
Int J Parallel Prog (2008) 36:493–520
DOI 10.1007/s10766-008-0080-7

A Compiler Intermediate Representation
for Reconfigurable Fabrics

Zhi Guo · Betul Buyukkurt · John Cortes ·
Abhishek Mitra · Walild Najjar

Received: 2 April 2008 / Accepted: 23 July 2008 / Published online: 19 September 2008
© Springer Science+Business Media, LLC 2008

Abstract Configurable computing relies on the expression of a computation as a
circuit. Its main purpose is the hardware based acceleration of programs. Configurable
computing has received renewed interest with the recent rapid increase in both size
and speed of FPGAs. One of the major obstacles in the way of wider adoption of
(re)configurable computing is the lack of high-level tools that support the efficient
mapping of programs expressed in high-level languages (HLL) to reconfigurable fab-
rics. The major difficulty in such a mapping is the translation from a temporal execution
model to a spatial execution model. An intermediate representation (IR) is the cen-
tral structure around which tools such as compilers and synthesis tools are built. In
this paper we propose an IR specifically designed for reconfigurable fabrics: CIRRF
(Compiler Intermediate Representation for Reconfigurable Fabrics). We describe the
design of CIRRF and its initial implementation as part of the ROCCC compiler for
translating C code to VHDL. CIRRF is designed to support the creation of a datapath
and the scheduling of operations on it. It provides support for buffers, look-up tables,

Z. Guo (B)
Brocade Communications Systems, San Jose, CA, USA
e-mail: zguo@brocade.com

B. Buyukkurt · J. Cortes · A. Mitra ·W. Najjar
Department of Computer Science and Engineering, University of California,
Riverside, Riverside, CA, USA
e-mail: abuyukku@cs.ucr.edu

J. Cortes
e-mail: jcortes@cs.ucr.edu

A. Mitra
e-mail: amitra@cs.ucr.edu

W. Najjar
e-mail: najjar@cs.ucr.edu

123

494 Int J Parallel Prog (2008) 36:493–520

predication and pipelining in the datapath. One of the important features of CIRRF,
and ROCCC, is its support for the import of pre-designed IP cores into the original
C source code allowing the user to leverage the huge wealth of existing IP cores
while programming the configurable platform using a HLL. Using experiments and
examples we show that CIRRF is a solid foundation to generate high-performance
hardware.

Keywords Configurable computing · Intermediate representation · FPGA · VHDL

1 Introduction

The main problem standing in the way of wider acceptance of reconfigurable comput-
ing platforms is their programmability. Currently, application developers must have
extensive hardware expertise, in addition to their application area expertise, if they are
to develop efficient designs that can fully exploit the potential of FPGA-based config-
urable platforms. Designing and mapping large applications onto FPGAs is a long and
tedious task that involves a large amount of low-level design in a Hardware Descrip-
tion Language (HDL). This poses two problems: traditional application developers
are typically not HDL designers, and HDLs are not well suited to algorithm imple-
mentation. Several projects have looked at the translation of traditional programming
languages, such as C/C++ or Java, to HDLs for mapping onto FPGAs or other similar
fabrics. This is a challenging task. The FPGA is an amorphous mass of logic onto
which the compiler must create a datapath and schedule the computation. Such a task
requires the harnessing of technologies developed for parallelizing compilers as well
as those developed for high-level synthesis. The fundamental differences between the
spatial computing model and the temporal, or von Neumann, model are:

• Spatial computing is inherently parallel while temporal computing is sequential.
• Temporal computing relies on two centralized storage locations that are both explic-

itly addressed by the code: the register file and the memory. In spatial computing,
storage is distributed throughout the circuit and is accessed implicitly rather than
explicitly. Furthermore, it is the task of the compiler to explicitly create the storage
on the FPGA and schedule its accesses.
• Scheduling in temporal computing is driven by control flow, while in spatial com-

puting it is driven by data flow.

The main challenge in translating from a HLL to an HDL is in overcoming these
fundamental differences. Optimizing compilers for traditional processors have bene-
fited from several decades of extensive research that has led to efficient tools. Similarly,
electronic design automation (EDA) tools have also benefited from several decades
of research and development leading to powerful tools that can translate VHDL and
Verilog code, and recently SystemC code, into efficient circuits. However, little work
has been done to combine these two approaches into one integrated compilation tool
where HLL are translated into a high-performance circuit.

At the heart of each compiler or synthesis tool is an intermediate representation (IR)
around which the tool is built. In this paper we propose CIRRF (Compiler Intermedi-
ate Representation for Reconfigurable Fabrics), an IR designed for the compilation of

123

Int J Parallel Prog (2008) 36:493–520 495

traditional imperative, high-level languages, targeting reconfigurable devices. CIRRF
is intended to be an open halfway-point representation between a high-level language
and a specific reconfigurable platform. A front-end tool would translate C/C++, FOR-
TRAN, Java or SystemC to CIRRF. Back tools would map CIRRF to a specific target.
Loop and array transformations are dealt with in the front-end tools; target-specific
optimizations are implemented in the back tools. CIRRF is designed to be both lan-
guage and target independent. It is the intermediate representation of the ROCCC
compiler (Riverside Optimizing Compiler for Configurable Computing). CIRRF dif-
fers from traditional compiler IRs in that it supports concurrency, both explicitly and
implicitly, as well as the instantiation of and accesses to on-chip storage structures.
It records information about loop types, memory interfacing, instruction predication
and pipelining. Special instructions for efficient datapath generation are introduced.
ROCCC does not support pointers and memory allocation.

The ROCCC compiler is designed to generate VHDL from C. However, not all
application algorithms can be efficiently described by C. Furthermore, industry has
invested tremendous financial and technical efforts on pre-designed intellectual prop-
erty (IP) cores for FPGA-based platforms that are not only very efficient but have been
thoroughly tested and verified. These IP cores come in the form of synthesizable HDL
code or even lower level descriptions. They vary drastically with respect to their con-
trol and timing protocol specifications which intended to be interfaced to HDL-based
designs. Compilers for FPGA-based reconfigurable systems must therefore leverage
that huge wealth of IP designs by allowing the user to import these into high-level
language (HLL) source codes. To do so would require a wrapper structure that would
hide the timing and stateful nature of the IP cores and make each look, to the HLL
compiler, as an un-timed side-effect free function call.

We propose a mechanism for the automatic generation of such a wrapper using
ROCCC. Users provide the high-level description of a wrapper, which is based on
C with timing information. CIRRF records the timing information so that from the
compiler’s point of view, the wrapper described in C is essentially a timed control
flow graph. The compiler’s back-end converts this timed CFG into predicated DFG
and eventually generates an IP wrapper in VHDL. Notice that a normal C code input
to ROCCC does not have any timing implication, while a wrapper in C is a special
case, which does have timing information.

The rest of this paper is organized as follows: Sect. 2 presents CIRRF’s architecture
and the method we build CIRRF; Sect. 4 extends CIRRF to support the compiler for IP
wrapper generation. Results are given in the subsections of Sect. 2 and Sect. 4. Section 5
reviews related work; and Sect. 6 concludes the paper.

