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Abstract—Many time series data mining problems require 
subsequence similarity search as a subroutine.  Dozens of 
similarity/distance measures have been proposed in the last 
decade and there is increasing evidence that Dynamic Time 
Warping (DTW) is the best measure across a wide range of 
domains. Given DTW’s usefulness and ubiquity, there has 
been a large community-wide effort to mitigate its relative 
lethargy. Proposed speedup techniques include early 
abandoning strategies, lower-bound based pruning, indexing 
and embedding. In this work we argue that we are now close to 
exhausting all possible speedup from software, and that we 
must turn to hardware-based solutions.  With this motivation, 
we investigate both GPU (Graphics Processing Unit) and 
FPGA (Field Programmable Gate Array) based acceleration of 
subsequence similarity search under the DTW measure. As we 
shall show, our novel algorithms allow GPUs to achieve two 
orders of magnitude speedup and FPGAs to produce four 
orders of magnitude speedup. We conduct detailed case studies 
on the classification of astronomical observations and 
demonstrate that our ideas allow us to tackle problems that 
would be untenable otherwise. 

Keywords- time series; similarity search; dynamic time 
warping; FPGA; GPU; 

I.  INTRODUCTION 

Subsequence similarity search, the task of finding a 
region of much longer time series that matches a specified 
query time series within a given threshold, is a fundamental 
subroutine in many higher level data mining tasks such as 
motif discovery [15], anomaly detection [3], association 
discovery, and classification [16][1].     

More than one hundred different distance measures for 
time series have been proposed in the last decade [9]; 
however there is increasing empirical evidence that Dynamic 
Time Warping (DTW)  (which includes Euclidean Distance 
as a special case) is the best measure across a wide range of 
domains [5]. Given DTW’s usefulness and ubiquity, there 
has been a large community-wide effort to mitigate its 
relative lethargy in the last decade. Speedup techniques for 
general search under DTW include various indexing methods 
[1][8][5]. Speedup techniques for the special cases of a 
subsequence similarity search that we consider here include 
early abandoning strategies, embedding  and various 
“computation reuse” strategies [22]. A recent paper has 
shown that much of the apparent progress made in recent 
years is fatally flawed [17]. In particular, the speedup comes 
at the cost of allowing arbitrary false dismissals (we will 
expand on this surprising result in Section II.B).  

Even if the apparent recent results had been correct, there 
still exist problems for which no current algorithms running 

on standard hardware can hope to solve in a reasonable 
amount of time. As a concrete example, entomologists need 
to examine telemetry gathered from insects for the 
occurrence of certain patterns known to be indicative of 
destructive (to host plants) behaviors. Entomologists at the 
University of California have created an archive of four 
hundred million data points of this data in the last four years, 
as part of an effort to understand and ultimately control just 
one insect, the Glassy-winged Sharpshooter (Homalodisca 
vitripennis). This insect causes tens of millions of dollars of 
damage to the grape industry. Searching this archive under 
the DTW distance for a single (relatively short) query pattern 
of length 360 takes nine days on a  high-end desktop, using 
state-of-the-art algorithms. Similar stories can be told for 
astronomy (cf. Section VI.A), computational finance, motion 
capture processing data, industrial and medical domains.  

After surveying and testing the current software 
solutions, and talking to several domain experts and 
practitioners, we have come to the conclusion that we are 
now close to exhausting all possible speedup from software 
approaches, and that we must turn to hardware-based 
solutions if we are to tackle the problems faced by real world 
practitioners.  With this motivation, we investigate both GPU 
and FPGA based acceleration of subsequence similarity 
search under the DTW measure. The use of specialized 
hardware to allow subsequence similarity search requires a 
detailed understanding of both the hardware strengths and 
limitations, and of the DTW computation itself.  

