

Accelerating Dynamic Time Warping Subsequence Search with GPUs and FPGAs

Doruk Sart, Abdullah Mueen, Walid Najjar,
Eamonn Keogh

University of California, Riverside
{sartd, mueen, najjar, eamonn}@cs.ucr.edu

Vit Niennattrakul

Department of Computer Engineering
Chulalongkorn University,Thailand

g49vnn@cp.eng.chula.ac.th

Abstract—Many time series data mining problems require
subsequence similarity search as a subroutine. Dozens of
similarity/distance measures have been proposed in the last
decade and there is increasing evidence that Dynamic Time
Warping (DTW) is the best measure across a wide range of
domains. Given DTW’s usefulness and ubiquity, there has
been a large community-wide effort to mitigate its relative
lethargy. Proposed speedup techniques include early
abandoning strategies, lower-bound based pruning, indexing
and embedding. In this work we argue that we are now close to
exhausting all possible speedup from software, and that we
must turn to hardware-based solutions. With this motivation,
we investigate both GPU (Graphics Processing Unit) and
FPGA (Field Programmable Gate Array) based acceleration of
subsequence similarity search under the DTW measure. As we
shall show, our novel algorithms allow GPUs to achieve two
orders of magnitude speedup and FPGAs to produce four
orders of magnitude speedup. We conduct detailed case studies
on the classification of astronomical observations and
demonstrate that our ideas allow us to tackle problems that
would be untenable otherwise.

Keywords- time series; similarity search; dynamic time
warping; FPGA; GPU;

I. INTRODUCTION

Subsequence similarity search, the task of finding a
region of much longer time series that matches a specified
query time series within a given threshold, is a fundamental
subroutine in many higher level data mining tasks such as
motif discovery [15], anomaly detection [3], association
discovery, and classification [16][1].

More than one hundred different distance measures for
time series have been proposed in the last decade [9];
however there is increasing empirical evidence that Dynamic
Time Warping (DTW) (which includes Euclidean Distance
as a special case) is the best measure across a wide range of
domains [5]. Given DTW’s usefulness and ubiquity, there
has been a large community-wide effort to mitigate its
relative lethargy in the last decade. Speedup techniques for
general search under DTW include various indexing methods
[1][8][5]. Speedup techniques for the special cases of a
subsequence similarity search that we consider here include
early abandoning strategies, embedding and various
“computation reuse” strategies [22]. A recent paper has
shown that much of the apparent progress made in recent
years is fatally flawed [17]. In particular, the speedup comes
at the cost of allowing arbitrary false dismissals (we will
expand on this surprising result in Section II.B).

Even if the apparent recent results had been correct, there
still exist problems for which no current algorithms running

on standard hardware can hope to solve in a reasonable
amount of time. As a concrete example, entomologists need
to examine telemetry gathered from insects for the
occurrence of certain patterns known to be indicative of
destructive (to host plants) behaviors. Entomologists at the
University of California have created an archive of four
hundred million data points of this data in the last four years,
as part of an effort to understand and ultimately control just
one insect, the Glassy-winged Sharpshooter (Homalodisca
vitripennis). This insect causes tens of millions of dollars of
damage to the grape industry. Searching this archive under
the DTW distance for a single (relatively short) query pattern
of length 360 takes nine days on a high-end desktop, using
state-of-the-art algorithms. Similar stories can be told for
astronomy (cf. Section VI.A), computational finance, motion
capture processing data, industrial and medical domains.

After surveying and testing the current software
solutions, and talking to several domain experts and
practitioners, we have come to the conclusion that we are
now close to exhausting all possible speedup from software
approaches, and that we must turn to hardware-based
solutions if we are to tackle the problems faced by real world
practitioners. With this motivation, we investigate both GPU
and FPGA based acceleration of subsequence similarity
search under the DTW measure. The use of specialized
hardware to allow subsequence similarity search requires a
detailed understanding of both the hardware strengths and
limitations, and of the DTW computation itself.

As we shall show, our novel algorithms allow GPUs,
which are typically bundled with standard desktops and are
thus essentially free, to achieve two orders of magnitude
speedup. We show that if a domain practitioner is motivated
enough to purchase an FPGA, which can cost as little as a
few thousand dollars, our algorithm can achieve a speedup of
four orders of magnitude.

