
AUTOMATION OF IP CORE INTERFACE GENERATION FOR RECONFIGURABLE

COMPUTING

 Zhi Guo Abhishek Mitra Walid Najjar

 Department of Electrical Engineering Department of Computer Science & Engineering

University of California, Riverside

{zguo, amitra, najjar}@cs.ucr.edu

ABSTRACT

Pre-designed IP cores for FPGAs represent a huge

intellectual and financial wealth that must be leveraged by

any high-level tool targeting reconfigurable platforms. In

this paper we describe a technique that automates the

generation of IP core interfaces allowing these to be used as

C functions transparently from within C source codes using

a reconfigurable computing compiler. We also show how

this same tool can be used to support run-time

reconfiguration on FPGAs by generating a common

wrapper that interfaces to multiple cores.

1. INTRODUCTION

Compilers for reconfigurable platforms have two major

roles: the automation of code transformations and

optimizations, and increasing the productivity of the

application developer. On the other hand, industry has

invested tremendous financial and technical efforts on pre-

designed intellectual property (IP) cores for FPGA-based

platforms that are not only very efficient but have been

thoroughly tested and verified. These IP cores come in the

form of synthesizable HDL code or even lower level

descriptions. They vary drastically with respect to their

control and timing protocol specifications, which are

intended to be interfaced to HDL-based designs.

 Compilers for FPGA-based reconfigurable systems

must therefore leverage that huge wealth of IP designs by

allowing the user to import these into high-level language

(HLL) source codes. To do so would require a wrapper

structure that would hide the timing and stateful nature of

the IP cores. It would make each core look, to the HLL

compiler, as an un-timed side-effect free function call.

 In this paper we describe a mechanism for the automatic

generation of such a wrapper from a high-level description

that is based on C with timing information. This approach is

integrated in our ROCCC compiler. Run-time

reconfiguration, where a sub-section of the circuit on an

FPGA is switched between two functions, also require a

careful and transparent interface between the static and

dynamic parts. We show how this same approach can be

used to support run-time reconfiguration.

The rest of the paper is organized as follows. Next

section reviews related work. Section three introduces our

compiler system. Section four presents our heuristic

approaches to automate IP wrapping. The tool’s support to

dynamic partial reconfiguration is presented in section five.

We validate our approaches in section six. Section seven

concludes the paper.

2. RELATED WORK

Substantial amounts of effort have been devoted on

standardizing or interfacing pre-designed IP cores.

Companies and organizations tried to define IP bus

standards. For example, VSIA [5] specifies interface

standards that allow IP cores to fit into “virtual sockets”.

Cores are designed using a standard internal interface and

wrappers have to be provided to retarget cores into other

buses. However, the current condition is that numerous

standards exist and no standard is adopted widely.

Several projects focus on bus wrapping that connects IP

cores with microprocessors. Glue logic is generated in [6]

to connect processors to peripheral devices and hardware

co-processors. A prefetching technique is introduced in [7]

to improve bus wrapper’s performance. The work in [8]

raises the abstraction level and reuse IPs by extending

traditional HDLs. A customization model for IP wrapping

using UML class diagrams is proposed in [9]. In [11] the

authors describe a system level approach for interfacing IP

blocks generated by the behavioral synthesis tool itself.

The I/O pins and timing information is fixed and known by

the tool. This information, however, is not visible at the C

level and the user cannot modify it.

Trident [10] is a compiler framework for floating point

algorithms. The floating-point units are pre-designed IP

units with known pipeline delay.

We have developed the ROCCC (Riverside Optimizing

Compiler for Configurable Computing) system. ROCCC

accepts applications written in untimed C code and

generates synthesizable VHDL code for FPGA hardware.

ROCCC also wraps IP cores when fed with wrapper

abstractions in C with timing information.

3. ROCCC SYSTEM OVERVIEW

3.1. Compiler Overview

Figure 1 shows an overview of the ROCCC framework. We

have separated the front and back ends to achieve some

16th International Conference on Field Programmable Logic and Applications (FPL 2006), Madrid, Spain

modularity and eventually allow the use of other tools for

either end.

