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ABSTRACT
Utilizing FPGAs as hardware accelerators has  been hampered by 
both  the availability of affordable platforms and the lack of 
programming tools that bridge the gap between high-level 
procedural programming languages and the spatial computing 
paradigm that is implied on an FPGA.  This paper reports on the 
experiences of  programming the Convey Computers HC-1 system, 
a high-performance hybrid-core system consisting of eight 64-bit 
Intel Xeon processors coupled with four Xilinx Virtex 5 LX 330 
FPGAs, using the ROCCC 2.0 toolset, an open source C to VHDL 
compilation framework specifically designed for the generation of 
FPGA-based code accelerators, which address both of  these 
issues.  The porting of the ROCCC 2.0 toolset was tested on 
Dynamic Time Warping, a data mining application, and the Viola-
Jones face detection algorithm.  We discuss the characteristics of 
these applications and the process of accelerating these 
applications through ROCCC by writing C that was compiled with 
ROCCC and mapped onto the HC-1.

1. INTRODUCTION
Multiple studies have repeatedly demonstrated the potential  of 
FPGAs as high-performance computing platforms capable of 
achieving speedups measured in orders of magnitudes. However, 
their wider use has been impeded, to a large degree, by two 
challenges: (1) the availability of affordable high-performance 
computing platforms using FPGAs as accelerators, (2) 
programming tools that can bridge the gap between high-level 
procedural programming languages and the spatial computing 
paradigm that is implied on an FPGA device.

This paper reports on the experience of programming the Convey 
Computers HC-1 [2] systems using the ROCCC 2.0 (Riverside 
Optimizing Compiler for Configurable Computing) toolset [6]. 
The HC-1 is a high-performance computer systems consisting of 
an eight-core Intel  Xeon with an FPGA coprocessor consisting of 
four Xilinx Virtex 5  LX 330 FPGAs. The cores and the FPGAs 
share a memory in a cache coherent mode.  ROCCC is  a C to 
VHDL compilation framework specifically designed for the 
generation of FPGA-based code accelerators. 

The porting of the ROCCC toolset on the HC-1 was tested using 
Dynamic Time Warping (DTW) [7], a data mining application1, 
and the Viola-Jones [10] object detection algorithm, a computer 
vision application.

This paper is organized as follows: Section 2 describes the HC-1 
system. Section 3 describes  the ROCCC 2.0 compilation 
framework as  well as the interfacing between the ROCCC 
generated code (RGC) and the HC-1 system. Section  4 describes 
the implementation of the two applications, the challenges faced 
and the results obtained.

2. THE CONVEY HC-1 SYSTEM

2.1 System Architecture
The Convey HC-1 is a hybrid-core computer system that uses a 
commodity two-socket motherboard to combine a reconfigurable, 
FPGA-based coprocessor with an industry standard  Intel 64 
processor.  The system architecture is shown in Figure 1.  The 
coprocessor supports  multiple instruction sets (referred to as 
“personalities”), which are optimized for different workloads and 
dynamically reloaded when an application is  run.  Each 
personality includes a base set  of instructions  that are common to 
all personalities, as  well  as extended instructions that are designed 
for a particular workload.
The coprocessor has a high bandwidth memory subsystem that is 
incorporated into the Intel coherent  global memory space.  
Coprocessor instructions can therefore be thought of as extensions 
to  the Intel  instruction set—an executable can contain  both Intel 
and coprocessor instructions, and those instructions exist in the 
same virtual and physical address space. 

2.2 Coprocessor 
The coprocessor has three major sets  of components, referred to 
as the Application Engine Hub (AEH), the Memory Controllers 
(MCs), and the Application Engines (AEs). 
The AEH is the central hub for the coprocessor.  It implements the 
interface to  the host processor and to the Intel  I/O chipset, fetches 
and decodes instructions, executes scalar instructions and passes 
extended instructions to  the AEs.  The 8 Memory Controllers 
support a total  of 16 DDR2 memory channels, providing an 
aggregate of over 80GB/sec of bandwidth to ECC protected 
memory. The MCs translate virtual to physical addresses on 
behalf of the AEs, and include snoop filters to minimize snoop 
traffic to the host processor.  The Memory Controllers support 
standard DIMMs as well as Convey designed Scatter-Gather 
DIMMs, which are optimized for transfers of 8-byte bursts and 
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1 The compilation and FPGA performance evaluation of the DTW algorithm has been previously reported in [7].