It is important to note that we see our work as going
beyond the claim that “we have made an important
algorithm faster”. A factor of say, two, speedup for an
important algorithm is useful, but unlikely to make a
significant difference to the community. However, a speedup
factor of a thousand or more really has the potential to make
a significant difference, because it allows problems to be
tackled that are otherwise unimaginable.

II. DEFINITION AND BACKGROUND

For concreteness we begin with a formal definition of the
problem and a discussion of why the current solutions are
inadequate. We begin by defining the time series:
A time series T is a sequence of real numbers t1,t2,,…,tn
representing n uniform samples of a measurement. A

2010 IEEE International Conference on Data Mining

1550-4786/10 $26.00 © 2010 IEEE
DOI 10.1109/ICDM.2010.21

1001

subsequence Cs,m of a time series T is the set of m samples
starting at s. (i.e., ts,ts+1,…,ts+m-1, where 1≤ s ≤ n-m+1).

Before we compare two time series under any distance
measure, it is critical to normalize them to same mean and
variance1. As noted in [9], “without normalization time series
similarity has essentially no meaning”.

The z-normalization of a time series T is defined as T̑ =
t̑1,t̑2,…,t̑n, where t̑i = (ti – μ) / σ . Here, μ and σ are the
sample mean and the sample standard deviation of T.

It is critical at this point to clarify a naive
misunderstanding which is replete in the literature. If we are
doing subsequence similarity search with our z-normalized
query Q for the best matching subsequence in a much longer
time series T, we cannot simply z-normalize T once and
proceed. Instead, we must z-normalize every subsequence
we extract from T. Note that in the case that T is not a batch
dataset residing in its entirety in memory (or disk), but in a
data stream, it would not even be logically possible to z-
normalize it all, even if doing so gave meaningful results.

While DTW is defined to allow for the comparison of
two time series of possibly different lengths, without losing
the generality (see [20], Section 2), we will define it
assuming time series of equal lengths.

Suppose we have two time series, C = c1,c2,…,ci ,…,cm
and Q = q1,q2,…,qj ,…,qm. The Dynamic Time Warping
(DTW) distance between Q and C is denoted by D(C,Q) and
defined as below.

D(C,Q) = d(m,m)

d(i,j) = |ci - qj| + min{d(i-1,j), d(i,j-1), d(i-1,j-1)}

d(0,0)=0; d(i,0)= d(0,j)=∞;i=1,2,...,m; j=1,2,...,m

The m-by-m matrix, d, is called the warping matrix. In a
warping matrix, each cell uses a value from either of the
three previously computed neighbors. If we trace back the
values used to compute the DTW (i.e. d(m,m)), we get the
warping path describing the optimal alignment of T and Q .

The time complexity to compute the D(C,Q) is O(m2),
and the space complexity is also O(m2). If we only need the
value of the distance (i.e. d(m,m)) we can delete the trace of
the warping path, and thus, the space complexity can be
reduced to O(m) by storing only two columns of the matrix.

A. Definition of the Problem

Given a time series T = t1,t2,…,tn and a query Q =
q1,q2,…,qm , find the subsequence Cs,m of T such that
D(Ĉs,m,Q̂), 1≤ s ≤ n-m+1, is minimum.

Given the above definition, we could devise a brute force
algorithm shown in Table 1, which takes O(nm2) time and
O(nm) space. For completeness, we also show the
pseudocode for computing the DTW distance in Table 2.

1
 Some papers have suggested doing [0,1] or [-1,1] normalization instead.

However, the authors do not seem to appreciate how brutally sensitive this
method is to even small amounts of noise or a single outlier.

TABLE 1: SUBSEQUENCE SEARCH ALGORITHM

Procedure SubsequenceSearch(T,Q)
 T: A time series of n points
 Q: Query time series of m points

1 z-Normalize(Q)
2 for s = 1 to n-m+1
3 z-Normalize(Cs,m)
4 Compute D(Cs,m,Q)
5 Update minimum if necessary

TABLE 2: DTW ALGORITHM

Procedure D(C,Q)

 C: A time series of n points, C(0)= ∞
 Q: A time series of m points, Q(0)= ∞

1 s = 0
2 for i = 0 to m
3 d(i,s) = |C(1)-Q(i)|
4 s = s!1 // xor operation
5 for j = 2 to n
6 for i = 0 to m
7 d(i,s) = |C(j)-Q(i)| +

 min(d(i-1,s),d(i,s! 1),d(i-1,s! 1))
8 s = s!1
9 return d(n,s!1)

We have chosen the simplest possible problem definition
with one query, one time series and the same subsequence
length (m). There are more general subsequence search
problems where many queries [24] and time series are
involved, or where rotation/phase invariance is required
under DTW [27][21]. However, all such problems can
benefit directly from a speedup of the simple definition.

