In order to interface the generated ROCCC memory interface to
an actual platform, several parameters for tuning are available to
the user. First, the size of the individual elements of the stream
may be changed to match the native word length of the platform,
although this inefficient in most cases.
More importantly, the amount of incoming and outgoing channels
per stream may be adjusted. By default, each stream interface
expects to read one value per clock cycle. On a stream-by-stream
basis, the user can change the number of values read each clock
cycle. For example, the user may change an 8-bit stream to read
four values every clock cycle, enabling that stream to be
connected to a platform specific 32-bit bus with little to no
overhead glue logic.
Another parameter that can be adjusted for each stream is the
number of outstanding memory requests. By default, ROCCC
generated code creates interfaces that allow for one memory
request per stream at a time. This enables fast access to data
stored close to the generated circuit, such as data in BRAMs, but
proves problematic when the memory fetches have a large latency.
The number of outgoing memory requests can be changed to any
number and the only requirement ROCCC expects is that the data
is returned in the order it is requested.
With all ROCCC generated memory interfaces, internal data reuse
is handled through the creation of a smart buffer [3]. The smart
buffer stores data that is used across loop iterations, allowing for
the minimal amount of data to be read between activations of the
data path.

typedef struct
{
 int x_in ;
 int result_out ;
} pow_t ;

pow_t Pow(pow_t p)
{
 int i ;
 int total ;
 total = 1 ;
 for (i = 0 ; i < 10 ; ++i)
 total *= p.x_in ;
 p.result_out = total ;
 return p ;
}

Figure 3: ROCCC 2.0
Module Code

3.4 The ROCCC GUI
The ROCCC GUI is built as an Eclipse plug-in. It provides the
user with full control over the programming, compilation and
interfacing of the ROCCC code. It provides an integrated way to
manage the instantiation of modules and cores into C code,
control both high level and low level (including pipelining)
transformations, interface with generic structures such as BRAMs,
and generate testbenches for verification.

4. APPLICATIONS
In this section we describe the ROCCC implementation of two
applications on the Convey Computers HC-1: Dynamic Time
Warping and Viola-Jones Face Detection.

4.1 Dynamic Time Warping
Subsequence similarity search, the task of finding a region of a
much longer time series that matches a specified query time series
within a given threshold, is a fundamental subroutine in many
higher level data mining tasks such as motif discovery, anomaly
detection, association discovery, and classification. Dynamic
Time Warping (DTW) has been shown to be the best form of
determining distance between two time series across a wide range
of domains.
The DTW algorithm as described in [7] searches for a
subsequence that is 128 characters long. The time series being
compared to this sequence must be normalized, but the entire time
series cannot be normalized once and processed. Instead, each
substring of length 128 extracted from the time series must be
normalized against itself before being compared with the
candidate subsequence.
The software algorithm for computing DTW first creates a
normalized subsequence and then performs a wavefront algorithm
on a two dimensional array, creating a warping matrix that
describes the optimal alignment of the candidate subsequence and
the current position of the time series. This is then repeated for
each position in the time series and is very computationally
expensive.
Our hardware design is based off of the hardware as described in
[7]. The design is split into two major components: an online
normalizer as shown in Figure 4 and a systolic array that
calculates the warping matrix. Both components were coded in C
and generated with ROCCC. The normalizer was written as a
system of modules that generated a normalized subsequence every
clock cycle. The warping matrix was written as a wavefront
algorithm on a two dimensional array that was transformed
through ROCCC optimizations into a systolic array.
The warping matrix takes 128 cycles to completely process a
substring and must then be reset before processing the next
substring. Since the normalizer generates substrings each cycle,
the complete circuit reaches maximum throughput with 128
instances of the warping matrix.
We explored several options for partitioning the hardware onto the
FPGAs on the Convey HC-1. We first explored moving the
normalizer to software and filling the hardware with systolic array
warping matrices that read from memory. After synthesizing to
the Virtex 5 LV 330 on the HC-1, we discovered that a single
warping matrix on the FPGA ran at 95 MHz and took up 38% of
the area, which means a single systolic array can process
approximately 742,000 subsequences per second assuming
maximum bandwidth. Running in software, the normalizer
component was only able to generate 3137 subsequences per
second, or 203x less than we can support. With this result, we
decided to move the normalizer into the FPGA.