As we shall show, our novel algorithms allow GPUs, 
which are typically bundled with standard desktops and are 
thus essentially free, to achieve two orders of magnitude 
speedup. We show that if a domain practitioner is motivated 
enough to purchase an FPGA, which can cost as little as a 
few thousand dollars, our algorithm can achieve a speedup of 
four orders of magnitude.  

It is important to note that we see our work as going 
beyond the claim that “we have made an important 
algorithm faster”. A factor of say, two, speedup for an 
important algorithm is useful, but unlikely to make a 
significant difference to the community. However, a speedup 
factor of a thousand or more really has the potential to make 
a significant difference, because it allows problems to be 
tackled that are otherwise unimaginable.  

II. DEFINITION AND BACKGROUND 

For concreteness we begin with a formal definition of the 
problem and a discussion of why the current solutions are 
inadequate. We begin by defining the time series: 
A time series T is a sequence of real numbers t1,t2,,…,tn 
representing n uniform samples of a measurement. A 
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subsequence Cs,m of a time series T is the set of m samples 
starting at s. (i.e., ts,ts+1,…,ts+m-1, where 1≤ s ≤ n-m+1). 

Before we compare two time series under any distance 
measure, it is critical to normalize them to same mean and 
variance1. As noted in [9], “without normalization time series 
similarity has essentially no meaning”.  

The z-normalization of a time series T is defined as T̑ = 
t̑1,t̑2,…,t̑n, where t̑i = (ti – μ) / σ . Here, μ and σ are the 
sample mean and the sample standard deviation of T. 

It is critical at this point to clarify a naive 
misunderstanding which is replete in the literature. If we are 
doing subsequence similarity search with our z-normalized 
query Q for the best matching subsequence in a much longer 
time series T, we cannot simply z-normalize T once and 
proceed. Instead, we must z-normalize every subsequence 
we extract from T. Note that in the case that T is not a batch 
dataset residing in its entirety in memory (or disk), but in a 
data stream, it would not even be logically possible to z-
normalize it all, even if doing so gave meaningful results.  

While DTW is defined to allow for the comparison of 
two time series of possibly different lengths, without losing 
the generality (see [20], Section 2), we will define it 
assuming time series of equal lengths.  

Suppose we have two time series, C = c1,c2,…,ci ,…,cm 
and Q = q1,q2,…,qj ,…,qm. The Dynamic Time Warping 
(DTW) distance between Q and C is denoted by D(C,Q) and 
defined as below. 

D(C,Q) = d(m,m) 

d(i,j) = |ci - qj| + min{d(i-1,j), d(i,j-1), d(i-1,j-1)} 

d(0,0)=0; d(i,0)= d(0,j)=∞;i=1,2,...,m; j=1,2,...,m 

The m-by-m matrix, d, is called the warping matrix. In a 
warping matrix, each cell uses a value from either of the 
three previously computed neighbors. If we trace back the 
values used to compute the DTW (i.e. d(m,m)), we get the 
warping path describing the optimal alignment of T and Q . 

The time complexity to compute the D(C,Q) is O(m2), 
and the space complexity is also O(m2). If we only need the 
value of the distance (i.e. d(m,m)) we can delete the trace of 
the warping path, and thus, the space complexity can be 
reduced to O(m) by storing only two columns of the matrix. 

A. Definition of the Problem 

Given a time series T = t1,t2,…,tn and a query Q = 
q1,q2,…,qm , find the subsequence Cs,m of T such that 
D(Ĉs,m,Q̂), 1≤ s ≤ n-m+1, is minimum. 

Given the above definition, we could devise a brute force 
algorithm shown in Table 1, which takes O(nm2) time and 
O(nm) space. For completeness, we also show the 
pseudocode for computing the DTW distance in Table 2. 

 

                                                           
1
 Some papers have suggested doing [0,1] or [-1,1] normalization instead. 

However, the authors do not seem to appreciate how brutally sensitive this 
method is to even small amounts of noise or a single outlier.  