2 CIRRF Intermediate Representation

The major objective of CIRRF is to separate the language specific compiler concerns
from those of the target platform. The architecture of FPGA-based platforms can vary
widely in the number and types of FPGAs, the number and size of on-board memory
modules, the bus width connecting the FPGAs to the memories, etc. The compiler
must therefore generate code that can take advantage of the unique features of each

123

496 Int J Parallel Prog (2008) 36:493–520

platform. This approach allows for an easy targeting or re-targeting of new or modified
platforms.

In this section we describe the overall structure of CIRRF and the two levels cur-
rently implemented as part of the ROCCC compiler tool. We present ROCCC’s work-
flow to build the CIRRF IR. The front-end optimizes the user-input code and generates
Hi-CIRRF by adding macros into the source (Sect. 2.3). Starting from a conventional
CFG, the back-end first constructs data flow for do-all loops (Sect. 2.4.1), then converts
non-do-all nodes into data flow nodes using predication (Sect. 2.4.3).

2.1 CIRRF Architecture and Execution Model

ROCCC’s intermediate representation, CIRRF, is built using SUIF2 [1] and Machine-
SUIF [2]. SUIF2 consists of high-level statements, such as loop statements and if-else
statements, while Machine-SUIF consists of virtual machine instructions. CIRRF con-
sists of two distinct but equivalent representations, as shown in Fig. 1. The Hi-CIRRF,
built using SUIF2, is essentially C code augmented with macros. The Lo-CIRRF for-
mat, extended from Machine-SUIF, is semantically similar to assembly code. The
advantage of this approach, which is commonly used in various compiler IRs, is that
it allows the user to have multiple levels of entry into the IR. Functional debugging,
for example, would be a lot easier at the Hi-CIRRF level. A functional simulation of
the generated code would be feasible at the Lo-CIRRF level.

2.1.1 Hi- and Lo-CIRRF

The Hi-CIRRF representation is generated after the high-level compiler transforma-
tions have been applied. It has a C syntax that has been augmented with macros. The
Lo-CIRRF serves as a platform for pipelining, interfacing to memory and generating
VHDL. It semantic and syntax are similar to assembly language and rely on statically
single-assigned virtual registers.

Fig. 1 Overview of CIRRF

123

Int J Parallel Prog (2008) 36:493–520 497

The macros in Hi-CIRRF are used to:

• Instantiate and access on-chip buffers.
• Implement special operations that eliminate recurrence or enforce a pipeline delay

for IP wrapper generation.
• Invoke bitwise and arithmetic operations, such as bit-insert, bit-extract, and mini-

mum of two values.
• Invoke look-up tables and IP cores.

In Lo-CIRRF the code is similar to an assembly code. It is implemented as a control
and data flow graph (CDFG) with the following characteristics:

• Virtual statically single-assigned registers.
• Register name indicates type (signed, unsigned) and bit size.
• Predicated instructions.
• Pipelining information for each instruction.
• Loop nodes that specify complete loop information such as loop type (parallel or

sequential), nesting level, index and stride.

2.1.2 Execution Model

CIRRF is essentially intended to represent loop nests that would be mapped to hard-
ware. Its execution model, shown in Fig. 2, is very simple: it consists of an input data
memory which can be on or off-chip, a data fetch engine that collects the data into
an input buffer. The data is then pushed, every cycle, into the pipelined datapath. The
same structure is replicated at the output side. Note that, unlike in a von Neumann
architecture, the datapath does not fetch the data, rather at each iteration, the correct
set of data is selected by a controller from the input buffer and pushed into the data-
path. The CIRRF execution model can therefore be considered a decoupled model of
execution.

2.2 On-Chip Buffers

One of the distinguishing features of spatial computing representation is that storage
needs to be explicitly architectured by the code while in temporal computing it is
implicitly available in the form of registers and memory (cache, main memory etc).
Furthermore, the accesses to memory for both data reads and writes have to generated
as part of the computation.

Buffers are therefore first class citizens in CIRRF. They play several roles including:

• Interface to memory for both reads and writes.
• Interface between two segments of the datapath that operate in a producer consumer

relationship.
• Cache data fetched from memory for future reuse to reduce the number of memory

accesses.
• Hold run-time constants.

123

498 Int J Parallel Prog (2008) 36:493–520

Fig. 2 Execution model
of CIRRF

The following is a partial list of buffers that are part of the CIRRF design to date:

• Memory interface. The mem_read_ fifo_buffer and mem_write_ fifo_buffer serve
as interfaces between the memory, off or on chip, and the datapath. They are param-
eterized in both width and size and are accessed in one cycle.
• Data reuse. The smartbuffer [3] is designed to facilitate the reuse of data fetched

from off-chip memory. It is particularly well suited for window-based operation as
is very common in signal and image processing algorithm where every data sample,
or pixels, participates in the computations of several windows. The deallocation and
replacement of a data value in the smartbuffer is scheduled by the compiler.
• Run-time constants. The ROCCC compiler folds compile-time constants into the

computation. However, run-time constants need to be made available to the com-
putation. Two such structures are built into CIRRF.

– The constant_buffer consists of a small set of scalar values that are directly written
to registers in the datapath.

– The one_time_buffer holds an array of constant values. It operates just like the
mem_write_ fifo_buffer but is read only once. It is used in the cases where the
number of constants is too large to be enumerated by the compiler.

Figure 3 shows a matrix multiplication example with the mem_read_ fifo_buffer
and the one_time_write_buffer.

123

Int J Parallel Prog (2008) 36:493–520 499

(a) (b)

Fig. 3 An example of the mem_read_ fifo_buffer and the one_time_write_buffer

• Producer/Consumer. Buffers are also generated in CIRRF to implement on-chip
producer consumer relationships between segments of the datapath: pc_ fifo_buffer.

2.3 Building Hi-CIRRF

The ROCCC system performs the following loop transformations: invariant code
motion; partial and full loop unrolling; loop peeling; loop un-switching; loop til-
ing; strip-mining; loop fusion; constant propagation of scalars and constant array
masks; constant folding; elimination of algebraic identities; copy propagation; dead
and unreachable code elimination; code hoisting; code sinking; scalar renaming; and
division by constant approximation using shifts and additions. ROCCC generates
reduction on scalars that accumulate values through associative and commutative oper-
ations on themselves. It also carries out the following hardware-specific analysis and
transformations:

• Scalar replacement. The front-end decouples a do-all loops’ array accesses from
computation. Figure 4a shows the original C code of a gray scale transformation
example. After undergoing scalar replacement, the computation is isolated from
memory accesses (Fig. 4b) by a smart buffer. The smart buffer will be synthesized
on configurable fabrics as the interface with memory. One important characteris-
tic of smart buffers is that they reuse input data between iterations and push one
iteration’s input data initiatively to the datapath, rather than being accessed by the
datapath [3]. The syntax of a two-dimensional smart buffer macro is:

smartbuffer2(input_array_name, address_index_1, address_index_2,

scalar_1, offset_1_1, offset_1_2, scalar_2, offset_2_1, offset_2_2);