This resulted in three different options we explored. The first
option was to place the normalizer and one systolic array on one
FPGA. We were able to fit two systolic arrays on the FPGA. This
lead to the third option, in which we put the normalizer on one
FPGA, wrote the results out to memory, and then placed the
systolic arrays on another FPGA , which read the normalized
values from memory.
When we synthesized a combined normalizer and systolic array,
we found that the resulting circuit was able to run at 115MHz and
required approximately 40% of the area, resulting in a total of
approximately 900K subsequences per second processed at
maximum bandwidth.
Our next option was to run the normalizer on one FPGA and run 2
systolic array warpers on a different FPGA, with the
communication occurring through memory. The normalizer
portion alone ran at 152 MHz, took 3% of the slices and was able
to generate 1,187,500 subsequences per second at maximum
bandwidth. The two systolic arrays ran at 60 MHz, took 75% of
an FPGA, and could process approximately 937,500 subsequences
per second at maximum bandwidth.
Further tuning is available in ROCCC by selecting the number of
channels each stream can support. The data handled by the
hardware DTW is 8-bit integers, while the Convey HC-1 has a
native 64-bit data bus. ROCCC allows us to maintain maximum
bandwidth for a given architecture by changing the number of
incoming channels to match the available bandwidth.
The ROCCC generated code does not know the base address of
the streams, but instead only generates offsets into each stream.
The software running on the Convey machine is responsible for
both managing the transfer of stream data to the hardware and the
passing of the base address in memory of each stream in a register
to the hardware. This is performed through several calls to the
personality API.
The address space on the Convey machine is typically partitioned
based upon three bits of the address to one of eight memories,
which makes connecting the streams to a particular memory
controller a tricky proposition when the addresses of the data to be
passed to the hardware is unknown at compile time. In order to
make the porting of ROCCC code easier, a cross-bar was created
that enables any stream to be connected to any memory controller

mainly in three ways. First, it maximizes the throughput by
exploiting loop and instruction level parallelism. Second, it
reuses the data, and third, it generates a pipelined datapath to
minimize the number of clock cycles [29].

Our FPGA design consists of two major blocks:
Normalizer and Warper, to normalize the input data and run
the actual DTW matrix calculations, respectively (Figure 6).
Input data streamed into the system are first given to a First-
In-First-Out (FIFO) buffer. The size and input ratio of this
FIFO can be adjusted according to the FPGA interconnection
mechanism. However, the output of the FIFO generates one
sample (8 bits) every clock cycle. Next, the output of the
FIFO is fed into the Normalizer module. Initially,
Normalizer waits until the first window is received. Every
following normalization operation reuses m-1 operands of
the previous operation, where m is the query length. After the
first output is produced, a new output is generated every
clock cycle. This output is given to another FIFO, which acts
as the intermediate memory component between the
Normalizer and the Warper.

Input
PINs

Input Buffer

m Datapoints
Normalizer

Internal Buffer

m Datapoints

Removing Buffer

1 Datapoint

Warper

1 Datapoint

Figure 6: FPGA Block Diagram. Thick lines are for m-point wide
connections. Thin lines are for one-point wide connections. Buffers are
simple FIFOs.

Internally, a trivial Normalizer module stores m-partial
sliding windows. In every clock cycle, it updates statistics
for all of the partial windows and outputs the window for
which the normalization is complete. Thus, it needs quadratic
O(m2) space in the FPGA and does not scale with larger
query lengths. In order to support larger query lengths, we
implemented an online Normalizer, which does not
remember intermediate states. It computes the mean (�) and
standard deviation (�) online and normalizes exactly one
window in every clock cycle. Thus, it needs linear O(m)
space in the FPGA. Although the trivial Normalizer has
shown better performance in speed due to less overhead, it
does not make any difference in the overall system
performance. The reason for this is that the Warper module
is the real performance bottle-neck as described later.

The Online Normalizer consists of three sub-units, as
shown in Figure 7. The first unit calculates the sum and sum
of squares of all the inputs in a sliding window fashion, by
adding the new value while subtracting the oldest value to be
������
� ����� ���� ����� ����������� ���� ������ ������� ��� �����
until the first window is completely received through the
���������� � ����������������	���
� ���������������
���� ����
�������������������� �������������
������
����� ������������� �
and the sum for the second window is obtained at the output.
This output is also given to the Normalize Divider sub-unit,
where the mean and the standard deviation of the latest
window are obtained. The input stream is provided to the
third unit through a buffer. The size of this buffer depends on
the delay of the first two modules. The third module must

wait until the corresponding mean and standard deviation
values are available for a given window. This delay is
provided by the Datapoint Buffer, which is automatically
added by ROCCC. The unit then runs the actual
normalization function. The generated normalized data is
provided to the systolic array (warper) through a buffer, as
shown in Figure 6.

