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ABSTRACT 

Pre-designed IP cores for FPGAs represent a huge 

intellectual and financial wealth that must be leveraged by 

any high-level tool targeting reconfigurable platforms.  In 

this paper we describe a technique that automates the 

generation of IP core interfaces allowing these to be used as 

C functions transparently from within C source codes using 

a reconfigurable computing compiler. We also show how 

this same tool can be used to support run-time 

reconfiguration on FPGAs by generating a common 

wrapper that interfaces to multiple cores. 

1. INTRODUCTION  

Compilers for reconfigurable platforms have two major 

roles: the automation of code transformations and 

optimizations, and increasing the productivity of the 

application developer. On the other hand, industry has 

invested tremendous financial and technical efforts on pre-

designed intellectual property (IP) cores for FPGA-based 

platforms that are not only very efficient but have been 

thoroughly tested and verified. These IP cores come in the 

form of synthesizable HDL code or even lower level 

descriptions. They vary drastically with respect to their 

control and timing protocol specifications, which are 

intended to be interfaced to HDL-based designs. 

 Compilers for FPGA-based reconfigurable systems 

must therefore leverage that huge wealth of IP designs by 

allowing the user to import these into high-level language 

(HLL) source codes. To do so would require a wrapper 

structure that would hide the timing and stateful nature of 

the IP cores. It would make each core look, to the HLL 

compiler, as an un-timed side-effect free function call. 

 In this paper we describe a mechanism for the automatic 

generation of such a wrapper from a high-level description 

that is based on C with timing information. This approach is 

integrated in our ROCCC compiler. Run-time 

reconfiguration, where a sub-section of the circuit on an 

FPGA is switched between two functions, also require a 

careful and transparent interface between the static and 

dynamic parts. We show how this same approach can be 

used to support run-time reconfiguration. 

The rest of the paper is organized as follows. Next 

section reviews related work. Section three introduces our 

compiler system. Section four presents our heuristic 

approaches to automate IP wrapping. The tool’s support to 

dynamic partial reconfiguration is presented in section five. 

We validate our approaches in section six. Section seven 

concludes the paper. 

2. RELATED WORK 

Substantial amounts of effort have been devoted on 

standardizing or interfacing pre-designed IP cores. 

Companies and organizations tried to define IP bus 

standards. For example, VSIA [5] specifies interface 

standards that allow IP cores to fit into “virtual sockets”. 

Cores are designed using a standard internal interface and 

wrappers have to be provided to retarget cores into other 

buses. However, the current condition is that numerous 

standards exist and no standard is adopted widely.  

Several projects focus on bus wrapping that connects IP 

cores with microprocessors. Glue logic is generated in [6] 

to connect processors to peripheral devices and hardware 

co-processors. A prefetching technique is introduced in [7] 

to improve bus wrapper’s performance. The work in [8] 

raises the abstraction level and reuse IPs by extending 

traditional HDLs. A customization model for IP wrapping 

using UML class diagrams is proposed in [9]. In [11] the 

authors describe a system level approach for interfacing IP 

blocks generated by the behavioral synthesis tool itself. 

The I/O pins and timing information is fixed and known by 

the tool. This information, however, is not visible at the C 

level and the user cannot modify it. 

Trident [10] is a compiler framework for floating point 

algorithms. The floating-point units are pre-designed IP 

units with known pipeline delay. 

We have developed the ROCCC (Riverside Optimizing 

Compiler for Configurable Computing) system. ROCCC 

accepts applications written in untimed C code and 

generates synthesizable VHDL code for FPGA hardware. 

ROCCC also wraps IP cores when fed with wrapper 

abstractions in C with timing information. 

3. ROCCC SYSTEM OVERVIEW 

3.1. Compiler Overview 

Figure 1 shows an overview of the ROCCC framework. We 

have separated the front and back ends to achieve some 
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modularity and eventually allow the use of other tools for 

either end. 

ROCCC is built on the SUIF2 [1] and Machine-SUIF 

[2] platforms. It compiles C code into VHDL code for 

mapping onto the FPGA fabric of a CSoC device. 

Information about loops and memory accesses is visible in 

front-end intermediate representation (IR), Hi-CIRRF 

(Compiler Intermediate Representation for Reconfigurable 

Fabrics). Accordingly, most loop level analysis and 

optimizations are done at this level. ROCCC performs a 

very extensive set of loop analysis and transformations, 

aiming at maximizing parallelism and minimizing area. 