B. Why Current Software Solutions Are Not the Answer

As we hinted at above, the several apparent software
solutions to the task at hand contain a serious error. We can
best demonstrate this with a simple experiment.

Suppose we task a DTW subsequence search with the
simple task of detecting the heartbeats of an individual, using
one of that same individual’s heartbeats.

We begin by downloading a long ECG sequence from a
61-year-old female and manually extracting a typical beat as
our query [31]. We also manually extract some additional
adjacent beats and compare them to our query, finding them
to be an average distance of about 20.0, so we set our beat
detector at a conservative threshold of 30.0. Figure 1 shows
the beats detected in the first 1,800 datapoints, as we can see,
the majority of the beats are missed. How could this be?

Figure 1: A query heartbeat (left) is scanned across an ECG trace. (top-
right) Only three of the twelve beats are detected. Plotting the distance
from the query to the relevant subsequence (bottom) reveals that slight
differences in a subsequence’s mean value (offset) completely dominate the
DTW distance calculation, dwarfing any contribution from the similarity of
the shape.

-5

-3

-1

1

3

0 100-5

-3

-1

1

3 Query

Distance to the query

0 500 1000 1500
0

40
80

120

Threshold = 30

1002

Note that while the local mean of the ECG trace starts at
about zero, which is also the approximate mean of the query,
the trace slowly rises to have a local mean of about 1.0, then
descends below zero (allowing the detection of a single beat
at about 1,500 as the mean crosses zero).

The problem is that the SPRING algorithm [22] does not
(and, more critically cannot) normalize the offset or
amplitude of the subsequences of the longer time series. It is
therefore implicitly assuming that the query will happen to
have the same offset and amplitude as the matching
subsequence. However, in virtually every domain that
assumption is unwarranted. For example, virtually all ECGs
wander up and down as in our example, the effect is known
as a wandering baseline [14]. Similar problems are observed
in motion capture, astronomy, entomology, industrial process
telemetry, EEGs, etc.

It is important to recognize that there is no simple fix for
this problem. The SPRING [22] algorithm achieves its
speedup by exploiting the redundancy of calculations in a
sliding DTW matrix, but if each subsequence is z-
normalized, as it must be to obtain meaningful results, then
there will be no redundant calculations to exploit. For brevity
we will conclude the discussion of the reasons why current
software solutions do not work here. The interested reader
can view [31], where we have many additional examples of
the problem in real domains and a detailed discussion of why
the obvious possible fixes for the problem we have just
pointed out will not solve it. In our view, this problem is very
unlikely to yield to a software solution that improves the
time complexity of the brute force algorithm in Table 1.

III. ACCELARATION BY GPU

The GPU is a computing device that serves as a
coprocessor for the CPU. It has its own device memory on
the card and can execute many threads in parallel [18]. In
this work we use the ubiquitous NVIDIA CUDA
architecture, where multiple threads running on multiple
processing cores execute the same program on separate data.
This Single Instruction Multiple Data (SIMD) architecture
allows us to map each normalization and DTW distance
computation (Lines 3-4 in Table 1) to be executed in parallel
on different segments of the time series.

Each CUDA function (i.e. kernel) is executed by an array
of threads. Each of these threads is assigned an ID that it
uses to determine memory addresses (i.e. the segment of the
time series) it should operate on. The hardware is free to
determine the mapping and scheduling of these threads on
the available processing cores. A thread block is defined as a
batch of threads that are guaranteed to run simultaneously
and cooperate with each other through shared resources. The
size of a thread block can be specified at runtime. The
NVIDIA CUDA thread architecture can be found in [18].

The GPU implementation of Dynamic Time Warping
consists of three main stages: (1) The CPU copies the values
to the GPU memory. (2) The CPU calls the GPU kernel. (3)
The CPU copies the output from the GPU.

