
COMPILER GENERATED SYSTOLIC ARRAYS FOR WAVEFRONT ALGORITHM
ACCELERATION ON FPGAS

Betul Buyukkurt

Sandbridge Technologies, Inc.
Tarrytown, NY 10591
abuyukku@cs.ucr.edu

Walid A. Najjar

Computer Science and Engineering
University of California Riverside

Riverside, CA 92521
najjar@cs.ucr.edu

ABSTRACT
Wavefront algorithms, such as the Smith-Waterman algorithm,
are commonly used in bioinformatics for exact local and global
sequence alignment. These algorithms are highly computa-
tionally intensive and are therefore excellent candidates for
FPGA-based code acceleration. However, there is no stan-
dard form of these algorithms, they are used in a wide variety
of situations with various constraints. It is therefore not practi-
cal to have a standard kernel that can be mapped to an FPGA,
hence the importance of being able to compile such codes from
a high level language. ROCCC is a C to VHDL compiler,
which optimizes and parallelizes the most frequently executed
kernel loops in applications such as in multimedia, scientific
and high-performance computing. In this paper we describe
the transformations performed by ROCCC, which transformed
the kernel of the Smith-Waterman algorithm into a hardware
systolic array that is mapped onto the FPGA on the SGI Altix
RASC blade. We report a throughput increase by over 3,000X
over a 2.8 GHz Xeon.

1. INTRODUCTION

Fast sequence alignment computation for DNA sequences has
become one of the most challenging computational problems
of the decade due to the exponential growth in the size of the
biosequence databases. To keep up with this growth, heuristic
methods have been adopted in place of exact ones for sequence
alignment algorithms to perform faster but potentially inaccu-
rate searches. There are many instances, however, when an ex-
act search must be done at the expense of very large compute
times. Furthermore, heuristic search algorithms are known to
perform very badly on short strings and it is very common to
have sequencing machines generate short strings of 30 to 40
base pairs.

Wavefront algorithms, such as the Smith-Waterman [1] al-
gorithm (shown in Figure 1), are commonly used in bioinfor-
matics for exact local and global sequence alignment. These
computations are extremely regular, highly computationally
intensive and are applied to a very large set of data. They are
excellent candidates for hardware code acceleration. Mapping
such computations to a circuit can drastically improve its effi-
ciency as compared to running it on a traditional microproces-
sor. Wavefront algorithms are usually computed in software

Fig. 1. Wavefront code for sequence alignment

using a 2D matrix where the enclosing loop advances in a fixed
direction to compute the current cell using neighboring values
computed in previous iterations. A fast implementation of the
same algorithm in hardware would be a systolic array on which
the computations along the back diagonal are implemented.

In this paper we describe a set of compiler transformations
and code generation steps that implement a systolic array on
an FPGA, in VHDL, starting from its loop nest expressed in
C. These transformations are developed within the context of
the ROCCC (Riverside Optimizing Compiler for Configurable
Computing) tool set [2]. We evaluate our systolic array gener-
ation approach using the Smith-Waterman[1] algorithm which
is commonly used in DNA and protein string matching. The
generated systolic array was mapped on to the Xilinx Virtex 4
LX200 of the SGI RASC RC100 Blade in the Altix 4700 mul-
tiprocessor. The results show a throughput increase larger than
3,000X over a 2.8 GHz Xeon using a 1,024 element systolic
array.

2. ROCCC OVERVIEW

ROCCC is a C to RTL VHDL compilation framework for map-
ping application programs to FPGAs. The focus of ROCCC is
generating highly parallel and optimized circuits rather than
statement-by-statement translation of C programs to VHDL.

ROCCC is not designed to compile a whole program. In
order to identify the kernel codes, ROCCC only requires the
user to mark the candidate loop-nest by placing it between

1

International Conference on Field Programmable Logic and Applications. Heidelberg, Germany, September 2008 (FPL'08).



Fig. 2. ROCCC Framework

begin hw() and end hw() calls. ROCCC also does not com-
pile arbitrary C code. The subset of C that is compilable by
ROCCC is defined as follows: no pointers, no break or con-
tinue statements, simple for loop headers where the loop counter
of each loop level iterates from some lower bound to some up-
per bound in compile time determinable steps, and that all ar-
ray index expressions are in form
loop counter ± a compile time constant stride.