TABLE 1: SUBSEQUENCE SEARCH ALGORITHM 

Procedure  SubsequenceSearch(T,Q)  
 T: A time series of n points 
 Q: Query time series of m points 

1 z-Normalize(Q) 
2 for s = 1 to n-m+1 
3  z-Normalize(Cs,m) 
4  Compute D(Cs,m,Q) 
5  Update minimum if necessary 

TABLE 2: DTW ALGORITHM 

Procedure  D(C,Q)  

 C: A time series of n points, C(0)= ∞ 
 Q: A time series of m points, Q(0)= ∞ 

1 s = 0 
2 for i = 0 to m  
3  d(i,s) = |C(1)-Q(i)| 
4 s = s!1 // xor operation 
5 for j = 2 to n  
6  for i = 0 to m 
7    d(i,s) = |C(j)-Q(i)| + 

    min(d(i-1,s),d(i,s! 1),d(i-1,s! 1)) 
8  s = s!1 
9 return d(n,s!1) 

We have chosen the simplest possible problem definition 
with one query, one time series and the same subsequence 
length (m). There are more general subsequence search 
problems where many queries [24] and time series are 
involved, or where rotation/phase invariance is required 
under DTW [27][21]. However, all such problems can 
benefit directly from a speedup of the simple definition.  

B. Why Current Software Solutions Are Not the Answer 

As we hinted at above, the several apparent software 
solutions to the task at hand contain a serious error. We can 
best demonstrate this with a simple experiment. 

Suppose we task a DTW subsequence search with the 
simple task of detecting the heartbeats of an individual, using 
one of that same individual’s heartbeats. 

We begin by downloading a long ECG sequence from a 
61-year-old female and manually extracting a typical beat as 
our query [31]. We also manually extract some additional 
adjacent beats and compare them to our query, finding them 
to be an average distance of about 20.0, so we set our beat 
detector at a conservative threshold of 30.0. Figure 1 shows 
the beats detected in the first 1,800 datapoints, as we can see, 
the majority of the beats are missed. How could this be?  

 
Figure 1: A query heartbeat (left) is scanned across an ECG trace. (top-
right) Only three of the twelve beats are detected. Plotting the distance 
from the query to the relevant subsequence (bottom) reveals that slight 
differences in a subsequence’s mean value (offset) completely dominate the 
DTW distance calculation, dwarfing any contribution from the similarity of 
the shape. 
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Note that while the local mean of the ECG trace starts at 
about zero, which is also the approximate mean of the query, 
the trace slowly rises to have a local mean of about 1.0, then 
descends below zero (allowing the detection of a single beat 
at about 1,500 as the mean crosses zero).  

The problem is that the SPRING algorithm [22] does not 
(and, more critically cannot) normalize the offset or 
amplitude of the subsequences of the longer time series. It is 
therefore implicitly assuming that the query will happen to 
have the same offset and amplitude as the matching 
subsequence. However, in virtually every domain that 
assumption is unwarranted. For example, virtually all ECGs 
wander up and down as in our example, the effect is known 
as a wandering baseline [14]. Similar problems are observed 
in motion capture, astronomy, entomology, industrial process 
telemetry, EEGs, etc.   

It is important to recognize that there is no simple fix for 
this problem. The SPRING [22] algorithm achieves its 
speedup by exploiting the redundancy of calculations in a 
sliding DTW matrix, but if each subsequence is z-
normalized, as it must be to obtain meaningful results, then 
there will be no redundant calculations to exploit. For brevity 
we will conclude the discussion of the reasons why current 
software solutions do not work here. The interested reader 
can view [31], where we have many additional examples of 
the problem in real domains and a detailed discussion of why 
the obvious possible fixes for the problem we have just 
pointed out will not solve it. In our view, this problem is very 
unlikely to yield to a software solution that improves the 
time complexity of the brute force algorithm in Table 1. 