Machine-SUIF is an infrastructure for constructing the 

back end of a compiler. Machine-SUIF's existing passes, 

like the Control Flow Graph (CFG) library, Data Flow 

Analysis library and Static Single Assignment library [3] 

provide useful optimization and analysis tools for our 

compilation system. We build the back-end using Machine-

SUIF. The compiler’s back-end converts the input from 

control flow graph (CFG) into data flow graph (DFG), and 

generates synthesizable VHDL codes. We rely on 

commercial tools to synthesize the generated VHDL codes.  

3.2. Pipelining and Scheduling 

For an original CFG, we categorize basic nodes into to two 

types: do-all nodes (parallel) and non-do-all nodes 

(sequential).  

For do-all nodes, ROCCC exploits both instruction-

level and loop-level parallelisms and aggressively pipelines 

the loop body to be able to execute multiple loops 

simultaneously [4]. 

A non-do-all basic node either belongs to a non-do-all 

loop or does not belong to any loop at all. The compiler 

utilizes predication to schedule the execution of non-do-all 

nodes’ instructions. A predicator guards each pipeline 

stage. Multiple instructions might belong to the same 

pipeline stage and can be executed simultaneously. 

Predicators are passed inside basic nodes by PFW 

(predicator forward) instructions. 

For the IP cores that are fully pipelined with compile-

time known number of pipeline stages, ROCCC can simply 

synchronize its own pipelined circuit with the IP by adding 

more latches. In this paper, however, we discuss the most 

general cases, in which the IP cores use handshaking 

signals to communicate with external interface.  

4. INTERFACE SYNTHESIS 

As introduced in the system overview section, the ROCCC 

compiler generates synthesizable VHDL code for 

applications written in untimed C. In this section, we 

present our approach using the ROCCC system to wrap IP 

cores. The workflow is shown in Figure 2. Taking the high-

level wrapper abstractions as input, ROCCC generates 

synthesizable wrappers in VHDL separately and these 

wrappers are instantiated as components in the outer circuit.  

We start with a 16 samples complex FFT IP core, taken 

from the Xilinx website that we use to demonstrate out 

approach in this paper. 

4.1. An IP Core Example 

The grayed out part of Figure 3 is a 16-point discrete fast 

 loop-level analyses, 

transformations and 

optimizations 

user-input 

C 

operation-level analyses, 

transformations and 

optimizations 

 
intermediate 

C 

front-end 

synthesizable 

VHDL 
Hi-CIRRF  

back-end 

Lo-CIRRF  

 
Figure 1 – ROCCC system overview. 

 
Figure 2 – ROCCC’s workflow when IP function call 

present. Notice that an IP core is not necessarily a 

mandatory element of the main un-timed application C 

code. The grayed out part on the left only exists when 

there is an IP instantiation in the source code. 
 

Figure 3 - FFT16 and its wrappers 
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Fourier transform core (FFT16). Pins di_r and di_i are 

respectively the real and imaginary serial data input; xk_r 

and xk_i are the output. Ce, clock enable, must be asserted 

only when the core is active. Start must be asserted two 

clock cycles ahead of the first pair of input data. Done is 

asserted when the first pair of output data is ready. Fwd_inv 

selects between forward or inverse FFT. Scale_mode 

selects from two scale-coefficients: 1/16 or 1/32. The ovflo 

pin indicates the core has generated an arithmetic overflow.  

Mode_ce input indicates when to sample fwd_inv and 

scale_mode. 

4.2. High-level Wrapper Abstraction 

An IP core requires a wrapper for both its input and output 

interfaces. In some cores these two interfaces have common 

signals that handle synchronization and handshaking. In our 

implementation the outer circuit within which the core is 

embedded covers this role.  

Figure 4 lists the code for the input wrapper of FFT16 

C. We use pointer type to distinguish output signals from 

input signals in the function declaration. The input set, 

which communicates with the outside, is composed of one 

token and several data variables. The output wrapper, not 

shown here, has the same structure. Thus both the input and 

output interfaces have the same structure as shown in 

Figure 3. 

By its very nature, an interface to an embedded core 

must support timed activity. We thereby call it timed C. It 

can be written either by the end user or by the IP designer 

and possibly modified by the end user. In Figure 4, the 

function call wait_cycles_for(n) indicates the statements 

behind it must be executed n cycles later. Any statements 

between two adjacent wait_cycles_for function calls must 

be executed in one clock cycle. For example, FFT16’s 

timing protocol requires that start signal needs to be high 

for one clock cycle, two clock cycles ahead of the first pair 

of input data. In order to describe this timing requirement, 

the user just assigns start to one, calls wait_cycles_for(1), 

de-asserts start, calls wait_cycles_for(1) again, and begins 

assigning input data into the core, as shown in Figure 4. 