123

500 Int J Parallel Prog (2008) 36:493–520

(a)

(b)

Fig. 4 A gray scale transformation example in C. (a) The C code sums the gray scale values in a 2×2
window in the input image (array a) and assigns one of three possible values to the pixel in the output image
(array b) depending on the value of sum. (b) The intermediate C code emitted by front-end. The highlighted
segments are created by scalar replacement

For example, in the smart buffer macro in Fig. 4 b, the last three parameters (x4, 1, 1)

stands for: x4 = a[i+1][j+1]; Similarly, the syntax of a two-dimensional memory
write FIFO buffer macro is:

mem_write_ fifo_buffer2(output_array_name, address_index_1,

address_index_2, scalar_1, offset_1_1, offset_1_2, scalar_2,

offset_2_1, offset_2_2);

123

Int J Parallel Prog (2008) 36:493–520 501

The memory write FIFO buffer macro in Fig. 4b stands for b[i + 0][j + 0] = tmp;
Currently we have the following constraints on buffer macros. An array can only
appear in at most one buffer macro. The address indexes of buffers are also the loop
counters. The operator between an address index variable and the offset can only
be either addition or subtraction.
• Feedback variable detection. The compiler detects scalar recurrence between adja-

cent iterations. For example, for a loop having a statement sum = sum + a[i], to
eliminate the loop-carried dependency, the compiler replaces the sum on the left and
the sum on the right with store2next() macro and load_previous() macro, respec-
tively. These macros guide the backend to instantiate a feedback register to store
the current sum for the next iteration.

The output from the front-end is in the forms of both an IR file and an interme-
diate C with macros. Users could do further optimizations and add pragmas onto the
intermediate C.

2.4 Building Lo-CIRRF

The backend first constructs a conventional CFG (Fig. 5a). The compiler finds loops
and loop-depth. Loop types are recovered from pragmas provided by the user:
Currently, these include one-dimensional do-all loop, two-dimensional perfect nested
do-all loop, and non-do-all loop. The pre-process phase of the back-end converts
macros in Hi-CIRRF into corresponding instructions. Particularly, buffer macros are
converted into buffer instructions and put into separated nodes, as shown in Fig. 5b
for example. The smart buffer instruction is shown below.

smb2 main.x1, main.x2, main.x3, main.x4←
main.a, $vr35.s32, $vr75.s32, 0, 0, 0, 1, 1, 0, 1, 1;

where main.x1 through main.x4 are the buffer’s output ports, main.a is the input
memory name, vr35 and vr75 are the address index variable (also loop counters).
The integers are four pairs of offsets. We categorize basic nodes into two types: paral-
lel do-all nodes and sequential non-do-all nodes. The compiler’s back-end generates
datapath using different pipelining and scheduling mechanisms accordingly.

2.4.1 Building Lo-CIRRF for Parallel Loops

For a parallel loop, or do-all node, ROCCC exploits both instruction-level and loop-
level parallelisms. The compiler first performs if-conversion to eliminate control flow
within the loop body. It then walks through the loop body in a depth-first order and
adds extra nodes for joint nodes that have more than two predecessors. Figure 5c shows
that a new node, node 16, is added as node 10’s predecessor.

In order to allow the datapath to implement multiple concurrent loop iterations, the
compiler groups the instructions inside a node into execution levels so that each level
is an instantiation of one iteration. Statically single-assigned variables are added to

123

502 Int J Parallel Prog (2008) 36:493–520

(a) (b) (c)

Fig. 5 CFG of the gray scale transformation example. (a) The original CFG. (b) The CFG after pre-pro-
cessing: highlighted nodes are added. Node 14 is the smart buffer node and node 15 is the memory write
FIFO buffer node. (c) The CFG right before performing if-conversion. Node 16 is added to make each joint
node have only two predecessor nodes

duplicate a variable if that variable’s definition reaches more than one level of exe-
cution lower. Therefore, the definition of each value is at a level strictly higher than
that of its use. Multiplexers are added, and predicators are duplicated and propagated
along with execution levels, as shown in Fig. 6. Notice that each execution level, in the
data flow in Fig. 6, represents a single iteration at a given execution phase. Then the
compiler pipelines the loop body by automatically inserting latches in some execution
levels of the data-flow. Instructions belonging to the same execution level are either
all latched or all non-latched. Multiple consecutive execution levels may be assigned
to the same pipeline stage.

The performance of the generated do-all loop datapaths is described in [4]. The
parameters of the datapath, such as the number of pipeline stages, are known at com-
pile time and determined by the user. A parameterized do-all loop controller schedules
the fully pipelined datapath’s operation.

2.4.2 Building Lo-CIRRF for Multi-Cycle Operation Support

The ROCCC compiler supports multi-cycle pipelined instructions. This requires syn-
chronization of the dataflow at all levels and prior knowledge of latency. To accomplish

123

Int J Parallel Prog (2008) 36:493–520 503

Fig. 6 DFG of the gray scale transformation example. The numbers on the left side are the execution levels.
The dashed lines carry speculators, while the solid lines carry data values. The nested if-else statements
are converted into a data-flow free of control. Speculators are duplicated along the execution levels. Each
execution level is an instantiation of one iteration. Notice that latches can be added between any execution
levels

this, we introduce an extra step in the compilation process after pipelining all the
one-cycle operations. In this extra step, we process the DFG for the bottom up all
stages that contain generic functions. If the generic function requires more than one
cycle the compiler pushes all lower stages by equivalent amount of remaining stages. If
data will not pass through the generic function then pipelined copies (mov instructions)
are placed to propagate data from before the pipeline stage of the generic function until
the end.

With the generic multi-cycle function added to ROCCC, we have added support for
IP core math functions, most notably,the support for floating point functions (ADD,
SUB, MUL, DIV). Floating point instructions are preprocessed and converted to
generic multi-cycle IP cores.

2.4.3 Building Lo-CIRRF for Sequential Loops

In a sequential loop, or non-do-all node, only one iteration is executed at a time. The
compiler schedules instructions into different execution levels in a manner similar to

123

504 Int J Parallel Prog (2008) 36:493–520

a do-all node. But the definition of a variable does not have to be constrained to one
level above. Multiple instructions might belong to the same execution level and can
be executed simultaneously to exploit instruction level parallelism.

The compiler utilizes predication to schedule the execution of non-do-all nodes’
instructions. Each pipeline stage is guarded by a predicator. Lo-CIRRF records pred-
icated instructions in the following format:

ADD $vr4.s16, $vr3.s16, $vr2.s16, $vr1.u1

vr4 is the destination operand and vr3 and vr2 are the source operands. vr1 is the
predicator, which is also a source operand. Predicators are passed inside basic nodes
for scheduling purpose. A special instruction, PFW (predicator forward), is created to
pass a predicator from the current stage to the next stage, which may be or may not
be in the same node:

PFW $vr2.u1, $vr1.u1

vr1 and vr2 are two predicators. The instructions guarded by vr2 are one pipeline
stage later than the ones guarded by vr1. Their types are u1, which stands for unsigned
one-bit. To convert CFG to DFG, the branch instructions of basic nodes are replaced
by Boolean instructions, whose destination operands are evaluated by this basic nodes’
successor nodes.