III. ACCELARATION BY GPU 

The GPU is a computing device that serves as a 
coprocessor for the CPU. It has its own device memory on 
the card and can execute many threads in parallel [18]. In 
this work we use the ubiquitous NVIDIA CUDA 
architecture, where multiple threads running on multiple 
processing cores execute the same program on separate data. 
This Single Instruction Multiple Data (SIMD) architecture 
allows us to map each normalization and DTW distance 
computation (Lines 3-4 in Table 1) to be executed in parallel 
on different segments of the time series.  

Each CUDA function (i.e. kernel) is executed by an array 
of threads. Each of these threads is assigned an ID that it 
uses to determine memory addresses (i.e. the segment of the 
time series) it should operate on. The hardware is free to 
determine the mapping and scheduling of these threads on 
the available processing cores. A thread block is defined as a 
batch of threads that are guaranteed to run simultaneously 
and cooperate with each other through shared resources. The 
size of a thread block can be specified at runtime. The 
NVIDIA CUDA thread architecture can be found in [18]. 

The GPU implementation of Dynamic Time Warping 
consists of three main stages: (1) The CPU copies the values 
to the GPU memory. (2) The CPU calls the GPU kernel. (3) 
The CPU copies the output from the GPU. 

In the first step, the CPU copies the whole time series (T 
in Table 1) to the global memory of the GPU. If the time 
series is larger than the available device memory, the CPU 

splits it into small batches and processes one batch at a time. 
This process introduces latency in the output but does not 
hamper the real-time processing, as the time to copy the data 
is in the range of milliseconds. Therefore, copying batches 
one at a time can tolerate a data arrival rate of hundreds of 
hertz without overflowing a buffer. Since the query is fixed  
for all of the batches, we copy it to the global memory in the 
beginning and keep it there throughout the execution. 

In the second step, the CPU calls the kernel in the GPU. 
Every kernel thread operates on a specific sliding window in 
two steps: first, accessing the sliding window to compute the 
mean and variance, and second, computing the normalized 
DTW distance to the query.  For both the steps, each kernel 
thread accesses a contiguous segment of m numbers from the 
time series T in the global memory. If we batch the threads 
responsible for successive sliding windows in a thread block, 
the memory accesses by these threads will result into 
coalesced accesses [7]. For example in Figure 2, a block of 
four threads is shown where the first memory accesses by 
these four threads require one read from the memory instead 
of four, because of the threads operating on contiguous 
locations in the memory.  

 

Figure 2: Division of work among threads. Memory accesses are coalesced 
by overlapping threads (for m=4). 

In the second step, when the mean and variance are 
ready, each thread computes the DTW distance between the 
query and the normalized subsequence by Table 2. Note that 
in Table 2, the query Q is accessed O(m2) times whereas the 
subsequence C is accessed O(m) times. It is important to 
maintain this distinction between Q and C although 
swapping Q and C in Table 2 would produce correct results. 
The reason is that Q is a fixed time series, and by the 
problem definition it is not changed during execution. 
Furthermore Q is much smaller than T so it can fit in the 
shared memory of the GPU device. Shared memory is a 
special memory locally available to the processor cores in a 
multi-processor of the GPU device. Shared memory is 150x 
faster than the global memory which is available to all of the 
cores in all of the multi-processors. Typically, shared 
memory is much smaller than the global memory and thus is 
the ideal place for the query time series.  

In the beginning of the DTW computation, the kernel 
threads copy the query (Q) into shared memory from the 
global memory. The internal data structure for computing the 
DTW distance is two column vectors (d in Table 2) of size 
m. These vectors are best stored in the shared memory if they 
all fit together (e.g., in the case of very small m). Otherwise, 
they are stored in the global memory. With all of the 
variables in place, the DTW computation is performed. Each 
thread stores the computed distance in a global array indexed 
by the thread ID. 
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Finally in the third step, when all of the threads 
terminate, the CPU copies the array back to system memory. 
Although the algorithm looks for the minimum distance, it is 
much simpler and more efficient to copy back all of the 
distances to the CPU instead of computing the minimum in 
the GPU.  