The timing of signal Ce, which needs to be asserted for a 

87-cycle period, are expressed in the same way. Parallel to 

serial converse is also describes naturally in the timed C 

code. At the beginning of the function body, scale_mode 

and fwd_inv are statically assigned to high. If desired, they 

can also be assigned by the wrapper’s input signals at run-

time in the same way as assigning start or ce. That way, the 

FFT16 core can be easily switched between a forward FFT 

and an inverse FFT. This wrapping approach keeps the 

original IP core’s functionality to a great extent and still 

stays at high-level. This wrapper plays a role of a bridge 

between the timing diagram in an IP core’s data-sheet and 

the automatically generated synthesizable wrapper in 

VHDL. 

void in_fft16   (int in_token,  /*the core’s input predicator*/ 

   int real_0, ... , int real_15,  /*16 real-component inputs*/ 

   int imag_0, ... , int imag_15,/*16 imaginary-component inputs*/ 

   int* CE, int* SCALE_MODE, /*pointers are output*/ 

   int* START, int* FWD_INV, int* DI_R, int* DI_I) 

 { 

      int real_reg_0, ..., real_reg_15; /*internal registers to*/ 

      int imag_reg_0, ..., imag_reg_15; /*store the input data*/ 
 

      *SCALE_MODE = 1; 

      *FWD_INV = 1; 
     

      if(in_token == 1)      { 

            wait_cycles_for(1); 

            real_reg_0 = real_0; 

            ...... 

            real_reg_15 = real_15; 
  

            imag_reg_0 = imag_0; 

           ...... 

            imag_reg_15 = imag_15; 
  

            *START = 1; /*assert start signal in this cycles*/ 

            *CE = 1; /*assert ce signal in this cycles*/ 
  

            wait_cycles_for(1); 

            *START = 0; /*de-assert start signal in this cycles*/ 
 

             wait_cycles_for(1); 

             *DI_R = real_reg_0; 

             *DI_I = imag_reg_0; 

 ...... 
  

             wait_cycles_for(1); 

             *DI_R = real_reg_15; 

             *DI_I = imag_reg_15; 
  

              wait_cycles_for(69);  

              *CE = 0; /*de-assert ce signal 69 cycles later*/ 

       }   } 

store the 16 pairs of 

input data into 

internal registers in 

this cycle 

export the 16 pairs 

of data into the core 

serially in 16 

consecutive cycles 

 
Figure 4 - Timed high-level abstraction of FFT16's input 

wrapper in C. Comments explain the code. 

  for( each basic node b in cfg) 

 { 

    for( each “WCF n” instruction instr in b) 

          if( n > 1) {replace instr with n “WCF 1” instructions} 
       

   assign the instructions between two adjacent WCF     

                   instructions into the same pipeline stage 
 

   replace all “WFC 1” instructions in b into “PFW $vr1, $vr2”   
  

  for( each PFW instruction instr in b)  { 

          guard all instructions at the same pipeline stage as instr  

          using instr’s source operand as the predicator 

       }  
 

   if( b ends in a conditional branch instruction instr)  

               convert instr to a Boolean instruction  

 } 
 

  { add more combinational Boolean instructions if necessary to  

   pass predicators appropriately from predecessor nodes to     

   successor nodes. 

  }  
Figure 5 – Wrapper pipelining and scheduling heuristic  
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4.3. Wrapper Synthesis 

The timed high-level wrapper, the code in Figure 4 for 

example, is passed through the ROCCC compiler in Figure 

1 as user input. Currently, the front-end does not do any 

optimizations on IP wrappers. The back-end first gets the 

control flow graph (CFG) of a wrapper, and converts the 

CFG into static single assignment (SSA) CFG. Starting 

from this SSA-CFG, the back-end constructs the DFG 

[Figure 5]. First, the pre-process pass converts 

wait_cycles_for(n) function calls into instruction “WCF n”, 

where n is an immediate operand. When building the data-

flow, the compiler replaces each “WCF n” into n 

consecutive “WCF 1” instructions. Thus a WCF instruction 

has a clear hardware timing meaning, passing the predicator 

to the next pipeline stage. The compiler enforces all 

instructions between two adjacent WCFs to be at the same 

pipeline stage, as in the pseudo-code shown in Figure 5. 