In the first step, the CPU copies the whole time series (T
in Table 1) to the global memory of the GPU. If the time
series is larger than the available device memory, the CPU

splits it into small batches and processes one batch at a time.
This process introduces latency in the output but does not
hamper the real-time processing, as the time to copy the data
is in the range of milliseconds. Therefore, copying batches
one at a time can tolerate a data arrival rate of hundreds of
hertz without overflowing a buffer. Since the query is fixed
for all of the batches, we copy it to the global memory in the
beginning and keep it there throughout the execution.

In the second step, the CPU calls the kernel in the GPU.
Every kernel thread operates on a specific sliding window in
two steps: first, accessing the sliding window to compute the
mean and variance, and second, computing the normalized
DTW distance to the query. For both the steps, each kernel
thread accesses a contiguous segment of m numbers from the
time series T in the global memory. If we batch the threads
responsible for successive sliding windows in a thread block,
the memory accesses by these threads will result into
coalesced accesses [7]. For example in Figure 2, a block of
four threads is shown where the first memory accesses by
these four threads require one read from the memory instead
of four, because of the threads operating on contiguous
locations in the memory.

Figure 2: Division of work among threads. Memory accesses are coalesced
by overlapping threads (for m=4).

In the second step, when the mean and variance are
ready, each thread computes the DTW distance between the
query and the normalized subsequence by Table 2. Note that
in Table 2, the query Q is accessed O(m2) times whereas the
subsequence C is accessed O(m) times. It is important to
maintain this distinction between Q and C although
swapping Q and C in Table 2 would produce correct results.
The reason is that Q is a fixed time series, and by the
problem definition it is not changed during execution.
Furthermore Q is much smaller than T so it can fit in the
shared memory of the GPU device. Shared memory is a
special memory locally available to the processor cores in a
multi-processor of the GPU device. Shared memory is 150x
faster than the global memory which is available to all of the
cores in all of the multi-processors. Typically, shared
memory is much smaller than the global memory and thus is
the ideal place for the query time series.

In the beginning of the DTW computation, the kernel
threads copy the query (Q) into shared memory from the
global memory. The internal data structure for computing the
DTW distance is two column vectors (d in Table 2) of size
m. These vectors are best stored in the shared memory if they
all fit together (e.g., in the case of very small m). Otherwise,
they are stored in the global memory. With all of the
variables in place, the DTW computation is performed. Each
thread stores the computed distance in a global array indexed
by the thread ID.

T1 T2 T3

Input Time Series

t0 t1 t2 t3 t4 t5 t6 t7

T4

Threads t0 t1 t2 t3

One memory access for
four read instructions by

T1, T2, T3 and T4

. . .

. . .

1003

Finally in the third step, when all of the threads
terminate, the CPU copies the array back to system memory.
Although the algorithm looks for the minimum distance, it is
much simpler and more efficient to copy back all of the
distances to the CPU instead of computing the minimum in
the GPU.

IV. ACCELARATION BY FPGA

A. FPGA Implementation

The design of an FPGA configuration requires
programming using a hardware description language (i.e.,
VHDL/Verilog). In this work, we use an open source C to
VHDL compiler system, ROCCC [29], which allows us to
describe the hardware in C language and generate the VHDL
code automatically. ROCCC also optimizes the design
mainly in three ways. First, it maximizes the throughput by
exploiting loop and instruction level parallelism. Second, it
reuses the data, and third, it generates a pipelined datapath to
minimize the number of clock cycles [24].

Our FPGA design consists of two major blocks:
Normalizer and Warper, to normalize the input data and run
the actual DTW matrix calculations, respectively (Figure 3).
Input data streamed into the system are first given to a First-
In-First-Out (FIFO) buffer. The size and input ratio of this
FIFO can be adjusted according to the FPGA interconnection
mechanism. However, the output of the FIFO generates one
sample (8 bits) every clock cycle. Next, the output of the
FIFO is fed into the Normalizer module. Initially,
Normalizer waits until the first window is received. Every
following normalization operation reuses m-1 operands of
the previous operation, where m is the query length. After the
first output is produced, a new output is generated every
clock cycle. This output is given to another FIFO, which acts
as the intermediate memory component between the
Normalizer and the Warper.

Figure 3: FPGA Block Diagram. Thick lines are for m-point wide
connections. Thin lines are for one-point wide connections. Buffers are
simple FIFOs.