ROCCC is built on the SUIF2 [3] and Machine-SUIF [4]
platforms. We have added new analysis and optimization passes
to SUIF2 and Machine-SUIF that target FPGAs. We rely on
commercial tools to synthesize the VHDL code generated by
our compiler.

Using regular C labels to identify individual loops in a
loop nest, the programer specifies which loop-level transfor-
mations are to be applied to a loop or loop nest. ROCCC pro-
vides the user with predefined and parameterized optimization
packages such as unroll, tile, generate systolic array, etc. These
packages define the type of loop-level transformation that the
user wants to apply to a given loop-nest to be parallelized. The
contents and the inner workings of the individual packages are
transparent to the user.

3. SYSTOLIC ARRAY GENERATION FOR
WAVEFRONT ALGORITHMS

Wavefront algorithms are common in bioinformatics and in
several other fields such as data-mining and many string algo-
rithms. These algorithms operate over a 2D matrix, where the
computation of each cell in the matrix is dependent upon the
completion of the computation in its three neighboring cells
that are the north, northwest and the west cells. This depen-
dency structure would only allow a single set of diagonal ele-
ments of the matrix to be computed at any time. Furthermore,
the data bitwidth required by several wavefront algorithms is
often much smaller than a standard word-size, leading to nar-
rower customized data paths.

There has been substantial amount of work [5, 6, 7, 8, 9]
in implementing various forms of wavefront algorithms on FP-
GAs over the past 10 years or so, however all of these refer
to hand-coded HDL. In this section we describe the compiler
transformations implemented in ROCCC which map wavefront
algorithm codes in C onto FPGAs.

3.1. The Smith Waterman Algorithm

The Smith-Waterman(SW)[1]is a wavefront algorithm exam-
ple commonly used in bioinformatics. SW is an exact and very

computationally expensive sequence alignment algorithm, which
computes a matching score of two strings - S and T of sizes
N and M respectively - using insertions and deletions. The
strings, S and T, are formed from a finite alphabet. The cardi-
nality of that alphabet is four for DNA (and RNA) strings and
20 for protein strings.

The algorithm has three steps: the initialization, matrix-
fill and the trace back. Among the three stages matrix-fill is
the one that is most computationally expensive and the hardest
to parallelize. It is a wavefront dynamic programming algo-
rithm on a 2D matrix. Once the first row and the first column
of the matrix are initialized, a simple local rule is used to up-
date cell (i, j). Entry (i, j) represents the total score, or edit
distance, of aligning a prefix of S of size i against a prefix of
T of size j. The trace back stage is used to identify the loca-
tion of the best match if a match is found. However, in the vast
majority of runs no match is found. The most commonly used
SW computation scheme comes in the following format:

d = min

8>>>><>>>>:


a if Si == Ti

a + substitution if Si != Ti

b + insertion
c + deletion

(1)

In the above formula d is the cell being computed, a is the
cell’s northwest, b is its north and c is the cell’s west neighbors.
The most typical adjustment scores for the SW implementation
on DNAs are insertion and deletion scores being set to 1 and
the substitution score being set to 2. This particular choice of
scores would lead into a special property of the SW algorithm,
proven in [10], that the horizontal and vertical neighbors would
always differ by±1 from one another and are guaranteed to be
within ±1 of their neighbour cell a. This property leads into
the fact that transferring only the two low order bits among
processing elements within the systolic array would be enough
for any length string comparison.

3.2. Systolic Array Generation in ROCCC

The outer loop in the C code shown in Figure 1 is unrolled to
form the processing elements of the systolic array cells. The
unrolling factor defines the number of processing elements. To
optimize for performance, the code should be unrolled along
the shorter edge allowing the elements along the longer edge to
be streamed in and the hardware systolic array to compute the
2D matrix in bands of length equal to the length of the systolic

2

International Conference on Field Programmable Logic and Applications. Heidelberg, Germany, September 2008 (FPL'08).



array as illustrated in Figure 5. If we assume that the length of
the systolic array is k and the length of the shorter sequence
is m, this arrangement will require ceil(m/k) systolic arrays
to be processed on the hardware one after another, where the
values generated by one systolic array are used to initialize the
computation of the next one.