Figure 1: The Convey HC-1 System Architecture
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provide near peak bandwidth for non-sequential 8-byte accesses.  
The coprocessor therefore provides a much higher peak 
bandwidth, and often can deliver a much higher percentage of that 
bandwidth, than what is available to commodity processors.
The infrastructure provided by the AEH and MCs is  common to 
all personalities, ensuring that access to coprocessor memory, 
memory protection, and communication with the host processor 
are always available.
The Application Engines (AEs) implement the extended 
instructions that deliver performance for a personality.  The AEs 
are connected to the AEH by a command bus that transfers 
opcodes and scalar operands, and to the memory controllers via a 
network of point-to-point links that provide very high sustained 
bandwidth.  Each AE instruction is passed to all  four AEs.  How 
they process the instructions depends on the personality.  For 
instance, a personality that implements a vector model might 
implement multiple arithmetic pipelines in each AE, and divide 
the elements of a vector across  all the pipelines  to be processed in 
parallel.

2.3 Personalities
A personality defines the set of instructions supported by the 
coprocessor, as well as the behavior of those instructions.  A 
system may have multiple personalities installed and can switch 
between them dynamically  to execute different types of code, but 
only  one personality is  active on a coprocessor at any one time.  
Each installed personality includes  the loadable bit files that 
implement a coprocessor instruction set, a list  of the instructions 
supported by that personality, and an ID used by  the application to 
load the correct image at runtime.  
A scalar instruction set is available to all personalities.  These 
instructions include scalar arithmetic, conditionals, branches, and 
other operations required to implement  loops and manage the 
operation of the coprocessor.  In  addition to  the scalar instructions, 
each personality includes extended instructions that may be 
unique to that personality.  Extended instructions are designed for 
particular workloads, and may include only the operations that 
represent the largest portion of the execution time for an 
application.  For instance, a personality designed for seismic 
processing may implement 32-bit  complex vector arithmetic 
instructions.  
Coprocessor instructions use virtual addresses compatible with the 
Intel® 64 specification, and coherently share memory with  the 
host  processor.  The host  processor and I/O system can access 
coprocessor memory and the coprocessor can access host memory.  
The virtual memory implementation  provides protection for 
process address  spaces as in a conventional system.  Figure 2 
shows the architecture of a coprocessor personality.
The common elements to all  personalities--Instruction Set 
Architecture, instruction dispatch interface and virtual memory--
ensure that compilers and other tools can be leveraged across 
multiple personalities, while still allowing customization for 
different workloads.  

2.4 Personality Development Kit
The Personality Development Kit is a set of tools and 
infrastructure that enables a user to develop a custom personality 
for the HC-1 system.  A set of generic instructions  and defined 
machine state in the Convey ISA allows  the user to define the 
behavior of the personality.  Logic libraries  included in  the PDK 
provide the interfaces to  the scalar processor, memory controllers 
and to the management processor for debug.  The user develops 
custom logic that  connects to these interfaces.  Functional 

verification of the personality is done using the Convey 
architectural simulator, which allows users  to  verify the design 
using the application to drive the simulation.  The PDK also 
includes a tool-flow to ease the process of generating the FPGA 
image to run on the system.

3.THE ROCCC 2.0 TOOLSET
3.1 ROCCC 2.0 Program Structure
ROCCC 2.0 supports a bottom-up modular approach to hardware 
accelerator design in which  components are written in a strict 
subset of C and used to build larger components and systems.  The 
ROCCC 2.0 compiler generates VHDL for two types of C code, 
which are referred to as modules and systems.
Modules are concrete hardware blocks that  perform a computation 
on  a known number of inputs in a fixed delay and are fully 
pipelined, generating a fixed number of outputs every clock cycle.  
Once compiled through ROCCC, modules are available for 
integration in larger code through standard C function  calls.  
ROCCC also supports the importing of module code from other 
sources, such as predefined VHDL or FPGA-specific netlists.  
Figure 3 shows an example ROCCC module that takes an integer 
and returns  that integer to the 10th power.  Modules require a 
definition of a struct that identifies all  of the inputs  and outputs to 
the hardware block.  Variables of the struct with the suffix “_in” 
are identified as inputs  and variables with the suffix “_out” are 
identified as outputs.  The computation of a module must be 
described in a function that  both  takes and returns an instance of 
this  struct.  The function performs the computation and  must  read 
from all  of the inputs and assign a value to all outputs.  When 
compiled, modules are placed in a database (as an integral part of 
the ROCCC GUI) and accessible to other ROCCC code, with all 
properties such as latency reported to the user.
ROCCC systems are critical  loops that  perform extensive 
computations on large streams of data or windows in memory.  
Generic memory interfaces are created for each input and  output 
stream  detected in  the system code and configured based upon 
their use. Data reuse between consecutive loop iterations is 
detected and used to minimize the number of memory fetches 
generated. Systems can utilize all  available modules, which 
integrate directly into the pipelined structure created.  The loops 
contained in system code are heavily optimized to extract 
parallelism and maximize throughput, and the hardware generated 
can further be guided by explicit user control of optimizations.
ROCCC supports both integers of any bit width and floating point 
values through the addition of intrinsic cores.  The hardware 

Figure 2 : FPGA Personality Architecture



support for these operations can 
come from a variety of known 
library  components, such as 
Xilinx CoreGen [11], as long as 
the compiler is  made aware of 
their existence.