Datapoint

To Remove

!

!

Window Length

Normalize
Adder

Normalize
Divider

m Datapoints

m Normalized
Datapoints

Online
Normalizer

�

Datapoint Buffer

Output to Internal
Buffer

� x

2� x

�

�

Figure 7: Online Normalization Unit. The sum and sum of squares are
obtained in a sliding window approach, by adding the new input and
subtracting the oldest value. The input datapoints are delayed through the
Datapoint Buffer, to make sure that the correct mean and standard
deviation are used.

The Warper module is implemented as a systolic array
[3]. A systolic array consists of data processing units
connected in a matrix fashion. These data processing units
(i.e. cells) share the information with their neighbors
immediately after processing. Using ROCCC!�� �����-in
systolic array generator, we simply obtain the hardware
description of the Warper module. Structurally, the Warper
module is the same for any window size, except for the size
of the systolic array. This size can be adjusted in the ROCCC
code by tuning a parameter. A Warper module generates one
DTW distance between the normalized sliding window and
the query time series in every m clock cycle where m is the
window size/query length. Since the normalization unit is m
times faster than the Warper unit, we place multiple Warper
units to operate on separate normalized windows generated
by the normalization unit. Ideally, if we had unlimited FPGA
area, we could place m Warper modules to get the maximum
processing speed of one DTW distance in every clock cycle.
When multiple Warper modules are in place, the Internal
Buffer output is fed into them in a round robin fashion.

VI. EVALUATION
In this section, we show the performances for the DTW

subsequence search problem in different hardware settings.
We use the following platforms:

Software: Intel Xeon E5540 CPU at 2.53 GHz
SSE : Intel i7- 920 CPU at 2.66 GHz
GPU: NVIDIA Tesla C1060 with 240 cores
FPG A : Xilinx Virtex 5 LX-330

The SSE (Streaming Single Instruction Multiple Data
(SIMD) Extensions) is an instruction set extension to �����!��
x86-architecture. It makes use of 128-bit SSE registers and
can merge four 32-bit data to operate concurrently. The
software implementation proposed in Table 1 can be
parallelized by making use of data independencies. However,

mainly in three ways. First, it maximizes the throughput by
exploiting loop and instruction level parallelism. Second, it
reuses the data, and third, it generates a pipelined datapath to
minimize the number of clock cycles [29].

Our FPGA design consists of two major blocks:
Normalizer and Warper, to normalize the input data and run
the actual DTW matrix calculations, respectively (Figure 6).
Input data streamed into the system are first given to a First-
In-First-Out (FIFO) buffer. The size and input ratio of this
FIFO can be adjusted according to the FPGA interconnection
mechanism. However, the output of the FIFO generates one
sample (8 bits) every clock cycle. Next, the output of the
FIFO is fed into the Normalizer module. Initially,
Normalizer waits until the first window is received. Every
following normalization operation reuses m-1 operands of
the previous operation, where m is the query length. After the
first output is produced, a new output is generated every
clock cycle. This output is given to another FIFO, which acts
as the intermediate memory component between the
Normalizer and the Warper.

Input
PINs

Input Buffer

m Datapoints
Normalizer

Internal Buffer

m Datapoints

Removing Buffer

1 Datapoint

Warper

1 Datapoint

Figure 6: FPGA Block Diagram. Thick lines are for m-point wide
connections. Thin lines are for one-point wide connections. Buffers are
simple FIFOs.

Internally, a trivial Normalizer module stores m-partial
sliding windows. In every clock cycle, it updates statistics
for all of the partial windows and outputs the window for
which the normalization is complete. Thus, it needs quadratic
O(m2) space in the FPGA and does not scale with larger
query lengths. In order to support larger query lengths, we
implemented an online Normalizer, which does not
remember intermediate states. It computes the mean (�) and
standard deviation (�) online and normalizes exactly one
window in every clock cycle. Thus, it needs linear O(m)
space in the FPGA. Although the trivial Normalizer has
shown better performance in speed due to less overhead, it
does not make any difference in the overall system
performance. The reason for this is that the Warper module
is the real performance bottle-neck as described later.