Internally, a trivial Normalizer module stores m-partial
sliding windows. In every clock cycle, it updates statistics
for all of the partial windows and outputs the window for
which the normalization is complete. Thus, it needs quadratic
O(m2) space in the FPGA and does not scale with larger
query lengths. In order to support larger query lengths, we
implemented an online Normalizer, which does not
remember intermediate states. It computes the mean (μ) and
standard deviation (σ) online and normalizes exactly one
window in every clock cycle. Thus, it needs linear O(m)
space in the FPGA. Although the trivial Normalizer has
shown better performance in speed due to less overhead, it
does not make any difference in the overall system

performance. The reason for this is that the Warper module
is the real performance bottle-neck as described later.

The Online Normalizer consists of three sub-units, as
shown in Figure 4. The first unit calculates the sum and sum
of squares of all the inputs in a sliding window fashion, by
adding the new value while subtracting the oldest value to be
removed from the sum. Initially, “to remove” value is zero
until the first window is completely received through the
“Datapoint” input. When switching to the next window, the
very first value of the first window is given to “to remove”
and the sum for the second window is obtained at the output.
This output is also given to the Normalize Divider sub-unit,
where the mean and the standard deviation of the latest
window are obtained. The input stream is provided to the
third unit through a buffer. The size of this buffer depends on
the delay of the first two modules. The third module must
wait until the corresponding mean and standard deviation
values are available for a given window. This delay is
provided by the Datapoint Buffer, which is automatically
added by ROCCC. The unit then runs the actual
normalization function. The generated normalized data is
provided to the systolic array (warper) through a buffer, as
shown in Figure 3.

Figure 4: Online Normalization Unit. The sum and sum of squares are
obtained in a sliding window approach, by adding the new input and
subtracting the oldest value. The input datapoints are delayed through the
Datapoint Buffer, to make sure that the correct mean and standard
deviation are used.

The Warper module is implemented as a systolic array
[2]. A systolic array consists of data processing units
connected in a matrix fashion. These data processing units
(i.e. cells) share the information with their neighbors
immediately after processing. Using ROCCC’s built-in
systolic array generator, we simply obtain the hardware
description of the Warper module. Structurally, the Warper
module is the same for any window size, except for the size
of the systolic array. This size can be adjusted in the ROCCC
code by tuning a parameter. A Warper module generates one
DTW distance between the normalized sliding window and
the query time series in every m clock cycle where m is the
window size/query length. Since the normalization unit is m
times faster than the Warper unit, we place multiple Warper
units to operate on separate normalized windows generated
by the normalization unit. Ideally, if we had unlimited FPGA
area, we could place m Warper modules to get the maximum
processing speed of one DTW distance in every clock cycle.
When multiple Warper modules are in place, the Internal
Buffer output is fed into them in a round robin fashion.

Input
PINs

Input Buffer

m Datapoints
Normalizer

Internal Buffer

m Datapoints

Removing Buffer

1 Datapoint

Warper

1 Datapoint

Datapoint

To Remove

x

x

Window Length

Normalize

Adder

Normalize

Divider

m Datapoints

m Normalized
Datapoints

Online

Normalizer

…

Datapoint Buffer

Output to Internal
Buffer

" x

2

" x

μ

σ

1004

V. EVALUATION

In this section, we show the performances for the DTW
subsequence search problem in different hardware settings.
We use the following platforms: Software: Intel Xeon
E5540 CPU at 2.53 GHz, SSE: Intel i7- 920 CPU at 2.66
GHz, GPU: NVIDIA Tesla C1060 with 240 cores and
FPGA: Xilinx Virtex 5 LX-330.

The SSE (Streaming Single Instruction Multiple Data
(SIMD) Extensions) is an instruction set extension to Intel’s
x86-architecture. It makes use of 128-bit SSE registers and
can merge four 32-bit data to operate concurrently. The
software implementation proposed in Table 1 can be
parallelized by making use of data independencies. We
execute SSE instructions while normalizing every sample by
the same μ and σ. The performance improvement is therefore
not significant compared to the software-based solution.

In Figure 5, we show the time required to answer a query
of length 128 by different hardware settings. We achieve the
highest speedup over the software through FPGA
acceleration, which is 4000 times faster in the best case
scenario. GPU acceleration is 36.3 times faster, on average.
All of the results reported here use 8-bit integers to represent
the values in the time series.