The back-end IR construction phases described so far translate both do-all nodes
and non-do-all loop nodes into a DFG. Essentially, the original CFG now is a DFG, in
which do-all loop nodes, if any, are connected together by non-do-all nodes. Then the
compiler’s VHDL generator emits VHDL code for the entire DFG, including buffers.

2.5 Case Study

In this case study, besides reporting the synthesis results of the gray scale trans-
formation example discussed in previous sections, we examine CIRRF on another
application, an alternative finite impulse response filter (FIR).

Figure 7 shows the original C code. In even outer iterations flag is one, while in
odd outer iterations flag is zero. Therefore the two do-all inner loops (the two high-
lighted regions) are executed alternately. Each of these two inner loops is a 5-tap FIR.
The upper FIR reads array a and writes array b, while the lower FIR reads array c
and writes array d. ROCCC’s front-end performs scalar replacement, and instantiates
a one-dimensional smart buffer macro and a one-dimensional memory write FIFO
buffer macro into each inner do-all loop, as described in Sect. 4.

The back-end first builds a CFG from the input. For this example, there are two
do-all loops nested inside the outer non-do-all loop. The back-end scans the whole
CFG and transforms the two inner 5-tap FIRs into data flow. Each FIR’s loop body
is aggressively pipelined, and the resulting datapath has a throughput of one itera-
tion per clock cycle. These two FIRs are controlled by two do-all loop controllers, as
shown in Fig. 8a. The back-end then converts the outer loop and the rest of the CFG

123

Int J Parallel Prog (2008) 36:493–520 505

Fig. 7 An alternative FIR example in C. The first highlighted segment is a 5-tap FIR reading array a and
writing array b, while the second highlighted segment is a 5-tap FIR reading array c and writing array d.
flag alternates the execution of these two segments

into a DFG by predicating all the non-do-all nodes. We list the instructions of these
nodes in Fig. 8b. Node 2 and node 10 are the head and tail nodes of the outer loop,
respectively. The first instruction of node 2, the ior instructions, produces the pred-
icator (vr1321) for the two instructions below it (pfw and sle) by examining a valid
output predicator from either node 1 (not shown), the first active node; or node 11,
the loop tail. Figure 8c depicts node 2’s circuit in detail. Guarded by vr1321, the sle
instruction asserts its destination operand when the outer loop is done, or de-asserts its
destination operand when needing to execute a new outer loop iteration. Node 2’s p f w

instruction forwards a valid vr1321 to the two successor nodes, node 3 and node 11,
for their predicator evaluation. Node 3 enables one of the two FIRs by either asserting
or de-asserting vr1325, depending the value of f lag (vr78). Node 10 is activated by
the done signal from one of the FIRs’ loop controller and updates the value of f lag
(vr230) and the loop counter m (vr233). Node 11 indicates the completion of the
whole procedure.

Table 1 shows the synthesis results of the gray scale transformation example dis-
cussed in previous sections and the alternative FIR. The target FPGA is the Xilinx
xc2v8000-5 with 46592 slices. The generated VHDL is synthesized and placed-and-
routed using the Xilinx tool chain. The second and the third rows are the datapath’s
bit-size and BRAM bus’s bit-size. slices and clock are collected from place-and-route
reports. The last row is the number of do-all loop iterations executed per clock cycle.
For gray scale transformation, the do-all loop’s loop body has nested if-else state-
ments, as shown in Fig. 4. After undergoing if-conversion, in the IR right before VHDL

123

506 Int J Parallel Prog (2008) 36:493–520

(a)

(c) (b)

Fig. 8 The DFG and IR of alternative FIR. (a) is the DFG. Node 3’s successors are two do-all loops
controlled by their loop controllers. For simplicity, we are not presenting the details of these two loops.
Operands’ data types are not shown. Node 1 through 3 and node 10 through 12 are non-do-all nodes, sched-
uled by predicators that are carried by the edges. (b) The DFG IR of node 2, 3, 10 and 11. The L field is
the pipeline stage (latch level) of the instruction within its node. An instruction with a P field is predicated
by its last source operand, which is the predicator. (c) Shows node 2’s circuit, in which a solid lines carry
data and a dashed lines carry predicators

Table 1 Synthesis results
of case study examples

Gray scale FIR
Datapath bitsize 16 8
Memory bus bitsize 16 8
Slices 318 531
Clock (MHz) 59.7 100
Iterations per cycle 0.5 1

emission (Fig. 6), the control flow is eliminated and the resulting data flow is capable
of executing one iteration each clock cycle. Notice we configure the BRAM’s data
bus (the third row) to have the same bit-size as that of the data elements (pixels), and
each iteration needs four (2×2) pixels. Though the smart buffer reuses one column of
the pixels loaded in previous iteration, it still needs two cycles to load the remaining
two new pixels. This explains why, for the gray scale transformation example, the
number of iterations per cycle is 0.5. For the alternative FIR, the VHDL generator

123

Int J Parallel Prog (2008) 36:493–520 507

generates one smart buffer and one memory write FIFO buffer for each of the two
do-all loops according to the buffer representations in the IR. When either one of the
two do-all loops is active, the corresponding smart buffer exports one window of data
(five elements) to the datapath every clock cycle, and therefore the circuit executes one
iteration per cycle. slices consists of the hardware of two do-all loops (the datapath,
the buffers and the controller for each FIR) and the hardware of the non-do-all nodes,
as shown in Fig. 8a.

3 On-Chip Buffers—Implementation and Evaluation

The on-chip buffer macro is one of the features of CIRRF. In [3] and [5] we introduced
the smart buffer approach to input data reuse. The smart buffer is ideally suited for
operations that involve a heavy reuse of fetched data, windowing operations on images
being an obvious example. In order to support more memory access patterns this mech-
anism is extended by adding more types of FIFO buffers as described in Sect. 2.2. In
this section we describe the implementation of various on-chip FIFO buffer structures
and report on the evaluation of their area and speed.

3.1 Implementation of FIFO Buffers

ROCCC supports both pre-designed VHDL library FIFO buffers and compiler gen-
erated buffers. The smart buffer falls in the later category. This section describes the
three VHDL library FIFO buffers and an improvement to the smart buffer design.

The three FIFO buffers in the ROCCC VHDL library are push stack FIFO buffer,
circular FIFO buffer and hybrid FIFO buffer. The first two are built with pure logic,
while the hybrid FIFO buffer uses BRAM for storage. They are instantiated by the
compiler when generating VHDL code. Each of these FIFOs have registered outputs—
the data output and data output assertion are synchronized together instead of having
to wait one cycle after assertion for the data output to be valid.