The Online Normalizer consists of three sub-units, as
shown in Figure 7. The first unit calculates the sum and sum
of squares of all the inputs in a sliding window fashion, by
adding the new value while subtracting the oldest value to be
������
� ����� ���� ����� ����������� ���� ������ ������� ��� �����
until the first window is completely received through the
���������� � ����������������	���
� ���������������
���� ����
�������������������� �������������
������
����� ������������� �
and the sum for the second window is obtained at the output.
This output is also given to the Normalize Divider sub-unit,
where the mean and the standard deviation of the latest
window are obtained. The input stream is provided to the
third unit through a buffer. The size of this buffer depends on
the delay of the first two modules. The third module must

wait until the corresponding mean and standard deviation
values are available for a given window. This delay is
provided by the Datapoint Buffer, which is automatically
added by ROCCC. The unit then runs the actual
normalization function. The generated normalized data is
provided to the systolic array (warper) through a buffer, as
shown in Figure 6.

Datapoint

To Remove

!

!

Window Length

Normalize
Adder

Normalize
Divider

m Datapoints

m Normalized
Datapoints

Online
Normalizer

�

Datapoint Buffer

Output to Internal
Buffer

� x

2� x

�

�

Figure 7: Online Normalization Unit. The sum and sum of squares are
obtained in a sliding window approach, by adding the new input and
subtracting the oldest value. The input datapoints are delayed through the
Datapoint Buffer, to make sure that the correct mean and standard
deviation are used.

The Warper module is implemented as a systolic array
[3]. A systolic array consists of data processing units
connected in a matrix fashion. These data processing units
(i.e. cells) share the information with their neighbors
immediately after processing. Using ROCCC!�� �����-in
systolic array generator, we simply obtain the hardware
description of the Warper module. Structurally, the Warper
module is the same for any window size, except for the size
of the systolic array. This size can be adjusted in the ROCCC
code by tuning a parameter. A Warper module generates one
DTW distance between the normalized sliding window and
the query time series in every m clock cycle where m is the
window size/query length. Since the normalization unit is m
times faster than the Warper unit, we place multiple Warper
units to operate on separate normalized windows generated
by the normalization unit. Ideally, if we had unlimited FPGA
area, we could place m Warper modules to get the maximum
processing speed of one DTW distance in every clock cycle.
When multiple Warper modules are in place, the Internal
Buffer output is fed into them in a round robin fashion.

VI. EVALUATION
In this section, we show the performances for the DTW

subsequence search problem in different hardware settings.
We use the following platforms:

Software: Intel Xeon E5540 CPU at 2.53 GHz
SSE : Intel i7- 920 CPU at 2.66 GHz
GPU: NVIDIA Tesla C1060 with 240 cores
FPG A : Xilinx Virtex 5 LX-330

The SSE (Streaming Single Instruction Multiple Data
(SIMD) Extensions) is an instruction set extension to �����!��
x86-architecture. It makes use of 128-bit SSE registers and
can merge four 32-bit data to operate concurrently. The
software implementation proposed in Table 1 can be
parallelized by making use of data independencies. However,

Figure 4: Block Diagram of the Hardware Normalizer

Figure 5: Block Diagram of the DTW Circuit

and the addresses generated will be routed to the correct memory
partition.