This constraint ensures that the back-end’s pipelining 

consists with the high-level C’s timing semantics, and 

thereby satisfies the IP cores’ timing requirement. In 

scheduling process, WCF instructions are replaced by PFW 

(predicator forward) instructions. PFW instructions pass 

predicators through the data-flow, while predicators guard 

other pipelined instructions. 

The IR, right before VHDL emission of the FFT16 

input wrapper, is shown in Figure 6. The IR records the 

predicated hardware actions with cycle-level timing 

constrains. In front of an instruction, the L field is the latch-

level, namely, at which pipeline stage the instruction is 

executed. Instructions with a zero latch-level are 

combinational logic or even just wires if the opcode is mov. 

A predicator guards an instruction with a Boolean P field, 

which is the last source operand. For IP wrappers, a str 

(store) instruction with zero address offset is treated as a 

mov instruction, whose destination is the operand that the 

pointer is pointing to. From line 16 through line 33, the 

anticipated hardware does the following: monitoring the 

assertion of the predicator from outside and passing it (line 

16 and 17), storing all the 16 pairs of input data into 

(1) .in_fft16 
(2)  Node 1, {0} {2, 3} 
(3) [L0] mov  $vr85.u1 <- in_fft16.in_token 
(4) [L0]   mov  $vr84.u16 <- in_fft16.real_0 
      ……   
(5) [L0]  mov  $vr53.u16 <- in_fft16.imag_15 
(6) [L0]  mov  $vr52.p1 <- in_fft16.CE 
(7) [L0]  mov  $vr51.p1 <- in_fft16.SCALE_MODE 
(8) [L0]  mov  $vr50.p1 <- in_fft16.START 
(9) [L0]  mov  $vr49.p1 <- in_fft16.FWD_INV 
(10) [L0] mov  $vr48.p16 <- in_fft16.DI_R 
(11) [L0] mov  $vr47.p16 <- in_fft16.DI_I 
(12) [L0] str     0($vr51.p16) <- 1 /*configure SCALE_MODE*/ 
(13) [L0] str     0($vr49.p16) <- 1 /* configure FWD_INV*/ 
(14) [L0] sne    $vr559.u1 <- $vr85.u1, 1 /*set if not equal*/ 
 
(15) Node 2, {1} {3} 
(16) [L0]   not    $vr560.u1 <- $vr559.u1 
(17) [L87] pfw  $vr471.u1 <- $vr560.u1 
 
(18) [L87, P] mov   $vr167.u16 <- $vr84.u16,     $vr560.u1 
……  /* latch the input data to the internal registers. */ 
(19) [L87, P] mov   $vr198.u16 <- $vr53.u16,    $vr560.u1 
 
(20) [L87, P]  str  0($vr50.p1) <- 1, $vr560.u1/*assert START*/ 
(21) [L87, P]  str   0($vr52.p1) <- 1,  $vr560.u1 /*assert CE*/  
(22) [L86]      pfw $vr472.u1 <- $vr471.u1    
(23) [L86,P] str 0($vr50.p1)<-0, $vr471.u1/*de-assert START*/ 
 
(24) [L85]      pfw $vr473.u1 <- $vr472.u1 
(25) [L85, P]  str   0($vr48.p16) <- $vr167.u16,    $vr472.u1 
(26) [L85, P]  str   0($vr47.p16) <- $vr183.u16,    $vr472.u1 
…/*export the 16 pairs of data elements serially to the IP core*/ 
(27) [L70]      pfw $vr488.u1 <- $vr487.u1 
(28) [L70, P]  str   0($vr48.p16) <- $vr182.u16,    $vr487.u1 
(29) [L70, P]  str   0($vr47.p16) <- $vr198.u16,    $vr487.u1 
 
(30) [L69, E69]      pfw   $vr489.u1 <- $vr488.u1 
……   /* wait for 69 clock cycles */ 
(31) [L2]   pfw      $vr556.u1 <- $vr555.u1 
(32) [L1]   pfw      $vr557.u1 <- $vr556.u1 
(33) [L1, P] str  0($vr52.p1) <- 0,    $vr556.u1 /*de-assert CE*/ 
 
(34) Node 3, [-1], {2, 1} {4} 
(35) in_fft16._no_while_iTmp0: 
(36) [L0]   ior     $vr558.u1 <- $vr557.u1, $vr559.u1 
(37) [L0]   ret     $vr558.u1 
 