A template that all the library fifos follow is show in Fig. 9a: each fifo has datain, da-
taout, and handshaking signal ports. Figure 9b–d are different implementations based
on that template.

• Push stack FIFO buffer. Shown in Fig. 9b. Items are pushed onto the top of the stack
buffer (like a real FIFO system) and popped out from the bottom.
• Circular FIFO buffer. Shown in Fig. 9c. It uses a single buffer and two array point-

ers, write_ prt and read_ ptr, for keeping track of where the data has been written
and where it can be read from. Due to the implementation, if a size of N elements
is needed to be stored in the FIFO, N+1 elements must be allocated for the buffer.
• Hybrid FIFO buffer. Shown in Fig. 9d, its component’s layout is actually similar to

that of the logic FIFO—circular. Read and Write pointers are used, but the buffer
is implemented with BRAM instead of a set of register buffers. To improve the
latency, a mini buffer (a logic FIFO) is used to cache a few elements from the top
of the FIFO. BRAM FIFOs do not spend FPGA fabrics on storage and are area
efficient.

123

508 Int J Parallel Prog (2008) 36:493–520

(a) (b)

(d)(c)

Fig. 9 Library FIFO buffers

Fig. 10 Smartbuffer and input array FIFO buffer

The implementation of the smart buffer (Fig. 10a) is designed so that if no reuse is
needed, the buffer generated acts like a FIFO. In such a case, the compiler builds a small
cache within the smart buffer, now used as a FIFO, so it can work in the background
during pipeline stalls, memory fetch stalls, or buffer synchronization stalls. This struc-
ture is called the ROCCC Input Array FIFO Buffer (Fig. 10b).

A couple of assumptions that are required before designing this input array FIFO
buffer:

123

Int J Parallel Prog (2008) 36:493–520 509

• The input array FIFO buffer must not be used in cases where re-use is needed. If this
is done then extra logic will be used for storing the same element and thus wasting
resources.
• The desired latency and acceptable area cost of the input FIFO. If an area efficient

system is desirable then the use of the smartbuffer with no-reuse (which downgrades
to a FIFO) would be best to use.

If the system can afford extra area cost to allow decrease of execution time, and
no-reuse is needed, then the input array FIFO should be generated.

3.2 Evaluation

In this section we evaluate the performance of the various FIFO implementations and
their tradeoffs.

3.2.1 ROCCC Lib FIFO Buffer Experimental Results

The library FIFOs area and timing are as followings in Fig. 11a and b, respectively.
The figures suggest the BRAM FIFO is one of the most efficient in area and with a
decent clock speed. The shortcoming with this type of FIFO is the latency is about
four cycles (from the time when data is inputed to when it is outputted). For the logic
FIFOs the latency is about 1 cycle (which is a good as it can get), but as can be seen in
the figures the area usage is more but the clock speed suffers. If we compare the two
logic FIFOs we get that the push stack implementation is more area efficient than the
circular implementation. This is most likely due to the routing of the outputs of each
of the registers in the circular buffer to the output as opposed to routing only the last
register to the output in the push stack implementation.

(b)(a)

Fig. 11 3D plots of library FIFOs

123

510 Int J Parallel Prog (2008) 36:493–520

Fig. 12 Input array buffers—area and timing plots

3.2.2 Input Array FIFO Buffer Experimental Results

Figure 12a and b show how the area or timing is affected by the type and depth of the
buffer. Each buffer holds 4 or 8 elements (32 bits each) per line of cache. There is data
for the SMB1D (smartbuffer 1-dimension), which acts as a fifo for 1 cache line. The
rest are the input array FIFO buffer implementations of different depths (depths 2, 3,
and 4), which are listed horizontally on the table. So the table lists buffers for sizes 1
to 4, but the size 1 implementation is the smartbuffer, and the rest are the FIFOs so that
one can compare the relative growth in area and time. On top of all the implementation
we can include the buffers with some BRAM or not, so that the synthesis tools knows
to use the internal board components or port map all I/O pins of the buffer to the I/O
pines of the board. As can be seen, offers some area discrepancy.

The plots show in Fig. 12 exhibit a linear growth in area for different cache sizes
of 2–4 elements. If the compilation process requires optimal area then a cache size of
1 is considered and the smartbuffer is generated. The timing on the other hand exibits
a decrease in clock rate, faster frequency, from cache level 2–4 (all the input array
fifos), due to the way the cache is implemented (in this case generated with a cache
built from the library ROCCC logic fifo—stack). All things considered, if area can
be sacrificed the compilation process may consider to reduce stalls by generating the
input array FIFO buffer.

4 Interface Synthesis

Pre-designed IP core represent a huge intellectual and financial wealth that high-level
compilation tools targeting FPGAs should not ignore. The ROCCC compiler does
support the import of pre-designed IP cores into C source codes. Most often, the
interface to these cores is timed and requires several cycles of synchronization and
handshaking. These characteristics do not fit well with the C semantics. In this section
we describe our approach which is to generate a wrapper that would make the IP
core look and behave like a C function. The workflow is shown in Fig. 13. Taking the
high-level wrapper abstractions as input, ROCCC generates synthesizable wrappers
in VHDL separately and these wrappers are instantiated as components in the outer
circuit. Notice that an IP core is not necessarily a mandatory element of the main

123

Int J Parallel Prog (2008) 36:493–520 511

Fig. 13 ROCCC’s workflow when IP function call present. Notice that an IP core is not necessarily a
mandatory element of the main untimed application C code. The grayed out part on the left only exists
when there is an IP instantiation in the source code

untimed application C code. The grayed out part on the left only exists when there is
an IP instantiation in the source code.

We start with an example of a 16 samples complex FFT, in Sect. 4.1, taken from
the Xilinx website that we use to demonstrate our approach in the remainder of this
section.

4.1 An IP Core Example

The grayed out part of Fig. 14 is a 16-point complex Fast Fourier Transform core
(FFT16). Pins di_r and di_i are respectively the real and imaginary serial data input,
xk_r and xk_i are the output. ce, clock enable, must be asserted only when the core
is active. start must be asserted two clock cycles ahead of the first pair of input data.
done is asserted when the first pair of output data is ready. fwd_inv selects between
forward or inverse FFT. scale_mode selects from two scale-coefficients: 1/16 or 1/32.

Fig. 14 The grayed out square is the FFT16 IP core. A wrappers interface consists of one or more data
ports and one token (either input or output token)

123

512 Int J Parallel Prog (2008) 36:493–520

The ovflo pin indicates the core has generated an arithmetic overflow. mode_ce input
indicates when to sample fwd_inv and scale_mode.

4.2 High-Level Wrapper Abstraction

An IP core requires a wrapper for both its input and output interfaces. In some
cores these two interfaces have common signals that handle synchronization and
handshaking. In our implementation this role is covered by the outer circuit within
which the core is embedded.

Figure 15 lists the code for input wrapper of FFT16’s in C. We use pointer type
to distinguish output signals from input signals in the function declaration. The input
set, which communicates with the outside, is composed of one token and several data
variables. The output wrapper, not shown here, has the same structure.Thus both the
input and output interfaces have the same structure as shown in Fig. 16.