IV. ACCELARATION BY FPGA 

A. FPGA Implementation 

The design of an FPGA configuration requires 
programming using a hardware description language (i.e., 
VHDL/Verilog). In this work, we use an open source C to 
VHDL compiler system, ROCCC [29], which allows us to 
describe the hardware in C language and generate the VHDL 
code automatically. ROCCC also optimizes the design 
mainly in three ways. First, it maximizes the throughput by 
exploiting loop and instruction level parallelism. Second, it 
reuses the data, and third, it generates a pipelined datapath to 
minimize the number of clock cycles [24]. 

Our FPGA design consists of two major blocks: 
Normalizer and Warper, to normalize the input data and run 
the actual DTW matrix calculations, respectively (Figure 3). 
Input data streamed into the system are first given to a First-
In-First-Out (FIFO) buffer. The size and input ratio of this 
FIFO can be adjusted according to the FPGA interconnection 
mechanism. However, the output of the FIFO generates one 
sample (8 bits) every clock cycle. Next, the output of the 
FIFO is fed into the Normalizer module. Initially, 
Normalizer waits until the first window is received. Every 
following normalization operation reuses m-1 operands of 
the previous operation, where m is the query length. After the 
first output is produced, a new output is generated every 
clock cycle. This output is given to another FIFO, which acts 
as the intermediate memory component between the 
Normalizer and the Warper.  

 

Figure 3: FPGA Block Diagram. Thick lines are for m-point wide 
connections. Thin lines are for one-point wide connections. Buffers are 
simple FIFOs. 

Internally, a trivial Normalizer module stores m-partial 
sliding windows. In every clock cycle, it updates statistics 
for all of the partial windows and outputs the window for 
which the normalization is complete. Thus, it needs quadratic 
O(m2) space in the FPGA and does not scale with larger 
query lengths. In order to support larger query lengths, we 
implemented an online Normalizer, which does not 
remember intermediate states. It computes the mean (μ) and 
standard deviation (σ) online and normalizes exactly one 
window in every clock cycle. Thus, it needs linear O(m) 
space in the FPGA. Although the trivial Normalizer has 
shown better performance in speed due to less overhead, it 
does not make any difference in the overall system 

performance. The reason for this is that the Warper module 
is the real performance bottle-neck as described later. 

The Online Normalizer consists of three sub-units, as 
shown in Figure 4. The first unit calculates the sum and sum 
of squares of all the inputs in a sliding window fashion, by 
adding the new value while subtracting the oldest value to be 
removed from the sum. Initially, “to remove” value is zero 
until the first window is completely received through the 
“Datapoint” input. When switching to the next window, the 
very first value of the first window is given to “to remove” 
and the sum for the second window is obtained at the output. 
This output is also given to the Normalize Divider sub-unit, 
where the mean and the standard deviation of the latest 
window are obtained. The input stream is provided to the 
third unit through a buffer. The size of this buffer depends on 
the delay of the first two modules. The third module must 
wait until the corresponding mean and standard deviation 
values are available for a given window. This delay is 
provided by the Datapoint Buffer, which is automatically 
added by ROCCC. The unit then runs the actual 
normalization function. The generated normalized data is 
provided to the systolic array (warper) through a buffer, as 
shown in Figure 3. 

 

Figure 4: Online Normalization Unit. The sum and sum of squares are 
obtained in a sliding window approach, by adding the new input and 
subtracting the oldest value. The input datapoints are delayed through the 
Datapoint Buffer, to make sure that the correct mean and standard 
deviation are used. 