3.2 Compilation Flow
ROCCC code goes through 
several  phases when being 
compiled into  hardware.  First, 
high  level  transformations  are 
performed and information is 
collected.  This is then passed in 
an intermediate format we refer 
to as Hi-CIRRF (Compiler 
Intermediate Representation for 
Reconfigurable Fabrics) that is 
then further optimized to extract 
parallelism and is  transformed 
into  a pure data-flow graph that 
represents the constructed 
hardware.
At each stage of compilation the 

user has  control over both the choice and scope of optimizations 
to  perform.  At the high level, a large number of standard software 
optimizations are performed such as  constant propagation and 
scalar replacement.  Also, users have the choice of choosing 
additional optimizations such as loop unrolling.  Unlike software 
compilers, ROCCC offers greater control over loop unrolling and 
allows users to select individual loops to be unrolled in a user-
defined order along with the amount they should be unrolled.  
This allows for users to maximize the bandwidth of the platform 
they are targeting.
In addition to standard compiler optimizations, there are high 
level optimizations that are specifically targeted to generating 
hardware.  ROCCC can generate a one dimensional hardware 
systolic array from C code that is written as a wavefront algorithm 
on  a two dimensional array if the user enables systolic array 
generation. Similarly, temporal common subexpression 
elimination will find common expressions across loop  iterations 
and replace them with feedback  variables, decreasing the amount 
of area used by the generated circuit.
At the high level, streams and memories are identified by 
analyzing array accesses inside of loops.  Information regarding 
the window size and reuse patterns of each stream is collected and 
passed to the low level hardware generation.  The user has the 
option  of tuning  each stream as appropriate for the targeted 
platform.
At the low level, users may select if generated integer arithmetic 
truncates bits at every step or increases precision until operations 
are performed.  For example, if two eight bit integers are 
multiplied together and then added to a sixteen bit integer the user 
can chose if the multiplication is stored  in a sixteen bit integer and 
then added with another sixteen bit integer to have a final result of 
seventeen bits or if the multiplication is truncated to eight  bits 
before being added  to the sixteen bit  number.  Additionally, users 
have the option  of transforming long chains  of arithmetic 
operations into a balanced tree structure or keeping the generated 
hardware as  a chain.  This optimization is left as a choice to  the 
user as floating point operations may produce different, but  still 
correct, results than software when the order of operations is 
different than software.

Fine grained control  over pipelining is achieved by allowing the 
user to select weights  for various  operations  as  they correspond to 
the actual cost of these operations on  the platform being targeted.  
ROCCC will traverse over the data flow graph and combine 
instructions into the same pipeline stage if the combined weight is 
less than the maximum weight per cycle as defined by the user, 
allowing the user to directly control the number of pipeline stages 
generated and trade-off latency and clock speed as appropriate.