Fig. 3. Code to be mapped to hardware after loop unrolling,
scalar replacement, feedback reference elimination and loop
invariant code motion

Fig. 4. Generated datapath

Next, the unrolled loop is scalar replaced. Scalar replace-
ment decouples the memory accesses from the actual compu-
tation, hence generating a memory access free datapath pre-
ceeded by all the array reads and followed by all array stores.
The array feedback elimination pass is the major pass that gen-
erates the systolic array description at the HLL level. It takes in
the scalar replaced code and analyzes the type of dependency
therein for every load-store pair. It determines whether an ar-
ray address stored into during a given iteration is read again
the following iteration. Such load-store pairs are replaced with
scalar temporaries and any initialization code is copied above
the innermost loop. Later, these temporaries are replaced by
on-chip registers whose values are computed and kept on-chip
to be used by future iterations. The number of on-chip regis-

Fig. 5. Systolic array computation in bands

ters needed for a given application is linear in the amount of
the unrolling factor.

Figure 3 shows the code after loop unrolling, scalar re-
placement, feedback reference elimination and loop invariant
code motion. Figure 4 shows the final output of the high level
optimization passes of ROCCC. The ROCCC load prev and
ROCCC store2next are macros internal to our compiler. These
two macros are inserted into the final code to reflect the effects
of the eliminated feedback load/store pairs. ROCCC load prev
loads a value from the iteration before and ROCCC store2next
saves its input to be read during the next iteration. Both macros
are translated into special machine instructions defined in Ma-
chineSUIF, followed by VHDL code at later stages. In the
generated code, both macros read/write from/to on-chip regis-
ters.

In the unaltered wavefront code (Figure 1) each cell com-
putation requires at least three array reads from neighbours and
one write. Once unrolled k times, out of a total of 4k memory
accesses per loop iteration only a total of three per iteration
are left in the resultant code. 4k-3 memory accesses are elim-
inated through the array feedback elimination pass and trans-
ferred through wires and on-chip registers. These figures does
not include the 1k reads from T, which are lifted above the j
loop due to invariant code motion, as well as any reads from S.

4. PERFORMANCE EVALUATION

From the C implementation of SW, ROCCC automatically gen-
erates a systolic array implementation of the algorithm as de-
scribed in the previous section. Our target is the Xilinx Virtex
4 LX200 FPGAs on the SGI RASC RC100 blades [11]. SGI
RASC RC100 blade contains two Xilinx Virtex 4 LX200 FP-
GAs with up to 80MBs of QDR SRAM memory in four mod-
ules. Each FPGA is connected to two QDR SRAM memory
modules with a bandwidth of 128bits/cycle at each connection.
These FPGAs operate seamlessly with the SGI Altix Servers
[12], which enables the applications to be run part on the high-
performance server and part on the RASC blades.

Table 1 compares the performance of the code on an Intel
Xeon 2.8 GHz with Hyperthreading and on an Intel Itanium
1.5 GHz to the performance of our ROCCC generated code
on the Virtex 4 LX200. The code for the Xeon and Itanium
are compiled using the GCC 4.0.2 and the ICC 9.1 compilers
respectively. The CPU data is based on the average of five

3

International Conference on Field Programmable Logic and Applications. Heidelberg, Germany, September 2008 (FPL'08).



Table 1. Throughput evaluation of Smith-Waterman codes in
cell updates per second (CUPS)

Platform Speed GCUPS Speedup
Intel Xeon 2.8 GHz 0.049 1
Intel Itanium-2 1.5 GHz 0.084 1.7
200-cells, 2.8% area 191 MHz 38.20 780
512-cells, 6.9% area 188 MHz 96.25 1,964
1024-cells, 17% area 174 MHz 178.65 3,646

actual runs and computed as first timing the execution of the
candidate loop that is actually mapped onto the hardware and
then dividing the measured time by the number of computed
cells. FPGA data is based on VHDL simulation (using Xilinx
ISE 8.2) with the area and clock frequency obtained after place
and route. The performance is measured in giga cell-updates
per second (GCUPS) as in the literature for SW algorithms.

So far we have experimented with a systolic array size of
up to 1024 cells. ROCCC generated 1024-cell systolic array
occupies 17% of the area of the Virtex 4 LX200 FPGA and
achieved a throughput of 178.65 GCUPS. To fill up 70% of
the FPGA area1, we can run up to 5 copies of the 1024-cell
systolic array (for DNAs) simultaneously on an FPGA, which
results in a total speedup of around 10,630 over the Itanium
and 18,230 over the Xeon respectively. For the 512 and 200
cell systolic arrays, the throughputs obtained were 96.5 and
38.2 GCUPS while the circuit area was only 6.9% and 2.8% of
the entire FPGA area respectively.