The L field is the latch-level, a P field marks a predicated 
instruction. Line 12 and 13 configure the IP core.  Line 18 
through line 19 latch the 32 input data elements into internal 
registers. Line 20 and 21 assert start and ce, while line 23 de-
asserts start (one cycle later). Ce is de-asserted in line 33, 85 

 
Figure 6 - Back-end IR of FFT16's input wrapper 

 
Figure 7 – The execution model of a wrapped IP inside 

the predicated data-path. A core’s wrapper also consumes 

and produces predicators. From the point of view of 

outside, a wrapped IP core has an identical predication 

mechanism as other regular predicated instructions. 
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internal registers and asserting start and ce (line 18 through 

line 21), one cycle later (line 22) de-asserting start, one 

more cycle later (line 24) starting feeding input data into the 

core pair by pair serially (line 25 through line 29), after 69 

more cycles waiting (line 30 through line 31), de-asserting 

Ce. The compiler’s very last pass emits the VHDL code for 

the wrappers. The combinational instructions become 

combinational logic in hardware and pipelined instructions 

become sequential logic. From the point of view of outside, 

the generated wrappers (the wrappers of FFT16 in Figure 3, 

for example) have unified interface: input data ports and 

one input predicator at input side, and output data ports and 

one output predicator at output side. Figure 7 shows a 

wrapped IP core embedded in a compiler-generated outer 

circuit. The wrapped IP core has an identical interface as 

that of other regular predicated instructions. 

5. DYNAMIC PARTIAL RECONFIGURATION 

We also use our tool to support dynamic partial 

reconfiguration. Dynamic partial reconfiguration at runtime 

allows re-use of FPGA resources to obtain a plurality of 

functionality, from the same hardware block, but at 

different times, and also without affecting the static parts of 

the device. The compiler generates the wrappers for each IP 

cores that need to be dynamically reconfigured.  

The design flow involves the generation of the static 

logic along with partial reconfigurable logic (wrapped IP 

cores). Thereafter the FPGA is floor planned to allocate 

pre-determined areas for the dynamic logic and static logic 

respectively. The area dedicated to the dynamic logic, also 

known as the PR-Block (Partial Reconfigurable Block), is 

such that it may allow for the largest IP block to be placed 

and routed within. I/O and communication of the static 

logic with the PR-block takes place using certain pre-

configured CLBs known as slice-macros. These slice-

macros need to be manually placed around the boundary of 

the PR-block. We have employed the Xilinx PlanAhead 

visual floorplanning tool for iterative design and 

placement. The final stage of the partial reconfigurable 

flow generates ‘N’ static bitstreams and ‘N’ partial 

bitstreams, where ‘N’ is the number of different IP blocks 

to be configured in the PR-Block. Each of the ‘N’ static 

bitstream contains the static design with the partial-

reconfigurable block numbered ‘N’ already programmed 

into the stream, while each of the ‘N’ partial bitstreams 

contains the logic to just program the PR-Block with the 

functionality of the ‘N’th IP core. Thus the system may 

choose to start with one of the static bitstreams during 

power-up and thereafter reprogram the PR-Block with the 

desired functionality. 

6. EXPERIMENTAL RESULTS 

We have used four Xilinx IP cores, shown in Table 1, in 

our experimental evaulation. Cordic performs a 

rectangular-to-polar vector translation. The input is a 

vector (X, Y) in a Cartesian coordinate and the IP’s outputs 

are the magnitude and the angle in a polar coordinate. 

DCT8 performs a one-dimensional 8-point discrete cosine 

transform. FFT16 is the IP core shown in Figure 3. RS 

encode is a (15, 13) Reed-Solomom encoder. It has a 13-

symbol code block and outputs 15 symbols, including 13 

original data symbols followed by two check symbols. In 

Table 1, Total area is the total circuit including the input 

and output interfaces, and the IP core itself. Area (slice) 

and Area (%) are the area utilization in the number of slice 

and in percentage with respect to the entire circuit, 

respectively. Addtl Cycl is the number of extra clock cycles 

after the addition of the wrappers. Total cycle is the total 

number of clock cycles to compute on one set of input 

data. DCT8’s input data size is 8-bit while its output data 

size is 19-bit. RS encode’s input and output data sizes are 

4-bit. Both Cordic and FFT16’s input and output sizes are 

16-bit. The target architecture is the Xilinx Virtex-II 

XC2V8000-5 FPGA having 46592 slices.  