Figure 5: Comparison of execution times with different lengths of the input
time series, in LOG scale. The query length is 128 (left) and 1024 (right).
For GPU, block size is 512.

The FPGA performance results are obtained after
placement and routing operations. We use one trivial
Normalizer unit and eight Warper units. The Normalizer for
window size 128 requires 13% of the target device and runs
at 180MHz. Each Warper unit requires 7% of the area and
run at 240MHz. The Normalization unit provides an output
for each clock cycle. The Warper requires 128 clock cycles.
Therefore, the Warper unit runs more slowly than the
Normalizer. At 240 MHz, one window of length 128 can be
processed through the Warper in 128/240M seconds.
However, using 8 Warpers reduces this to 16/240M seconds.
In other words, 15 million samples (windows) can be
processed per second.

In Figure 5, we show the execution times for a fixed
window size of 1024, the FPGA provides a maximum
speedup of 4500x and the GPU achieves a speedup of 29x
over software. For the window size 1024 on the FPGA, we
use the online Normalizer, as shown in Figure 4. This
module runs at a clock frequency of 180MHz and requires
83% of the FPGA logic. The Warper module runs at
250MHz and requires 9% of the logic. In this case, we can
only place one Warper module safely. Although the area is
dominated by the Normalizer, the throughput of the system
is still determined by the Warper module. The Warper
module requires 1024 clock cycles per cycle. One sample

(window) can be processed in 1024/250M seconds. This
results in a throughput of 244 thousand samples per second.

In Figure 6 we show the responses of different methods
while varying the size of the query. Recall the methods have
the same time complexity of O(nm2). The responses show a
clear quadratic growth for software and SSE methods. Our
hardware acceleration techniques are much slower in growth
because of the parallelism our techniques achieve. The trends
in the figure clearly show that our techniques will remain
tenable for larger window size while the software methods
are already intractable.

Figure 6: (left) Execution times for a fixed time series of length 40,000
with varying query sizes (m). (right) Two star light curves that happen to
be very similar. If we happen to know the class label of one, we may
predict that the other is in the same class.

VI. EXPERIMENTAL CASE STUDIES

A. Case Study in Astronomy

A star light curve is a graph which shows the brightness
of a stellar object over a period of time. Figure 6 shows two
examples. The reasons why the stars change their brightness
include planetary transits, self-occluding binary systems,
cataclysmic or explosive events (nova or supernova) and
unknown reasons. The study of light curves has led to the
discovery of pulsars, extra-solar planets, supernovae, the rate
of expansion of the universe, etc. [19][21].

It is difficult to overstate how many star light curves
exist. Looking backwards, there are over 500,000 glass
photographic plates at Harvard University that were exposed
between 1885 and 1993 [30]. These are currently being
digitized to yield millions of light curves. Looking ahead,
this year sees work starting on the Large Synoptic Survey
Telescope (LSST), a wide-field "survey" reflecting telescope
that will photograph the available sky every three nights. It is
estimated that LSST will produce billions of light curves in
the next decade.

As both old and new light curves come online, an
obvious thing to do is to classify them [19]. Astronomers do
have a large number of classified light curves; in some cases
they can obtain what is effectively ground truth by obtaining
extra features for relatively close stars.

While it is possible to extract a single light curve cycle,
there is no well-defined starting point. Astronomers have an
algorithm called universal phasing to produce a canonical
alignment for light curves, but bemoan the fact that this is
“...an operation that scales poorly to massive data sets”.
However, as we shall see, in addition to poorly scaling, the
universal phasing algorithm does not work as well as
astronomers believe.

We obtained a three-class star light curve dataset which
had been universally phased by astronomers at (blinded). We

20,000 40,000 80,000 160,000
100

101

102

103

104

105

S
o
ft

w
ar

e
S

S
E

G
P

U
F

P
G

A

Length of the Time Series (T)

T
im

e
in

 S
ec

o
n

d
s

(L
o

g
 S

ca
le

)

20,000 40,000 80,000 160,000
100

101

102

103

104

105

106

107

Length of the Time Series (T)

T
im

e
in

 S
ec

o
n

d
s

(L
o

g
 S

ca
le

)

S
o

ft
w

ar
e

S
S

E
G

P
U

F
P

G
A

100 200 300 400 500 600 700 800 900 1000 1100

0

100

200

300

400

500

600

700

800

Query Length (m)

T
im

e
in

 S
ec

o
n
d
s Software

SSE

GPU FPGA 0 200 400 600 800 1000

OGLE052401.70-691638.3

OGLE052357.02-694427.3

1005

created a test set with just 128 objects, and a training set of
1024 objects. Each light curve was normalized to have a
length of 1024 (as is the practice in astronomy).