ROCCC is built on the SUIF2 [1] and Machine-SUIF

[2] platforms. It compiles C code into VHDL code for

mapping onto the FPGA fabric of a CSoC device.

Information about loops and memory accesses is visible in

front-end intermediate representation (IR), Hi-CIRRF

(Compiler Intermediate Representation for Reconfigurable

Fabrics). Accordingly, most loop level analysis and

optimizations are done at this level. ROCCC performs a

very extensive set of loop analysis and transformations,

aiming at maximizing parallelism and minimizing area.

Machine-SUIF is an infrastructure for constructing the

back end of a compiler. Machine-SUIF's existing passes,

like the Control Flow Graph (CFG) library, Data Flow

Analysis library and Static Single Assignment library [3]

provide useful optimization and analysis tools for our

compilation system. We build the back-end using Machine-

SUIF. The compiler’s back-end converts the input from

control flow graph (CFG) into data flow graph (DFG), and

generates synthesizable VHDL codes. We rely on

commercial tools to synthesize the generated VHDL codes.

3.2. Pipelining and Scheduling

For an original CFG, we categorize basic nodes into to two

types: do-all nodes (parallel) and non-do-all nodes

(sequential).

For do-all nodes, ROCCC exploits both instruction-

level and loop-level parallelisms and aggressively pipelines

the loop body to be able to execute multiple loops

simultaneously [4].

A non-do-all basic node either belongs to a non-do-all

loop or does not belong to any loop at all. The compiler

utilizes predication to schedule the execution of non-do-all

nodes’ instructions. A predicator guards each pipeline

stage. Multiple instructions might belong to the same

pipeline stage and can be executed simultaneously.

Predicators are passed inside basic nodes by PFW

(predicator forward) instructions.

For the IP cores that are fully pipelined with compile-

time known number of pipeline stages, ROCCC can simply

synchronize its own pipelined circuit with the IP by adding

more latches. In this paper, however, we discuss the most

general cases, in which the IP cores use handshaking

signals to communicate with external interface.

4. INTERFACE SYNTHESIS

As introduced in the system overview section, the ROCCC

compiler generates synthesizable VHDL code for

applications written in untimed C. In this section, we

present our approach using the ROCCC system to wrap IP

cores. The workflow is shown in Figure 2. Taking the high-

level wrapper abstractions as input, ROCCC generates

synthesizable wrappers in VHDL separately and these

wrappers are instantiated as components in the outer circuit.

We start with a 16 samples complex FFT IP core, taken

from the Xilinx website that we use to demonstrate out

approach in this paper.

4.1. An IP Core Example

The grayed out part of Figure 3 is a 16-point discrete fast

 loop-level analyses,

transformations and

optimizations

user-input

C

operation-level analyses,

transformations and

optimizations

intermediate

C

front-end

synthesizable

VHDL
Hi-CIRRF

back-end

Lo-CIRRF

Figure 1 – ROCCC system overview.

Figure 2 – ROCCC’s workflow when IP function call

present. Notice that an IP core is not necessarily a

mandatory element of the main un-timed application C

code. The grayed out part on the left only exists when

there is an IP instantiation in the source code.

Figure 3 - FFT16 and its wrappers

16th International Conference on Field Programmable Logic and Applications (FPL 2006), Madrid, Spain

Fourier transform core (FFT16). Pins di_r and di_i are

respectively the real and imaginary serial data input; xk_r

and xk_i are the output. Ce, clock enable, must be asserted

only when the core is active. Start must be asserted two

clock cycles ahead of the first pair of input data. Done is

asserted when the first pair of output data is ready. Fwd_inv

selects between forward or inverse FFT. Scale_mode

selects from two scale-coefficients: 1/16 or 1/32. The ovflo

pin indicates the core has generated an arithmetic overflow.

Mode_ce input indicates when to sample fwd_inv and

scale_mode.

4.2. High-level Wrapper Abstraction

An IP core requires a wrapper for both its input and output

interfaces. In some cores these two interfaces have common

signals that handle synchronization and handshaking. In our

implementation the outer circuit within which the core is

embedded covers this role.