Cordic has only two inputs and two outputs, and a 

simple handshaking protocol. DCT8's input wrapper 

latches all eight 16-bit input data. These are fed serially 

into the IP core. The wrapper asserts the new_data signal 

to be high during the data transmission and de-asserts it 

right after the transmission, following the timing 

requirement of the DCT8 IP core. The output wrapper 

monitors the output_ready signal from the core and starts 

receiving the eight serial output data elements once it is 

asserted high. On the next clock cycle after all the eight 

output elements have been collected, the wrapper exports 

them all in parallel. FFT16 requires similar serial to 

parallel and parallel to serial conversions, except that the 

IP imports and exports data in pairs, one real component 

Table 1 - Results of the wrappers for four Xilinx IPs 

  Cordic DCT8 FFT16 RS encode 

area (slice) 2 55 532 53 

area (%) 3 6.7 24 64 

input 

wrapper 

addtl cycl. 1 1 1 1 

area (slice) 2 426 290 9 

area (%) 2 52 13 11 

output 

wrapper 

addtl cycl. 1 1 1 1 

area (slice) 663 817 2183 83 

clock (MHz) 123 68.7 45.0 96.4 

total area 

total cycles 23 23 200 20 
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and one imaginary component. FFT16's input timing is 

different in the way that start and ce (clock enable) have 

certain cycle-level specifications described in the previous 

section. The generated interface meets all those timing 

requirements. The FFT16 core’s overflow output pin,  

OVFLO, is duplicated and exported by the wrapper to the 

outside data-path for further use. In RS_encode’s output, 

the first 13 data elements are the data symbols that were 

fed into the IP. From the point of view of the outside data-

path, these data are known and do not necessarily need to 

be recovered from the IP core again, and only the two 

check symbols, which follow the first 13 data elements, are 

needed. The RS_encode IP core utilizes output signal info 

to indicate the present of the check symbols. The generated 

wrapper monitors info’s de-assertion and latches the check 

symbols in an appropriate timing.  

ROCCC wraps these IPs so that they have unified 

outside interface. These four examples illustrate ROCCC's 

capability to meet various timing protocols of IP cores. 

The execution time overhead at both the input side and 

output side for these four examples is one clock cycle. The 

area of wrappers accounts for 2% ~ 64% of the 

corresponding wrapped cores. Most of the wrappers’ area 

cost comes from the registers used to do serial to parallel 

and parallel to serial conversion. Compared to modern 

FPGAs’ capacity, this overhead is quite small. 

 

We measured the time required to load a static 

bitstream as well as the time required for programming 

partial bitstreams on the FPGA [Table 2]. JTAG and 

SelectMAP are two interfaces for reconfiguration of the 

FPGA. Since the partial bitstreams are smaller in size than 

the static bitstreams, a partial reconfiguration can be 

achieved in a shorter time vis-à-vis complete 

reconfiguration. 

7. CONCLUSION 

Increasing silicon capacity requires both higher level design 

methods and easier intellectual property core reuse. 

ROCCC, a reconfigurable computing compiler, is designed 

to take applications in C as input and generate RTL VHDL 

code. In this paper, we introduced one aspect of ROCCC’s 

functionalities, the IP wrapper generation.  

As the input to the ROCCC system, users write IP 

wrappers in high-level timed C. Clock cycle delays are 

described as function calls and users do not have to 

implement any cycle-level details in the input abstraction. 

Constrained by the delay function calls, ROCCC converts 

the wrapper from control flow graph to data flow graph. 

The compiler schedules pipelined instructions using 

predication. Wrapped IP cores have identical interface 

compared with the outer predicated circuit that also 

generated by ROCCC. 

The wrappers of the IP core examples meet the various 

timing protocol requirements, and unify the IP cores’ 

interface with the outer compiler-generated circuit. The 

results show that the execution time and area overhead are 

reasonable low. We also show the same tool can be used to 

support run-time reconfiguration on FPGAs by generating 

one wrapper that interfaces to multiple cores. 
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Table 2 - Reconfiguration time for static and partial 

reconfiguration on a Xilinx Virtex-2 PRO (XC2VP30) 

design type 

(Static/Partial) 

# of 

slices 

Btstrm 

size  

(Kbits) 

prgrm. 

time 

JTAG(ms) 

program. time 

SelectMAP(ms) 

static conf 13696 1415 2318 48 

DCT8 prtl recnf 378 216 354 7.3 

FFT8 prtl recnf 512 426 698 14.3 
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