3.3 Interfacing to Platforms
On a CPU the interface implicit in all ISAs is that  of a large and 
uniformly accessible memory (not necessarily a flat address 
space). The communication to/from the outside world is done via 
memory mapped I/O. There is no equivalent standard model with 
FPGAs. Building on the experience acquired with the first  version 
of ROCCC, it was clear that  the code generated by the compiler 
should  be made, as much as possible, platform agnostic to prevent 
a blow up in complexity  of the compiler. The ROCCC 2.0 
compiler supports two abstractions for interfacing to  external 
devices: a randomly addressed memory and a stream.
A memory interface is generated for each stream that was detected 
during compilation.  If the window of accesses for a stream is a 
noncontiguous memory block, for example a 3x3 sliding window 
over a picture, a memory interface and address generator is 
created to read consecutive windows.  If the window of access for 
a stream is strictly contiguous we generate a stream interface that 
acts as a fifo and does not generate addresses to fetch.
ROCCC code treats memories  as being word addressable, where 
the word size is determined by the size of the individual elements 
in  the stream in the original  C code.  For example, if the original 
C code read from an array of 8-bit integers, the generated memory 
interface would create an address and issue a fetch for each 8-bit 
value that  needed to be read, regardless of the underlying 
platform.
In order to interface the generated ROCCC memory interface to 
an actual  platform, several  parameters for tuning are available to 
the user.  First, the size of the individual elements  of the stream 
may be changed to match the native word length of the platform, 
although this inefficient in most cases.  
More importantly, the amount  of incoming and outgoing channels 
per stream may be adjusted.  By default, each stream interface 
expects to read one value per clock cycle.  On a stream-by-stream 
basis, the user can change the number of values  read each clock 
cycle.  For example, the user may change an 8-bit  stream to read 
four values every clock cycle, enabling that stream to be 
connected to a platform specific 32-bit bus with little to  no 
overhead glue logic.
Another parameter that can be adjusted for each stream is the 
number of outstanding memory requests.  By default, ROCCC 
generated code creates interfaces that  allow for one memory 
request per stream at a time.  This enables fast access to data 
stored close to the generated circuit, such as data in BRAMs, but 
proves problematic when the memory fetches have a large latency.  
The number of outgoing memory requests can be changed to any 
number and the only requirement ROCCC expects is that the data 
is returned in the order it is requested.
With all  ROCCC generated memory interfaces, internal data reuse 
is  handled through the creation of a smart buffer [3].  The smart 
buffer stores data that is used across loop iterations, allowing for 
the minimal amount of data to be read between activations of the 
data path.  

typedef struct
{
  int x_in ;
  int result_out ;
} pow_t ;

pow_t Pow(pow_t p)
{
  int i ;
  int total ;
  total = 1 ;
  for (i = 0 ; i < 10 ; ++i)
    total *= p.x_in ;
  p.result_out = total ;
  return p ;
}

Figure 3: ROCCC 2.0 
Module Code



3.4 The ROCCC GUI
The ROCCC GUI is  built  as an Eclipse plug-in. It  provides the 
user with full control over the programming, compilation and 
interfacing of the ROCCC code. It provides an integrated way to 
manage the instantiation  of modules and cores  into C code, 
control both  high level and low level (including  pipelining) 
transformations, interface with generic structures such as BRAMs, 
and generate testbenches for verification.

4. APPLICATIONS
In this section we describe the ROCCC implementation of two 
applications on the Convey Computers  HC-1: Dynamic Time 
Warping and Viola-Jones Face Detection.

4.1 Dynamic Time Warping
Subsequence similarity  search, the task of finding a region of a 
much longer time series that matches a specified query time series 
within  a given threshold, is a fundamental subroutine in many 
higher level data mining tasks such as motif discovery, anomaly 
detection, association discovery, and classification.  Dynamic 
Time Warping (DTW) has been shown to be the best form of 
determining distance between two time series across a wide range 
of domains.
The DTW algorithm as described in [7] searches for a 
subsequence that is  128 characters  long.  The time series being 
compared to this sequence must be normalized, but the entire time 
series cannot  be normalized once and processed.  Instead, each 
substring  of length 128 extracted from the time series must be 
normalized against itself before being compared with the 
candidate subsequence.
The software algorithm for computing DTW first creates a 
normalized subsequence and  then  performs a wavefront algorithm 
on  a two dimensional  array, creating a warping matrix that 
describes the optimal alignment of the candidate subsequence and 
the current position of the time series.  This is  then repeated for 
each position in the time series and is very computationally 
expensive.
Our hardware design is based off of the hardware as described in 
[7].  The design is split into two major components: an online 
normalizer as shown in Figure 4 and a systolic array that 
calculates the warping matrix.  Both  components  were coded in C 
and generated with ROCCC.  The normalizer was written  as a 
system of modules that generated a normalized subsequence every 
clock cycle.  The warping matrix was written as  a wavefront 
algorithm on a two dimensional  array that was transformed 
through ROCCC optimizations into a systolic array.
The warping  matrix takes  128 cycles  to completely  process a 
substring  and must  then be reset before processing  the next 
substring.  Since the normalizer generates substrings each cycle, 
the complete circuit reaches maximum throughput with 128 
instances of the warping matrix.
We explored several options for partitioning the hardware onto the 
FPGAs on  the Convey HC-1.  We first explored moving the 
normalizer to software and filling the hardware with systolic array 
warping matrices that read from memory.   After synthesizing to 
the Virtex 5 LV 330 on the HC-1, we discovered that a single 
warping matrix on the FPGA ran at 95 MHz and took up 38% of 
the area, which means a single systolic array can process 
approximately 742,000 subsequences per second assuming 
maximum bandwidth.  Running in software, the normalizer 
component was only able to generate 3137 subsequences per 
second,  or 203x less than we can support.  With this  result, we 
decided to move the normalizer into the FPGA.