The Warper module is implemented as a systolic array 
[2]. A systolic array consists of data processing units 
connected in a matrix fashion. These data processing units 
(i.e. cells) share the information with their neighbors 
immediately after processing. Using ROCCC’s built-in 
systolic array generator, we simply obtain the hardware 
description of the Warper module. Structurally, the Warper 
module is the same for any window size, except for the size 
of the systolic array. This size can be adjusted in the ROCCC 
code by tuning a parameter. A Warper module generates one 
DTW distance between the normalized sliding window and 
the query time series in every m clock cycle where m is the 
window size/query length. Since the normalization unit is m 
times faster than the Warper unit, we place multiple Warper 
units to operate on separate normalized windows generated 
by the normalization unit. Ideally, if we had unlimited FPGA 
area, we could place m Warper modules to get the maximum 
processing speed of one DTW distance in every clock cycle. 
When multiple Warper modules are in place, the Internal 
Buffer output is fed into them in a round robin fashion.  
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V. EVALUATION 

In this section, we show the performances for the DTW 
subsequence search problem in different hardware settings. 
We use the following platforms: Software: Intel Xeon 
E5540 CPU at 2.53 GHz, SSE: Intel i7- 920 CPU at  2.66 
GHz, GPU: NVIDIA Tesla C1060 with 240 cores and 
FPGA: Xilinx Virtex 5 LX-330. 

The SSE (Streaming Single Instruction Multiple Data 
(SIMD) Extensions) is an instruction set extension to Intel’s 
x86-architecture. It makes use of 128-bit SSE registers and 
can merge four 32-bit data to operate concurrently. The 
software implementation proposed in Table 1 can be 
parallelized by making use of data independencies. We 
execute SSE instructions while normalizing every sample by 
the same μ and σ. The performance improvement is therefore 
not significant compared to the software-based solution. 

In Figure 5, we show the time required to answer a query  
of length 128 by different hardware settings. We achieve the 
highest speedup over the software through FPGA 
acceleration, which is 4000 times faster in the best case 
scenario. GPU acceleration is 36.3 times faster, on average. 
All of the results reported here use 8-bit integers to represent 
the values in the time series.  

 
Figure 5: Comparison of execution times with different lengths of the input 
time series, in LOG scale. The query length is 128 (left) and 1024 (right). 
For GPU, block size is 512. 

The FPGA performance results are obtained after 
placement and routing operations. We use one trivial 
Normalizer unit and eight Warper units. The Normalizer for 
window size 128 requires 13% of the target device and runs 
at 180MHz. Each Warper unit requires 7% of the area and 
run at 240MHz. The Normalization unit provides an output 
for each clock cycle. The Warper requires 128 clock cycles. 
Therefore, the Warper unit runs more slowly than the 
Normalizer. At 240 MHz, one window of length 128 can be 
processed through the Warper in 128/240M seconds. 
However, using 8 Warpers reduces this to 16/240M seconds. 
In other words, 15 million samples (windows) can be 
processed per second. 

In Figure 5, we show the execution times for a fixed 
window size of 1024, the FPGA provides a maximum 
speedup of 4500x and the GPU achieves a speedup of 29x 
over software. For the window size 1024 on the FPGA, we 
use the online Normalizer, as shown in Figure 4. This 
module runs at a clock frequency of 180MHz and requires 
83% of the FPGA logic. The Warper module runs at 
250MHz and requires 9% of the logic. In this case, we can 
only place one Warper module safely. Although the area is 
dominated by the Normalizer, the throughput of the system 
is still determined by the Warper module. The Warper 
module requires 1024 clock cycles per cycle. One sample 

(window) can be processed in 1024/250M seconds. This 
results in a throughput of 244 thousand samples per second.  

In Figure 6 we show the responses of different methods 
while varying the size of the query. Recall the methods have 
the same time complexity of O(nm2). The responses show a 
clear quadratic growth for software and SSE methods. Our 
hardware acceleration techniques are much slower in growth 
because of the parallelism our techniques achieve. The trends 
in the figure clearly show that our techniques will remain 
tenable for larger window size while the software methods 
are already intractable. 