By its very nature, an interface to an embedded core must support timed activity. In
Fig. 15, the function call wait_cycles_ for (n) indicates the statements following it must
be executed n cycles later. Any statements between two adjacent wait_cycles_ for calls

Fig. 15 Timed high-level
abstraction of FFT16’s input
wrapper in C

123

Int J Parallel Prog (2008) 36:493–520 513

Fig. 16 The execution model of a wrapped IP core inside the predicated datapath. From the outside, a
wrapped IP core has an identical predication mechanism as other predicated instructions

must be executed in one clock cycle. For example, FFT16’s timing protocol requires
that the start signal be high for one clock cycle, two clock cycles ahead of the first pair
of input data. In order to describe this timing requirement, the user assigns start=1,
calls wait_cycles_ for (1), de-asserts start, calls wait_cycles_ for (1) again, and begins
assigning input data into the core, as shown in Fig. 15. The timing of signal ce, which
needs to be asserted for a 87-cycle period, is expressed in the same way. Parallel to
serial conversion is also describes naturally in the timed C code. At the beginning of
the function body, scale_mode and fwd_inv are statically assigned to high. If desired,
they can also be assigned by the wrapper’s input signals at run-time in the same way
as assigning start or ce. That way, the FFT16 core can be easily switched between a
forward FFT and an inverse FFT.

The wrapped FFT16 core is instantiated in high-level C in the form of:

FFT16(di_r [0], di_i[0], . . . , di_r [15], di_i[15],∗xk_r [0],∗xk_i[0], . . . ,
∗xk_r [15],∗xk_i[15]);

This wrapping approach keeps the original IP core’s functionality to a great extent
and still stays at high-level. The wrapper plays a role of a bridge between the tim-
ing diagram in an IP core’s data-sheet and the automatically generated synthesizable
wrapper in VHDL.

4.3 Wrapper Synthesis

The timed high-level wrapper, the code in Fig. 15 for example, is passed through the
ROCCC compiler in Fig. 1 as user input. Currently, the front-end does not do any
optimizations on IP wrappers. The back-end first gets the control flow graph (CFG) of
a wrapper, and converts the CFG into static single assignment (SSA) CFG. Starting
from this SSA-CFG, the back-end constructs the DFG (Fig. 17)]. First, the pre-process
pass converts wait_cycles_ for(n) function calls into instruction WCF n, where n is an
immediate operand. When building the data-flow, the compiler replaces each WCF n

123

514 Int J Parallel Prog (2008) 36:493–520

Fig. 17 Wrapper pipelining and
scheduling heuristic

into n consecutive WCF 1 instructions. Thus a WCF instruction has a clear hardware
timing meaning, passing the predicator to the next pipeline stage. Essentially, at this
point of the compilation, the wrapper is a timed CFG in CIRRF. The compiler forces
all instructions between two adjacent WCFs to be in the same pipeline stage, as in the
pseudo-code in Fig. 17.

This constraint ensures that the back-end’s pipelining consists with the high-level
C’s timing semantics, and thereby satisfies the IP core’ timing requirement.

In the scheduling process, WCF instructions are replaced by PFW (predicator for-
ward) instructions. PFW instructions pass predicators through the data-flow, while
other pipelined instructions are guarded by predicators.

The IR, right before VHDL emission of the FFT16 input wrapper, is shown in
Fig. 18. The IR records the predicated hardware actions with cycle-level timing con-
strains. In front of an instruction, the L field is the latch-level, namely, at which pipeline
stage the instruction is executed. Instructions with a zero latch-level are combinational
logic or even just wires if the opcode is mov. An instruction with a Boolean P field
is guarded by its predicator, which is the last source operand. For IP wrappers, a str
(store) instruction with zero address offset is treated as a mov instruction, whose des-
tination is the operand that the pointer is pointing to. From line 16 through line 33, the
anticipated hardware does the following: monitoring the assertion of the predicator
from outside and passing it (line 16 and 17), storing all the 16 pairs of input data into
internal registers and asserting start and ce (line 18 through line 21), one cycle later
(line 22) de-asserting start, one more cycle later (line 24) starting feeding input data
into the core pair by pair serially, after 69 more cycles waiting (line 30 through line
31), de-asserting ce.

The compiler’s very last pass emits the VHDL code for the wrappers. The combina-
tional instructions become combinational logic in hardware and pipelined instructions
become sequential logic. From the point of view of outside, the generated wrappers
(the wrappers of FFT16 in Fig. 14, for example) have unified interface: one input

123

Int J Parallel Prog (2008) 36:493–520 515

Fig. 18 Back-end IR of
FFT16’s input wrapper. The L
field is the latch-level, a P field
marks a predicated instruction.
Line 12 and 13 configure the IP
core. Line 18 through line 19
latch the 32 input data elements
into internal registers. Line 20
and 21 assert start and ce, while
line 23 de-asserts start (one
cycle later). ce is de-asserted in
line 33, 85 cycles later. Line 24
through line 29 export the 16
pairs of input date elements into
the IP serially

predicator and input data ports at input side, and one output predicator and output data
ports at output side. Fig. 16 shows a wrapped IP core embedded in a compiler-gen-
erated outer circuit. The wrapped IP core has an identical interface as that of other
regular predicated instructions.

4.4 Experimental Results

We have used five Xilinx IP cores, shown in Table 2, in our experimental evalua-
tion. Cordic performs a rectangular-to-polar vector translation. The input is a vector

123

516 Int J Parallel Prog (2008) 36:493–520

Table 2 Synthesis results of the wrappers for five Xilinx IPs

Cordic 10b/8b DCT8 FFT16 RS encode

Input wrapper Area (slice) 2 2 55 532 53
Area (%) 0.3 5.9 6.7 24 64
Additional cycles 1 1 1 1 1

Output wrapper Area (slice) 2 2 426 290 9
Area (%) 0.3 5.9 52 13 11
Additional cycles 1 1 1 1 1

Total Total area (slice) 663 34 817 2183 83
Clock (MHz) 123 223 68.7 45.0 96.4
Total cycles 23 3 23 200 20

in Cartesian coordinate and the outputs are the magnitude and the angle in a polar
coordinate. 10b/8b decodes 10-bit symbols into 8-bit bytes and an accompanying K
bit. DCT8 performs a one-dimensional 8-point discrete cosine transform. FFT16 is
the IP core shown in Fig. 14. RS encode is a (15, 13) Reed-Solomom encoder. It has
a 13-symbol code block and outputs 15 symbols, including 13 original data symbols
followed by two check symbols. In Table 2, Total Area is the total circuit including
the input and output interfaces and the IP core itself. Area (slice) and Area (%) are the
area utilization of the wrappers in number of slices and in percentage with respect to
the entire circuit, respectively. Additional cycles is the number of extra clock cycles
after the addition of the wrappers. Total Cycles is the total number of clock cycles to
compute one set of input data. The input data size in DCT 8 is 8-bit while its output
data size is 19-bit. RS encode’s input and output data sizes are 4-bit. Both Cordic
and FFT16’s input and output sizes are 16-bit. The target architecture is the Xilinx
Virtex-II XC2V8000-5 FPGA having 46,592 slices.