This resulted in three different options we explored.  The first 
option  was  to  place the normalizer and one systolic array on one 
FPGA.  We were able to fit two systolic arrays on the FPGA.  This 
lead to the third option, in which we put the normalizer on one 
FPGA, wrote the results out to memory, and then placed the 
systolic arrays  on another FPGA , which read the normalized 
values from memory.
When we synthesized a combined normalizer and systolic array, 
we found that  the resulting circuit  was able to run at 115MHz and 
required approximately 40% of the area, resulting in a total of 
approximately  900K subsequences per second processed at 
maximum bandwidth.
Our next option was to run the normalizer on one FPGA and run 2 
systolic array warpers on a different FPGA, with the 
communication occurring through memory.  The normalizer 
portion alone ran at 152 MHz, took 3% of the slices and was able 
to  generate 1,187,500 subsequences per second at  maximum 
bandwidth.  The two systolic arrays ran at 60 MHz, took 75% of 
an FPGA, and could process approximately 937,500 subsequences 
per second at maximum bandwidth.
Further tuning is  available in  ROCCC by selecting the number of 
channels each stream can support.  The data handled by the 
hardware DTW is 8-bit  integers, while the Convey HC-1 has a 
native 64-bit data bus.  ROCCC allows us to maintain maximum 
bandwidth for a given architecture by changing the number of 
incoming channels to match the available bandwidth.
The ROCCC generated code does not know the base address of 
the streams, but instead only generates offsets into each stream.  
The software running on the Convey machine is responsible for 
both  managing the transfer of stream data to the hardware and the 
passing  of the base address  in memory of each stream in a register 
to  the hardware.  This is  performed through several calls to the 
personality API. 
The address space on the Convey machine is typically partitioned 
based upon three bits of the address to one of eight memories, 
which makes connecting the streams to  a particular memory 
controller a tricky proposition when the addresses of the data to be 
passed to  the hardware is unknown at  compile time.  In order to 
make the porting of ROCCC code easier, a cross-bar was created 
that enables  any stream to be connected to any  memory controller 

mainly in three ways. First, it maximizes the throughput by 
exploiting loop and instruction level parallelism. Second, it 
reuses the data, and third, it generates a pipelined datapath to 
minimize the number of clock cycles [29]. 

Our FPGA design consists of two major blocks: 
Normalizer and Warper, to normalize the input data and run 
the actual DTW matrix calculations, respectively (Figure 6). 
Input data streamed into the system are first given to a First-
In-First-Out (FIFO) buffer. The size and input ratio of this 
FIFO can be adjusted according to the FPGA interconnection 
mechanism. However, the output of the FIFO generates one 
sample (8 bits) every clock cycle. Next, the output of the 
FIFO is fed into the Normalizer module. Initially, 
Normalizer waits until the first window is received. Every 
following normalization operation reuses m-1 operands of 
the previous operation, where m is the query length. After the 
first output is produced, a new output is generated every 
clock cycle. This output is given to another FIFO, which acts 
as the intermediate memory component between the 
Normalizer and the Warper.  
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Figure 6: FPGA Block Diagram. Thick lines are for m-point wide 
connections. Thin lines are for one-point wide connections. Buffers are 
simple FIFOs. 

Internally, a trivial Normalizer module stores m-partial 
sliding windows. In every clock cycle, it updates statistics 
for all of the partial windows and outputs the window for 
which the normalization is complete. Thus, it needs quadratic 
O(m2) space in the FPGA and does not scale with larger 
query lengths. In order to support larger query lengths, we 
implemented an online Normalizer, which does not 
remember intermediate states. It computes the mean (�) and 
standard deviation (�) online and normalizes exactly one 
window in every clock cycle. Thus, it needs linear O(m) 
space in the FPGA. Although the trivial Normalizer has 
shown better performance in speed due to less overhead, it 
does not make any difference in the overall system 
performance. The reason for this is that the Warper module 
is the real performance bottle-neck as described later. 

The Online Normalizer consists of three sub-units, as 
shown in Figure 7. The first unit calculates the sum and sum 
of squares of all the inputs in a sliding window fashion, by 
adding the new value while subtracting the oldest value to be 
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and the sum for the second window is obtained at the output. 
This output is also given to the Normalize Divider sub-unit, 
where the mean and the standard deviation of the latest 
window are obtained. The input stream is provided to the 
third unit through a buffer. The size of this buffer depends on 
the delay of the first two modules. The third module must 

wait until the corresponding mean and standard deviation 
values are available for a given window. This delay is 
provided by the Datapoint Buffer, which is automatically 
added by ROCCC. The unit then runs the actual 
normalization function. The generated normalized data is 
provided to the systolic array (warper) through a buffer, as 
shown in Figure 6. 
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Figure 7: Online Normalization Unit. The sum and sum of squares are 
obtained in a sliding window approach, by adding the new input and 
subtracting the oldest value. The input datapoints are delayed through the 
Datapoint Buffer, to make sure that the correct mean and standard 
deviation are used. 