4.2 Viola-Jones Face Detection
Viola-Jones, as presented in [10], detects the existence of faces in
an image by searching the subwindows of the image and running
a multi-stage classifier cascade against that subwindow. Each
stage of the classifier cascade can detect the presence of faces
with a very low rate of false negatives, and a relatively low rate of
false positives. By chaining multiple stages of classifiers into a
cascade, faces correctly detected in one classifier stage will
continue to pass further classifier stages, while non-faces falsely
detected are eliminated by more rigorous classifier stages. Each
classifier stage itself is composed of many features, which are
very weak classifiers capable of around a 51% accuracy rate.
Multiple weak classifiers can be grouped together to create a
strong classifier, as shown in [6]. Particularly, the number of
features in each stage determines both the accuracy and the
computation time needed to evaluate that classifier stage, with
more features giving a greater accuracy at the cost of computation
time. One benefit of Viola-Jones over previous algorithms is the
idea of using smaller classifier stages at the beginning of the
classifier cascade; windows which are obviously not faces can be
quickly eliminated, while windows requiring more computation
time are passed along to classifier stages with more features, and
thus more accuracy, for further processing. The structure of the
software algorithm is shown in Figure 6.
A classifier stage classifies a window by summing all of the
feature's calculated value and comparing that sum against a stage
threshold. Each feature in a classifier stage returns a weight,
which are summed and compared to the stage threshold. Each
feature in Viola-Jones is a Haar-like feature, consisting of either
two, three, or four rectangular regions of the current subwindow
of the image. Each rectangular region of the feature is evaluated
by summing the pixel values within that region, then multiplying
by a particular weight for that region. As the weights can be either
positive or negative, a difference of summed areas can be
evaluated. This difference of summed areas is compared to a
threshold and one of two weights is returned based on this
comparison. Viola-Jones works on an Integral Image, which
enables a reduction in the number of calculations necessary in
determining the area of region into 9 arithmetic expressions.
Viola-Jones requires that the subwindow currently being
processed is variance normalized in order to minimize the effects
of different lighting conditions, as the weights chosen reflect a

similar variance normalization done at training time. Thus, for
every subwindow, it is necessary to find both the standard
deviation and the mean of the pixel values of the subwindow, and
to then preprocess each pixel by subtracting off the mean and
dividing by the standard_deviation. As the variance normalization
is done at the subwindow level, with the mean and standard
deviation being calculated off of the values of the pixels in the
subwindow, the variance normalization cannot merely be done on
the image as a whole. Particularly in hardware, this represents a
very costly set of operations to perform.
When analyzing the algorithm, we determined that the cascading
structure of the algorithm is a software convention to eliminate
clock cycles. Thus, the cascade architecture is much less useful
for hardware than for software. However, one major benefit of
hardware over software is that all of the stages can be calculated
in parallel, as there are no dependencies between them. Instead,
the final decision of whether the subwindow contains a face or not
depends on all of the stages passing. Our architecture takes
advantage of this by parallelizing all stages to perform
calculations simultaneously, as shown in Figure 7.
The original Viola-Jones algorithm includes three issues that make
porting to hardware particularly difficult. These three issues were
usage of floating point, use of division, and use of square root. All
three issues involved operations that were extremely expensive in
hardware.
In hardware, floating point operations are much more expensive
than integer operations of the same type, in both area and
frequency. We took advantage of the fact that the algorithm
involves multiplying floating point constants against integers, and
converted the floating point operations to fixed point operations.
Each floating point constant was multiplied by 212, which gave
consistent results with the other 32 bit integer calculations done
by the feature calculation.
In order to find the mean and standard deviation of the
subwindow currently being processed, integer division by
constants was necessary. We replaced all integer divisions by
constants with an approximation of the form a/b ~= (((2k)+b-1)/b
* a)>>k. As k and b are both constants, (((2k+b-1)/b can be
calculated at compile time; k is chosen by profiling the code and
finding a value between 1 and 32 that works well, which we found
to be 16.
The calculation for standard deviation involves taking the square
root of the variance; square root is generally available as an IP
core. Through profiling, we were able to determine that the
standard deviation was never more than 120, which meant that a
general purpose 32-bit square root core was not necessary; rather,
only a 16 bit square root core was necessary. We composed a
module in ROCCC that performed the square root of 16 bit values

! !

!"#$%& !"#$%' !"#$%(!"#$%)

*#++

,-.

*#++

/-"%$0#12/3#$%

! !

!"#$%&

!"#$%'

!"#$%(

!"#$%)

*#+,

*#+,

*#+,

*#+,

-#..