Cordic has only two inputs and two outputs and a simple handshaking protocol.
10b/8b has an 8-bit output and a 1-bit special character indicator (the K bit). DCT8’s
input wrapper latches all eight 16-bit input data. These are fed serially into the IP
core. The wrapper asserts the new_data signal to be high during the data transmission
and de-asserts it right after the transmission, following the timing requirement of the
DCT8 IP core. The output wrapper monitors the output_ready signal from the core and
starts receiving the eight serial output data elements once it is asserted high. On the
next clock cycle after all the eight output elements have been collected, the wrapper
exports them all in parallel. FFT16 requires similar serial to parallel and parallel to
serial conversions, except that the IP imports and exports data in pairs, one real com-
ponent and one imaginary component. FFT16’s input timing is different in the way
that start and ce (clock enable) have certain cycle-level specifications described in the
previous section. The generated interface meets all those timing requirements. The
FFT16 core’s overflow output pin, OVFLO, is duplicated and exported by the wrapper
to the outside datapath for further use.

In RS_encode’s output, the first 12 data elements are the data symbols that were fed
to the IP. From the point of view of the outside datapath, these data are known and do
not necessarily need to be recovered from the IP core again, and only the two check
symbols, which follow the first 12 data elements, are needed. The RS_encode IP core

123

Int J Parallel Prog (2008) 36:493–520 517

uses output signal info to indicate the present of the check symbols. The generated
wrapper monitors info’s de-assertion and latches the check symbols in an appropriate
timing.

These five examples illustrate CIRRF’s capability to describe various timing pro-
tocols of IP cores. ROCCC wraps these IPs so that they have unified outside interface.
The execution time overhead at both the input side and output side for these five exam-
ples is one clock cycle. The area of wrappers accounts for 2–64% of the corresponding
wrapped cores. Most of the wrappers area cost comes from the registers used to do
serial to parallel and parallel to serial conversion. Compared to the capacity of modern
FPGAs, this overhead is quite small.

5 Related Work

We have grouped the related work discussions in two sections addressing the interme-
diate representation and the IP core wrapping respectively.

5.1 Intermediate Representations

Several projects have worked on reconfigurable compilers. These projects either tar-
get regular configurable devices and generate HDLs, or target special, coarse-grained,
configurable architectures.

The Streams-C compiler [6] relies on the CSP model for communication between
processes, both hardware and software, and can meet relatively high-density control
requirements. Streams-C has three distinct objects—processes, streams and signals—
in the user-input abstraction. Abstract Syntax Tree (AST) is used to partition a process
into the datapath, encompassing basic blocks and pipeline blocks, and control flow.
A state machine is generated for the control flow in the AST. User-defined input or
output streams form the interfaces with memories.

Trident [7] uses LLVM (Low Level Virtual Machine [8]) as a C/C++ front-end
to produce low-level object code. The low-level object code is transformed into a
predicated IR.

SA-C’s [9] input is a single-assignment high-level synthesizable language. The
SA-C compiler translates loops into a data-dependence and control-flow (DDCF)
graph. A DDCF graph is flattened into a token-driven data-flow graph. The DFG
is eventually translated into an abstract hardware architecture graph (AHA), which
includes timing information.

The customizable hardware compiler in [10] takes the Cobble language as source
and produces the target language, Pebble. Cobble is based on a subset of C with
extensions for synchronous parallel threads and channels for synchronous commu-
nication between them. Cobble is a timed language since it has timing semantics.
Pebble is a variant of structural VHDL. Similar to VHDL, Pebble has GENERATE
statements, which provide conditional compilation and recursive definition. Using the
Visitor design pattern, the compiler’s AST can be extended in terms of input languages,
custom compile schemes and transformations.

123

518 Int J Parallel Prog (2008) 36:493–520

DEFACTO [11,12] system takes C as input and generates behavioral VHDL code.
The behavioral VHDL code is then synthesized by the Synopsys Behavioral Compiler
or the Monet behavioral compiler from Mentor Graphics. DEFACTO is built on SUIF.

SPARK [13] is another C to VHDL compiler. Its optimizations include code motion,
variable renaming, etc. The transformations implemented in SPARK reduce the num-
ber of states in the controller FSM, and the number of cycles in the longest path.
SPARK encapsulates basic blocks into Hierarchical Task Graphs (HTGs).

The GARP [14] compiler is designed for the GARP reconfigurable architecture,
and generates GARP configuration file. The GARP compiler forms a hyperblock in a
DFG by joining all frequent-executed basic blocks of the loop body.

Pegasus [15] is the IR of the CASH compiler. CASH generates data-flow machines
implemented as asynchronous circuits. Pegasus decomposes a Control Flow Graph
(CFG) into hyperblocks, and hyperblocks are connected by merge and other special-
ized nodes.

5.2 IP Wrapping

Substantial amounts of effort have been devoted on standardizing or interfacing pre-
designed IP cores. Companies and organizations tried to define IP bus standards. For
example, VSIA [16] specifies interface standards that allow IP cores to fit into virtual
sockets. Cores are designed using a standard internal interface and wrappers have to
be provided to retarget cores into other buses.

Several projects focus on bus wrapping that connects IP cores with microproces-
sors. Glue logic is generated in [17] to connect processors to peripheral devices and
hardware co-processors. A prefetching technique is introduced in [18] to improve bus
wrapper’s performance.

A Meta-RTL is proposed in [19] that raises the abstraction level and reuse IPs
by extending traditional HDLs. Meta-programming [20] is a proposed customization
model for IP wrapping using UML class diagrams.

Trident [7] is a compiler framework for floating point algorithms. The floating point
units are pre-designed IP units with known pipeline delay. Users can select floating
point units from a VHDL library.

In [21] the authors describe a system level approach for interfacing IP blocks gen-
erated by the behavioral synthesis tool itself. The I/O pins and timing information is
fixed and known by the tool. This information, however, is not visible at the C level
and the user cannot modify it.

6 Conclusion

We have presented CIRRF, an intermediate representation for compiling high-level
languages to reconfigurable fabrics. CIRRF is designed to support spatial computa-
tions as opposed to temporal computations as in traditional compiler IRs. Features that
distinguish CIRRF from traditional compiler IRs include (1) Support for declaring and
accessing on-chip storage, (2) Preserving loop semantics and parameters in the IR.
In addition, we have designed CIRRF to support the seamless import of IP cores into

123

Int J Parallel Prog (2008) 36:493–520 519

original C source codes thereby allowing the user to re-use a very large amount of
pre-designed IP cores.