The Warper module is implemented as a systolic array 
[3]. A systolic array consists of data processing units 
connected in a matrix fashion. These data processing units 
(i.e. cells) share the information with their neighbors 
immediately after processing. Using ROCCC!�� �����-in 
systolic array generator, we simply obtain the hardware 
description of the Warper module. Structurally, the Warper 
module is the same for any window size, except for the size 
of the systolic array. This size can be adjusted in the ROCCC 
code by tuning a parameter. A Warper module generates one 
DTW distance between the normalized sliding window and 
the query time series in every m clock cycle where m is the 
window size/query length. Since the normalization unit is m 
times faster than the Warper unit, we place multiple Warper 
units to operate on separate normalized windows generated 
by the normalization unit. Ideally, if we had unlimited FPGA 
area, we could place m Warper modules to get the maximum 
processing speed of one DTW distance in every clock cycle. 
When multiple Warper modules are in place, the Internal 
Buffer output is fed into them in a round robin fashion.  

VI. EVALUATION 
In this section, we show the performances for the DTW 

subsequence search problem in different hardware settings. 
We use the following platforms: 

Software: Intel Xeon E5540 CPU at 2.53 GHz 
SSE : Intel i7- 920 CPU at  2.66 GHz 
GPU: NVIDIA Tesla C1060 with 240 cores 
FPG A : Xilinx Virtex 5 LX-330 

The SSE (Streaming Single Instruction Multiple Data 
(SIMD) Extensions) is an instruction set extension to �����!��
x86-architecture. It makes use of 128-bit SSE registers and 
can merge four 32-bit data to operate concurrently. The 
software implementation proposed in Table 1 can be 
parallelized by making use of data independencies. However, 
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implemented an online Normalizer, which does not 
remember intermediate states. It computes the mean (�) and 
standard deviation (�) online and normalizes exactly one 
window in every clock cycle. Thus, it needs linear O(m) 
space in the FPGA. Although the trivial Normalizer has 
shown better performance in speed due to less overhead, it 
does not make any difference in the overall system 
performance. The reason for this is that the Warper module 
is the real performance bottle-neck as described later. 

The Online Normalizer consists of three sub-units, as 
shown in Figure 7. The first unit calculates the sum and sum 
of squares of all the inputs in a sliding window fashion, by 
adding the new value while subtracting the oldest value to be 
������
� ����� ���� ����� ����������� ���� ������ ������� ��� �����
until the first window is completely received through the 
���������� � ����������������	���
� ���������������
���� ����
�������������������� �������������
������
����� ������������� �
and the sum for the second window is obtained at the output. 
This output is also given to the Normalize Divider sub-unit, 
where the mean and the standard deviation of the latest 
window are obtained. The input stream is provided to the 
third unit through a buffer. The size of this buffer depends on 
the delay of the first two modules. The third module must 

wait until the corresponding mean and standard deviation 
values are available for a given window. This delay is 
provided by the Datapoint Buffer, which is automatically 
added by ROCCC. The unit then runs the actual 
normalization function. The generated normalized data is 
provided to the systolic array (warper) through a buffer, as 
shown in Figure 6. 
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Figure 7: Online Normalization Unit. The sum and sum of squares are 
obtained in a sliding window approach, by adding the new input and 
subtracting the oldest value. The input datapoints are delayed through the 
Datapoint Buffer, to make sure that the correct mean and standard 
deviation are used. 

The Warper module is implemented as a systolic array 
[3]. A systolic array consists of data processing units 
connected in a matrix fashion. These data processing units 
(i.e. cells) share the information with their neighbors 
immediately after processing. Using ROCCC!�� �����-in 
systolic array generator, we simply obtain the hardware 
description of the Warper module. Structurally, the Warper 
module is the same for any window size, except for the size 
of the systolic array. This size can be adjusted in the ROCCC 
code by tuning a parameter. A Warper module generates one 
DTW distance between the normalized sliding window and 
the query time series in every m clock cycle where m is the 
window size/query length. Since the normalization unit is m 
times faster than the Warper unit, we place multiple Warper 
units to operate on separate normalized windows generated 
by the normalization unit. Ideally, if we had unlimited FPGA 
area, we could place m Warper modules to get the maximum 
processing speed of one DTW distance in every clock cycle. 
When multiple Warper modules are in place, the Internal 
Buffer output is fed into them in a round robin fashion.  