We measured the accuracy of Euclidean distance and
DTW, obtaining accuracies of 80.47% and 86.72%,
respectively. This tells us that “warping” is useful in this
domain, something that had been suspected before [27].
However, rather than stopping here, we decided to test the
universal phasing assumption. Suppose we ignored it and
tested DTW for all possible alignments/shifts. To our
knowledge this has never been attempted before, presumably
because the rotation invariance version of DTW (rDTW) is
O(n3), which is untenable for a CPU. After testing the
rotation-invariant versions of both Euclidean distance and
DTW, we found that the accuracies jumped to 81.2% and
91.4%, respectively. Clearly, universal phasing does not
produce perfect alignments.

TABLE 3: ACCURACIES AND TIMINGS FOR CLASSIFYING 128 LIGHT CURVES

AGAINST A TRAINING SET OF 1,024, WITH ALL SEQUENCES OF LENGTH

1,024. VALUES IN PARENTHESES ARE ESTIMATED BASED ON SHORTER

EXPERIMENTS.

 Accuracy Time FPGA Time GPU Time CPU

ED 80.47% <1.0 seconds <1.0 seconds 2.5 seconds

rED 81.25% <1.0 seconds 55.3 seconds 43.6 minutes

DTW 86.72% <1.0 seconds 43.6 seconds 35.4 minutes

rDTW 91.41% 9.54 minutes 22.7 hours (42 days)

VII. CONCLUSION
2

We have shown subsequence similarity search is an
important problem, but the current software based solutions
cannot provide adequate speed to tackle many diverse
domains. We have shown that hardware based solutions offer
the necessary speedup. We have designed (correctly
normalizing) DTW similarity search algorithm for GPUs and
FPGAs and placed all code in the public domain [31].

REFERENCES

[1] Athitsos, V., Papapetrou, P., Potamias, M., Kollios, G. and
Gunopulos, D. Approximate Embedding-based Subsequence
Matching of Time Series. SIGMOD Conference 2008: 365-378.

[2] Buyukkurt B. and Najjar W. Compiler Generated Systolic Arrays For
Wavefront Algorithm Acceleration on FPGAs. International
Conference on Field Programmable Logic and Applications, 2008:
655-658.

[3] Chandola, V., Cheboli, D. and Kumar, V. Detecting Anomalies in a
Time series Database. CS Technical Report 09-004, January 2009,
Computer Science Department, University of Minnesota.

[4] Chu, S., Narayanan, S. and Jay Kuo, C.-C. Efficient Rotation
Invariant Retrieval of Shapes using Dynamic Time Warping with
Applications in Medical Databases. In IEEE International
Symposium on Computer-Based Medical Systems (CBMS), Special
Track on Data Mining, 2006.

2 Dr. Najjar's work was funded by NSF CCF0905509 and

CCF0811416. Dr. Keogh's work was funded by NSF
0803410 and 808770.

[5] Ding, H., Trajcevski, G., Scheuermann, P., Wang, X. and Keogh, E.
Querying and Mining of Time Series Data: Experimental Comparison
of Representations and Distance Measures. VLDB 2008.

[6] Frost, K. E. and Groves, R. L. Seasonal Infectivity of Aster
Leafhoppers in Carrot. Technical Report Department of Entomology,
University of Wisconsin-Madison.
www.entomology.wisc.edu/vegento/xtras/proc/2009_asterLeafhoppers.pdf

[7] He, B., Yang, K., Fang, R., Lu, M., Govindaraju, N. K., Luo, Q. and
Sanderv P. Relational Joins on Graphics Processors SIGMOD 2008.

[8] Keogh, E. (2002): Exact Indexing of Dynamic Time Warping. VLDB
2002: 406-417

[9] Keogh, E. J. and Kasetty, S. On the Need for Time Series Data
Mining Benchmarks: A Survey and Empirical Demonstration. Data
Min. Knowl. Discov. 7(4): 349-371 (2003).