/0"%$1#,2/3#$%

Figure 6: Software Structure of Viola-Jones Algorithm

Figure 7: Hardware Structure of Viola-Jones Algorithm

by binary searching for the largest number whose square was
smaller than the value in question; this generated a module,
callable from ROCCC, that could perform square root in one
clock cycle.
Porting to the Convey architecture was straightforward and
involved mapping each stream to a memory controller and
selecting a total of 256 outgoing memory requests.
While placing all of the approximately 3000 features necessary
for the software Viola-Jones on a single FPGA is infeasible,
splitting the design onto multiple FPGAs is possible due to our
completely parallel architecture. We synthesized the first six
stages of the face detection algorithm (189 features) and took up
approximately 37% of the FPGA running at 22MHz. Since all
features are the same computation with different constants, this
scales to approximately 510 features per FPGA, or 2040 total
features on the Convey HC-1, giving us approximately 343
600x600 frames per second at full potential.
Since this falls short of the number of features in software, we
looked into how to reduce this number. We found that the initial
stages were more amenable to software speedup than
computational accuracy, so we could use only the last 8 stages
with results that were very close to the original algorithm, which
contained 1467 total features. As future work we plan to change
the algorithm to better reflect the parallel hardware architecture.
By retraining the classifiers to take advantage of a parallel
architecture, it should be possible to maximize the detection rate
for the given number of features or decrease the total number of
necessary features.
To verify correctness of our face detection modifications, we ran
our modified algorithm on several images collected from the MIT
+ CMU data test set [1], the Open CV distribution [5], and various
pictures of faces taken from Google Image Search and compared
them to the results from the original software implementation.
The results are summarized in Table 1. The percentage difference
refers strictly to the number of faces detected with both
algorithms. False positives represent values reported as a face in
the modified algorithm that are not identified in the original
algorithm while false negatives are values that are detected in the
original algorithm and not identified in the modified algorithm.
In a few instances, we had differences of 25% or higher when
comparing the number of faces in the original algorithm to our
modified version. Some of these high percentage differences,
such as the instance with the Mona Lisa image, are a little
misleading. Since the original version collected six face regions
on the Mona Lisa and our modified collected three more, the
percentage was large because the original number was small to
begin with. Also, most of these false positives and negatives are
purely an instance of the modified algorithm collecting the face a
few pixels shifted away compared to the original algorithm.

5. CONCLUSION
We have reported on our experiences programming the Convey
Computers HC-1 system using the ROCCC 2.0 toolset. By
creating implementations of both Dynamic Time Warping and
Viola-Jones appropriate for the HC-1 through writing C code and
tuning with optimizations, we have shown a potential of 900
thousand subsequences per second processed with DTW and 343
frames per second on face detection.

REFERENCES
[1] CMU Image Database. http://vasc.ri.cmu.edu/idb/html/face/

frontal_images/

[2] Convey Computers. http://www.conveycomputer.com/
[3] Z. Guo, A. Buyukkurt, and W. Najjar. Input Data Reuse in

Compiling Window Operations Onto Reconfigurable
Hardware. In ACM Symposium on Languages, Compilers,
and Tools for Embedded Systems, 2004.

[4] E. Keogh. Exact Indexing of Dynamic Time Warping.
VLDB 2002: 406-417.

[5] Open Source Computer Vision. http://
opencv.willowgarage.com/wiki/

[6] ROCCC 2.0. http://roccc.cs.ucr.edu
[7] D. Sart, A. Mueen, W. Najjar, V. Niennattrakul, and E.

Keogh. Accelerating Dynamic Time Warping Subsequence
Search with GPUs and FPGAs, in Int. Conf. on Data Mining,
Sydney, Australia, Dec. 2010.

[8] R. Schapire. The Boosting Approach to Machine Learning:
An Overview. In the MSRI Workshop on Nonlinear
Estimation and Classification, 2002.

[9] J. Villarreal, A. Park, W. Najjar, and R. Halstead. Designing
Modular Hardware Accelerators in C With ROCCC 2.0. The
18th International IEEE Symposium on Field-Programmable
Custom Computing Machines (FCCM), May 2010.

[10] P. Viola and M. Jones: Robust Real-time Object Detection,
IJCV 2001.

[11] Xilinx Core Generator. http://www.xilinx.com/ise/products/
coregen_overview.pdf

Table 1: Original Viola-Jones Algorithm versus Modified Algorithm.

Image
Name

Faces on
Original

Faces on
Modified

%
difference

False
Positives

False
Negatives

Friends 6 6 0 0 0

Addams 26 26 0 0 0
NewsRadio 20 27 25.925 7 6
ManySizes 39 38 2.613 5 6
MonaLisa 9 6 50 1 4
ManyFaces 151 154 1.948 16 13
Wright 2 2 0 0 0

Figure 8: Difference in results from Original Viola-Jones (left) and
Modified Algorithm (right) on ManySizes

http://www.conveycomputer.com/
http://www.conveycomputer.com/
http://roccc.cs.ucr.edu
http://roccc.cs.ucr.edu