VI. EVALUATION 
In this section, we show the performances for the DTW 

subsequence search problem in different hardware settings. 
We use the following platforms: 

Software: Intel Xeon E5540 CPU at 2.53 GHz 
SSE : Intel i7- 920 CPU at  2.66 GHz 
GPU: NVIDIA Tesla C1060 with 240 cores 
FPG A : Xilinx Virtex 5 LX-330 

The SSE (Streaming Single Instruction Multiple Data 
(SIMD) Extensions) is an instruction set extension to �����!��
x86-architecture. It makes use of 128-bit SSE registers and 
can merge four 32-bit data to operate concurrently. The 
software implementation proposed in Table 1 can be 
parallelized by making use of data independencies. However, 

Figure 4: Block Diagram of the Hardware Normalizer

Figure 5: Block Diagram of the DTW Circuit



and the addresses  generated will be routed to the correct memory 
partition.

4.2 Viola-Jones Face Detection
Viola-Jones, as presented  in [10], detects the existence of faces in 
an image by searching the subwindows of the image and running 
a multi-stage classifier cascade against that subwindow. Each 
stage of the classifier cascade can detect the presence of faces 
with  a very low rate of false negatives, and a relatively low rate of 
false positives. By chaining  multiple stages of classifiers into a 
cascade, faces correctly detected in one classifier stage will 
continue to pass  further classifier stages, while non-faces falsely 
detected are eliminated by more rigorous classifier stages. Each 
classifier stage itself is composed of many features, which are 
very weak classifiers  capable of around a 51% accuracy rate. 
Multiple weak classifiers can be grouped together to create a 
strong classifier, as shown in [6]. Particularly, the number of 
features in each stage determines both the accuracy and the 
computation time needed to evaluate that  classifier stage, with 
more features giving a greater accuracy at the cost of computation 
time. One benefit of Viola-Jones over previous algorithms is the 
idea of using  smaller classifier stages at the beginning of the 
classifier cascade; windows which are obviously not faces can be 
quickly eliminated, while windows requiring more computation 
time are passed along to classifier stages with  more features, and 
thus  more accuracy, for further processing.  The structure of the 
software algorithm is shown in Figure 6.
A classifier stage classifies  a window by summing all  of the 
feature's  calculated value and comparing that sum against a stage 
threshold. Each feature in a classifier stage returns a weight, 
which are summed and compared to  the stage threshold. Each 
feature in Viola-Jones  is a Haar-like feature, consisting of either 
two, three, or four rectangular regions of the current subwindow 
of the image. Each rectangular region of the feature is evaluated 
by  summing the pixel values within that region, then multiplying 
by  a particular weight for that  region. As the weights can be either 
positive or negative, a difference of summed areas can be 
evaluated. This difference of summed areas is compared to a 
threshold and one of two weights  is returned based on this 
comparison.  Viola-Jones works on an Integral  Image, which 
enables a reduction in the number of calculations necessary in 
determining the area of region into 9 arithmetic expressions.
Viola-Jones requires that the subwindow currently being 
processed is variance normalized in order to minimize the effects 
of different lighting conditions, as the weights chosen reflect  a 

similar variance normalization done at training time. Thus, for 
every subwindow, it is necessary to  find both the standard 
deviation and the mean of the pixel values of the subwindow, and 
to  then preprocess each  pixel by subtracting off the mean and 
dividing  by the standard_deviation. As the variance normalization 
is  done at the subwindow level, with  the mean and standard 
deviation being calculated off of the values of the pixels in the 
subwindow, the variance normalization cannot merely  be done on 
the image as  a whole. Particularly in hardware, this  represents a 
very costly set of operations to perform.
When analyzing the algorithm, we determined that the cascading 
structure of the algorithm is a software convention to eliminate 
clock cycles.  Thus, the cascade architecture is  much less useful 
for hardware than for software. However, one major benefit of 
hardware over software is that  all  of the stages can be calculated 
in  parallel, as there are no dependencies between them. Instead, 
the final decision of whether the subwindow contains a face or not 
depends on all  of the stages passing. Our architecture takes 
advantage of this by parallelizing all stages to perform 
calculations simultaneously, as shown in Figure 7.
The original Viola-Jones algorithm includes three issues that make 
porting to hardware particularly difficult. These three issues were 
usage of floating point, use of division, and use of square root. All 
three issues involved operations that were extremely expensive in 
hardware.  
In hardware, floating point  operations are much more expensive 
than integer operations of the same type, in both area and 
frequency. We took advantage of the fact  that the algorithm 
involves multiplying floating point constants  against  integers, and 
converted the floating point operations to fixed point  operations. 
Each floating point  constant was multiplied by 212, which gave 
consistent results with the other 32 bit integer calculations done 
by the feature calculation.
In order to find the mean and standard deviation of the 
subwindow currently being processed, integer division by 
constants was necessary. We replaced all  integer divisions by 
constants with an approximation of the form a/b ~= (((2k)+b-1)/b 
* a)>>k. As k and b are both constants, (((2k+b-1)/b can be 
calculated at compile time; k is chosen by profiling the code and 
finding a value between 1 and 32 that works well, which we found 
to be 16.
The calculation for standard deviation involves taking the square 
root of the variance; square root is generally  available as an IP 
core. Through profiling, we were able to determine that the 
standard deviation was never more than 120, which meant that  a 
general purpose 32-bit square root core was not necessary; rather, 
only  a 16 bit square root  core was necessary. We composed a 
module in ROCCC that performed the square root of 16 bit values 
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Figure 6: Software Structure of Viola-Jones Algorithm