 

 

Figure 6: (left) Execution times for a fixed time series of length 40,000 
with varying query sizes (m). (right) Two star light curves that happen to 
be very similar. If we happen to know the class label of one, we may 
predict that the other is in the same class.  

VI. EXPERIMENTAL CASE STUDIES  

A. Case Study in Astronomy 

A star light curve is a graph which shows the brightness 
of a stellar object over a period of time. Figure 6 shows two 
examples. The reasons why the stars change their brightness 
include planetary transits, self-occluding binary systems, 
cataclysmic or explosive events (nova or supernova) and 
unknown reasons. The study of light curves has led to the 
discovery of pulsars, extra-solar planets, supernovae, the rate 
of expansion of the universe, etc. [19][21]. 

It is difficult to overstate how many star light curves 
exist. Looking backwards, there are over 500,000 glass 
photographic plates at Harvard University that were exposed 
between 1885 and 1993 [30]. These are currently being 
digitized to yield millions of light curves. Looking ahead, 
this year sees work starting on the Large Synoptic Survey 
Telescope (LSST), a wide-field "survey" reflecting telescope 
that will photograph the available sky every three nights. It is 
estimated that LSST will produce billions of light curves in 
the next decade. 

As both old and new light curves come online, an 
obvious thing to do is to classify them [19]. Astronomers do 
have a large number of classified light curves; in some cases 
they can obtain what is effectively ground truth by obtaining 
extra features for relatively close stars.  

While it is possible to extract a single light curve cycle, 
there is no well-defined starting point. Astronomers have an 
algorithm called universal phasing to produce a canonical 
alignment for light curves, but bemoan the fact that this is 
“...an operation that scales poorly to massive data sets”. 
However, as we shall see, in addition to poorly scaling, the 
universal phasing algorithm does not work as well as 
astronomers believe.  

We obtained a three-class star light curve dataset which 
had been universally phased by astronomers at (blinded). We 
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created a test set with just 128 objects, and a training set of 
1024 objects. Each light curve was normalized to have a 
length of 1024 (as is the practice in astronomy). 

We measured the accuracy of Euclidean distance and 
DTW, obtaining accuracies of 80.47% and 86.72%, 
respectively. This tells us that “warping” is useful in this 
domain, something that had been suspected before [27]. 
However, rather than stopping here, we decided to test the 
universal phasing assumption. Suppose we ignored it and 
tested DTW for all possible alignments/shifts. To our 
knowledge this has never been attempted before, presumably 
because the rotation invariance version of DTW (rDTW) is 
O(n3), which is untenable for a CPU. After testing the 
rotation-invariant versions of both Euclidean distance and 
DTW, we found that the accuracies jumped to 81.2% and 
91.4%, respectively. Clearly, universal phasing does not 
produce perfect alignments.  

TABLE 3: ACCURACIES AND TIMINGS FOR CLASSIFYING 128 LIGHT CURVES 

AGAINST A TRAINING SET OF 1,024, WITH ALL SEQUENCES OF LENGTH 

1,024. VALUES IN PARENTHESES ARE ESTIMATED BASED ON SHORTER 

EXPERIMENTS. 

 Accuracy  Time FPGA Time GPU  Time CPU  

ED 80.47% <1.0 seconds <1.0 seconds 2.5 seconds 

rED 81.25% <1.0 seconds 55.3 seconds 43.6 minutes 

DTW 86.72% <1.0 seconds 43.6 seconds 35.4 minutes 

rDTW 91.41% 9.54 minutes 22.7 hours (42 days) 

VII. CONCLUSION
2 

We have shown subsequence similarity search is an 
important problem, but the current software based solutions 
cannot provide adequate speed to tackle many diverse 
domains. We have shown that hardware based solutions offer 
the necessary speedup. We have designed (correctly 
normalizing) DTW similarity search algorithm for GPUs and 
FPGAs and placed all code in the public domain [31]. 
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