We have described two levels of CIRRF: Hi-CIRRF and Lo-CIRRF. Hi-CIRRF
consists of C code that has been augmented with macros that support the spatial com-
puting model. The macros are used to record information associated with buffers,
pipelining, look-up tables and special operations etc. Lo-CIRRF decomposes con-
ventional CFGs into parallel, do-all loop nodes, and sequential, non-do-all nodes. The
loop body instructions of a do-all loop are placed into execution levels. Each execution
level is an instantiation of one iteration at different execution phases. One or multiple
consecutive execution levels are assigned into one pipeline stage. Lo-CIRRF provides
a platform for the compiler to aggressively pipeline do-all loops. Non-do-all nodes
are predicated in Lo-CIRRF and predicators are passed within and between nodes.
The CFG is therefore transformed into a DFG. We have shown, through case studies,
how CIRRF models the application examples and provides a solid foundation for the
compiler to generate efficient hardware.

We extended CIRRF to support the automated generation of IP core wrapper. As the
input to the ROCCC system, IP wrappers are written in high-level timed C by the user.
Clock cycle delays are described as function calls and users do not have to implement
any cycle-level details in the input abstraction. CIRRF records the IP wrapper as a
timed CFG in the IR. Constrained by the delay macros, ROCCC converts the wrapper
from control flow graph to data flow graph. The compiler schedules pipelined instruc-
tions using predication. Wrapped IP cores have unified interface compared with the
outer predicated circuit that also generated by ROCCC.

The wrappers of the IP core examples meet the various timing protocol require-
ments, and unify the IP coreÕ interface with the outer compiler-generated circuit. The
results show that the execution time and area overhead are reasonable low.

References

1. Aigner, G., Diwan, A., Heine, D.L., Lam, M.S., Moore, D.L., Murphy, B.R., Sapuntzakis, C.: An
Overview of the SUIF2 Compiler Infrastructure. Computer Systems Laboratory, Stanford University

2. Smith, M.D., Holloway, G.: An Introduction to Machine SUIF and its Portable Libraries for Analysis
and Optimization. Division of Engineering and Applied Sciences, Harvard University

3. Guo, Z., Buyukkurt, B., Najjar, W.: Input data reuse in compiling window operations onto reconfig-
urable hardware. In: ACM SIGPLAN/SIGBED Conference on Languages, Compilers and Tools for
Embedded Systems, pp. 249–256. ACM Press, New York, NY, June 2004.

4. Guo, Z., Buyukkurt, B., Najjar, W., Vissers, K.: Optimized generation of data-path from C codes for
FPGAs. In: ACM/IEEE Conference on Design, Automation and Test in Europe, pp. 112–117. IEEE
Computer Society, Washington, DC, February 2005

5. Guo, Z., Najjar, W., Buyukkurt, B.: Efficient hardware code generation for fpgas. ACM Trans. Arch.
Code Optim. 5(1), 1–26 (2008)

6. Gokhale, M.B., Stone, J.M., Arnold, J., Lalinowski, M.: Stream-oriented FPGA computing in the
streams-c high level language. In: IEEE Symposium on FPGAs for Custom Computing Machines
(FCCM 2000) (2000)

7. Tripp, J., Peterson, K., Ahrens, C., Poznanovic, J., Gokhale, M.: Trident: an FPGA compiler framework
for floating-point algorithms. In: FPL ’05: Proceedings of the 2005 Conference on Field Programmable
Logic and Applications (2005)

8. LLVM.: The LLVM Compiler Infrastructure.Information about the LLVM Project is available at the
project’s web site, www.llvm.org

123

www.llvm.org

520 Int J Parallel Prog (2008) 36:493–520

9. Najjar, W.A., Böhm, A.P.W., Draper, B.A., Hammes, J., Rinker, R., Beveridge, R., Chawathe, M., Ross,
C.: From algorithms to hardware—a high-level language abstraction for reconfigurable computing.
IEEE Comput. 36(8), 63–69 (2003)

10. Todman, T., de Coutinho, J.G.F., Luk, W.: Customisable hardware compilation. Supercomput-
ing 32(2), 119–137 (2005)

11. Diniz, P.C., Hall, M.W., Park, J., So, B., Ziegler, H.E.: Bridging the gap between compilation and
synthesis in the DEFACTO system. In: Dietz, H.G. (ed.) LCPC, Volume 2624 of Lecture Notes in
Computer Science, pp. 52–70. Springer (2001)

12. So, B., Hall, M.W., Diniz, P.C.: A compiler approach to fast hardware design space exploration in
FPGA-based systems. In: Proceedings of the ACM SIGPLAN 2002 Conference on Programming
Language Design and Implementation, PLDI, pp. 165–176 (2002)

13. Gupta, S., Dutt, N.D., Gupta, R.K., Nicolau, A.: Spark: a high-level synthesis framework for applying
parallelizing compiler transformations. In: VLSI ’03: Proceeding of the 2003 International Conference
on VLSI Design (2003)

14. Callahan, T.J., Hauser, J.R., Wawrzynek, J.: The Garp architecture and C compiler. IEEE Comput. 33,
62–69 (2002)

15. Budiu, M., Goldstein, S.C.: Pegasus: an efficient intermediate representation. Technical report,
Carnegie Mellon University (2002)

16. VSIA.: Information about Virtual Socket Interface Association (VSIA) is available at http://www.vsi.
org/

17. Chou, P., Ortega, G., Borriello, G.: Interface co-synthesis techniques for embedded systems. In:
ICCAD ’95: Proceedings of the 1995 International Conference on Computer Aided Design (1995)

18. Lysecky, R., Vahid, F.: Prefetching for improved bus wrapper performance in cores. ACM Trans. Des.
Autom. Electron. Syst. 7, 58–90 (2002)

19. Zhu, J.: Raising the abstraction level of RTL design. In: DATE ’01: Proceedings of the Conference on
Design, Automation and Test in Europe. IEEE Computer Society (2001)

20. Stuikys, V., Damasevicius, R.: Soft IP customisation model based on metaprogramming techniques.
Informatica 15, 111–126 (2004)

21. Mukherjee, R., Jones, A., Banerjee, P.: System level synthesis of multiple ip blocks in the behav-
ioral synthesis tool. In: PDCS ’03: Proceeding of the 2003 International Conference on Parallel and
Distributed Computing and Systems, Marina Del Rey, CA (2003)

123

http://www.vsi.org/
http://www.vsi.org/

	A Compiler Intermediate Representationfor Reconfigurable Fabrics
	Abstract
	1 Introduction
	2 CIRRF Intermediate Representation
	2.1 CIRRF Architecture and Execution Model
	2.2 On-Chip Buffers
	2.3 Building Hi-CIRRF
	2.4 Building Lo-CIRRF
	2.5 Case Study

	3 On-Chip Buffers---Implementation and Evaluation
	3.1 Implementation of FIFO Buffers
	3.2 Evaluation

	4 Interface Synthesis
	4.1 An IP Core Example
	4.2 High-Level Wrapper Abstraction
	4.3 Wrapper Synthesis
	4.4 Experimental Results

	5 Related Work
	5.1 Intermediate Representations
	5.2 IP Wrapping

	6 Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