[10] Keogh, E., Xi, X., Wei, L. and Ratanamahatana, C. A. (2006). The
UCR Time Series Classification/Clustering Homepage:
www.cs.ucr.edu/~eamonn/time_series_data/

[11] Kindt, F., Joosten, N. N. and Tjallingii, W. F. Electrical Penetration
Graphs of Thrips Revised: Combining DC- and AC-EPG Signals.
Journal of Insect Physiology 52: 1–10.

[12] Lienhart, G., Kugel A., Männer R. Using floating-point arithmetic on
FPGAs to accelerate scientific N-body simulations. FCCM 2002.

[13] McLean, D. L. and Kinsey, M. D. A Technique for Electronically
Recording Aphid Feeding and Salivation, Nature 202 (1964), pp.
1358–1359.

[14] Mneimneh, M. A., Yaz, E. E., Johnson, M. T. and Povinelli, R. J. An
Adaptive Kalman Filter for Removing Baseline Wandering in ECG
Signal. Computers in Cardiology, vol. 33, pp.253−256, 2006.

[15] Mueen, A., Keogh, E. J. and Bigdely-Shamlo, N. Finding Time Series
Motifs in Disk-Resident Data, ICDM 2009: 367-376.

[16] Nam, H., Lee, K. and Lee, D. Identification of Temporal Association
Rules from Time-Series Microarray Data Sets. BMC Bioinformatics,
vol. 10 (Suppl 3):S6, March 2009.

[17] Niennattrakul, V. and Ratanamahatana, C. A. Meaningful
Subsequence Matching under Time Warping Distance for Data
Stream. PAKDD 2009: 1013-1020.

[18] NVIDIA CUDA Programming Guide. Version 2.3.
http://developer.download.nvidia.com/compute/cuda/2_3/toolkit/docs
/NVIDIA_CUDA_Programming_Guide_2.3.pdf

[19] Protopapas, P., Giammarco, J. M., Faccioli, L., Struble, M. F., Dave,
R. and Alcock, C. Finding Outlier Light Curves in Catalogues of
Periodic Variable Stars. Mon. Not. R. Astron. Soc. 369(2), 677–696
(2006).

[20] Ratanamahatana, C. and Keogh, E. J. Three Myths about Dynamic
Time Warping Data Mining. SDM 2005.

[21] Rebbapragada, U., Protopapas, P., Brodley, C. E. and Alcock, C.
Finding Anomalous Periodic Time Series: An Application to Catalogs
of Periodic Variable Stars. Machine Learning, 74(3), p. 281, 2009.

[22] Sakurai, Y., Faloutsos, C. and Yamamuro, M. Stream Monitoring
under the Time Warping Distance. ICDE 2007: 1046-1055.

[23] Salzberg, S. L. On Comparing Classifiers: Pitfalls to Avoid and a
Recommended Approach. Data Mining and Knowledge Discovery,
1(3), 1997.

[24] Villarreal, J, Park, A., Najjar, W. and Halstead, R. Designing
Modular Hardware Accelerators in C With ROCCC 2.0, in The 18th
An. Int. IEEE Symp. On Field-Programmable Custom Computing
Machines (FCCM), Charlotte, NC, May 2010.

[25] Wei, L., Keogh, E. J., Van Herle, H. and Mafra-Neto, A. Atomic
Wedgie: Efficient Query Filtering for Streaming Times Series. ICDM
2005: 490-497.

[26] Wilson, D. R. and Martinez, T. R. (1997). Instance Pruning
Techniques. ICML’97, Morgan Kaufmann, pp. 403-411.

[27] Yankov, D., Keogh, E. J., Wei, L., Xi, X. and Hodges, W. L. Fast
Best-Match Shape Searching in Rotation-Invariant Metric Spaces.
IEEE Transactions on Multimedia 10(2): 230-239 (2008).

[28] Zhu, Y. and Shasha, D. Warping Indexes with Envelope Transforms
for Query by Humming. SIGMOD Conference 2003: 181-192

[29] http://roccc.cs.ucr.edu
[30] http://hea-www.harvard.edu/DASCH/index.php
[31] Supporting webpage: For code and data.

http://www.cs.ucr.edu/~mueen/GPU_DTW/index.html

1006