Figure 7: Hardware Structure of Viola-Jones Algorithm



by binary searching for the largest number whose square was 
smaller than the value in  question; this generated a module, 
callable from ROCCC, that could perform square root in one 
clock cycle.
Porting to the Convey architecture was straightforward  and 
involved mapping each stream to a memory controller and 
selecting a total of 256 outgoing memory requests.
While placing all  of the approximately 3000 features necessary 
for the software Viola-Jones on a single FPGA is infeasible, 
splitting the design onto multiple FPGAs is  possible due to our 
completely parallel architecture.  We synthesized the first  six 
stages of the face detection algorithm (189 features) and took up 
approximately 37% of the FPGA running at 22MHz.  Since all 
features are the same computation with  different constants, this 
scales to approximately 510 features per FPGA, or 2040 total 
features on the Convey HC-1, giving us approximately 343 
600x600 frames per second at full potential.
Since this falls short of the number of features in software, we 
looked into how to reduce this number.  We found that the initial 
stages were more amenable to software speedup than 
computational accuracy, so we could  use only the last 8 stages 
with  results that were very close to the original algorithm, which 
contained 1467 total features.  As future work we plan to change 
the algorithm to better reflect  the parallel  hardware architecture.  
By retraining the classifiers to take advantage of a parallel 
architecture, it should  be possible to maximize the detection rate 
for the given number of features or decrease the total number of 
necessary features.
To verify correctness of our face detection modifications, we ran 
our modified  algorithm on several images collected from the MIT 
+ CMU data test set [1], the Open CV distribution [5], and various 
pictures of faces taken from Google Image Search and compared 
them to the results from the original software implementation.  
The results are summarized in Table 1.  The percentage difference 
refers strictly to  the number of faces detected with both 
algorithms.  False positives represent values reported as a face in 
the modified algorithm that  are not identified  in  the original 
algorithm while false negatives are values that  are detected in the 
original algorithm and not identified in the modified algorithm.
In a few instances, we had differences of 25% or higher when 
comparing the number of faces in the original algorithm to our 
modified version.  Some of these high percentage differences, 
such as  the instance with the Mona Lisa image, are a little 
misleading.  Since the original version collected six face regions 
on  the Mona Lisa and our modified collected three more, the 
percentage was large because the original  number was small to 
begin with.  Also, most of these false positives and negatives are 
purely an instance of the modified algorithm collecting the face a 
few pixels shifted away compared to the original algorithm.

5. CONCLUSION
We have reported on our experiences programming the Convey 
Computers HC-1 system using the ROCCC 2.0  toolset.  By 
creating implementations of both Dynamic Time Warping and 
Viola-Jones appropriate for the HC-1 through writing C code and 
tuning  with optimizations, we have shown a potential of 900 
thousand subsequences per second processed with DTW and 343 
frames per second on face detection. 
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Table 1: Original Viola-Jones Algorithm versus Modified Algorithm.

Image 
Name

Faces on 
Original

Faces on 
Modified

% 
difference

False 
Positives

False 
Negatives

Friends 6 6 0 0 0

Addams 26 26 0 0 0
NewsRadio 20 27 25.925 7 6
ManySizes 39 38 2.613 5 6
MonaLisa 9 6 50 1 4
ManyFaces 151 154 1.948 16 13
Wright 2 2 0 0 0

Figure 8: Difference in results from Original Viola-Jones (left) and 
Modified Algorithm (right) on ManySizes
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