The ROCCC compiler-generated systolic array code re-
quired one element of the input array S and one value from
the starting row of the 2D matrix to be fetched onto the FPGA
every cycle. Assuming that the sequences under analysis are
DNA nucleotides (represented using 2 bits per value), the band-
width requirement is four bits/cycle. For the five copies of
1024-cell systolic arrays executing simultaneously, the entire
computation would require a total of 20 bits/cycle which is
well within the capabilities of our target platform.

Our work is the only compiled HDL implementation from
C available. ROCCC generated SW circuit fits 1024 cells to
17% of the available FPGA area. Our implementation does not
require reconfiguration. Circuit is configured once. The circuit
reads the query in as a parameter from outside in the start and
the database entries are streamed in one element per cycle after
circuit’s initialization. Analyzing the area growth rates of our
circuit from 200 to 512 to 1024, we expect to fit around 3000
cells on our target FPGA with a throughput estimate of over
500 GCUPS.

5. CONCLUSION

In this paper we have presented the high-level transformations
performed by ROCCC that allows the automatic generation of

1The performance of a circuit degrades rapidly when its area ex-
ceeds about 80% of the FPGA area, thus in an efficient FPGA design,
typically the maximum used area can not exceed 75% - 85%

systolic arrays from waverfont algorithms in C. To our knowl-
edge, there is currently no other C-to-VHDL compiler that
can do the systolic array generation transformation. We used
Smith-Waterman, a highly computationally intensive bioinfor-
matics sequence alignment algorithm, to evaluate the gener-
ated systolic array. We report a throughput increase by over
3,000X over a 2.8 GHz Xeon.

6. REFERENCES

[1] T. Smith and M. Waterman, “Identification of common
molecular subsequences.” J Mol Biol, vol. 147, no. 1, pp.
195–197, 1981.

[2] B. Buyukkurt, Z. Guo, and W. Najjar, “Impact of loop
unrolling on area, throughput and clock frequency in
roccc: C to vhdl compiler for impact of loop unrolling on
area, throughput and clock frequency in roccc: C to vhdl
compiler for fpgas,” in Proc. International Workshop On
Applied Reconfigurable Computing, 2006.

[3] G. Aigner, A. Diwan, D. L. Heine, M. S. Lam, D. L.
Moore, B. R. Murphy, and C. Sapuntzakis, An Overview
of the SUIF2 Compiler Infrastructure, Computer Sys-
tems Laboratory, Stanford University.

[4] M. D. Smith and G. Holloway, An introduction to Ma-
chine SUIF and its portable libraries for analysis and
optimization, Division of Engineering and Applied Sci-
ences, Harvard University.

[5] S. Dydel and P. Bala, “Large scale protein sequence
alignment using FPGA reprogrammable logic devices,”
in Field Programmable Logic and Application. Springer
Berlin / Heidelberg, 2004, pp. 23–32.

[6] K. Puttegowda, W. Worek, N. Pappas, A. Dandapani,
P. Athanas, and A. Dickerman, “A run-time reconfig-
urable system for gene-sequence searching,” in VLSID
’03: Proceedings of the 16th International Conference
on VLSI Design, 2003, pp. 561–566.

[7] R. Jacobi, M. Ayala-Rincon, L. Carvalho, C. Llanos, and
R. Hartenstein, “Reconfigurable systems for sequence
alignment and for general dynamic programming.” Genet
Mol Res, vol. 4, no. 3, pp. 543–552, 2005.

[8] H.-Y. Liao, M.-L. Yin, and Y. Cheng, “A parallel im-
plementation of the Smith-Waterman algorithm for mas-
sive sequences searching,” in Proceedings of the 26th An-
nual International Conference of the IEEE Engineering
in Medicine and Biology Society, 2004, pp. 2817–2820.

[9] D. Hoang, “A systolic array for the sequence alignment
problem,” Technical Report, vol. CS-92-22, 1992.

[10] R. Lipton and D. Lopresti, “A systolic array for rapid
string comparison,” 1985, pp. 363–376.

[11] SGI RASC RC100 Blade,
http://www.sgi.com/products/rasc/datasheets.html.

[12] SGI Altix family, http://www.sgi.com/products/servers/altix/.

4

International Conference on Field Programmable Logic and Applications. Heidelberg, Germany, September 2008 (FPL'08).