Figure 4 lists the code for the input wrapper of FFT16

C. We use pointer type to distinguish output signals from

input signals in the function declaration. The input set,

which communicates with the outside, is composed of one

token and several data variables. The output wrapper, not

shown here, has the same structure. Thus both the input and

output interfaces have the same structure as shown in

Figure 3.

By its very nature, an interface to an embedded core

must support timed activity. We thereby call it timed C. It

can be written either by the end user or by the IP designer

and possibly modified by the end user. In Figure 4, the

function call wait_cycles_for(n) indicates the statements

behind it must be executed n cycles later. Any statements

between two adjacent wait_cycles_for function calls must

be executed in one clock cycle. For example, FFT16’s

timing protocol requires that start signal needs to be high

for one clock cycle, two clock cycles ahead of the first pair

of input data. In order to describe this timing requirement,

the user just assigns start to one, calls wait_cycles_for(1),

de-asserts start, calls wait_cycles_for(1) again, and begins

assigning input data into the core, as shown in Figure 4.

The timing of signal Ce, which needs to be asserted for a

87-cycle period, are expressed in the same way. Parallel to

serial converse is also describes naturally in the timed C

code. At the beginning of the function body, scale_mode

and fwd_inv are statically assigned to high. If desired, they

can also be assigned by the wrapper’s input signals at run-

time in the same way as assigning start or ce. That way, the

FFT16 core can be easily switched between a forward FFT

and an inverse FFT. This wrapping approach keeps the

original IP core’s functionality to a great extent and still

stays at high-level. This wrapper plays a role of a bridge

between the timing diagram in an IP core’s data-sheet and

the automatically generated synthesizable wrapper in

VHDL.

void in_fft16 (int in_token, /*the core’s input predicator*/

 int real_0, ... , int real_15, /*16 real-component inputs*/

 int imag_0, ... , int imag_15,/*16 imaginary-component inputs*/

 int* CE, int* SCALE_MODE, /*pointers are output*/

 int* START, int* FWD_INV, int* DI_R, int* DI_I)

 {

 int real_reg_0, ..., real_reg_15; /*internal registers to*/

 int imag_reg_0, ..., imag_reg_15; /*store the input data*/

 *SCALE_MODE = 1;

 *FWD_INV = 1;

 if(in_token == 1) {

 wait_cycles_for(1);

 real_reg_0 = real_0;

 real_reg_15 = real_15;

 imag_reg_0 = imag_0;

 imag_reg_15 = imag_15;

 *START = 1; /*assert start signal in this cycles*/

 *CE = 1; /*assert ce signal in this cycles*/

 wait_cycles_for(1);

 *START = 0; /*de-assert start signal in this cycles*/

 wait_cycles_for(1);

 *DI_R = real_reg_0;

 *DI_I = imag_reg_0;

 wait_cycles_for(1);

 *DI_R = real_reg_15;

 *DI_I = imag_reg_15;

 wait_cycles_for(69);

 *CE = 0; /*de-assert ce signal 69 cycles later*/

 } }

store the 16 pairs of

input data into

internal registers in

this cycle

export the 16 pairs

of data into the core

serially in 16

consecutive cycles

Figure 4 - Timed high-level abstraction of FFT16's input

wrapper in C. Comments explain the code.

 for(each basic node b in cfg)

 {

 for(each “WCF n” instruction instr in b)

 if(n > 1) {replace instr with n “WCF 1” instructions}

 assign the instructions between two adjacent WCF

 instructions into the same pipeline stage

 replace all “WFC 1” instructions in b into “PFW $vr1, $vr2”

 for(each PFW instruction instr in b) {

 guard all instructions at the same pipeline stage as instr

 using instr’s source operand as the predicator

 }

 if(b ends in a conditional branch instruction instr)

 convert instr to a Boolean instruction

 }

 { add more combinational Boolean instructions if necessary to

 pass predicators appropriately from predecessor nodes to

 successor nodes.

 }
Figure 5 – Wrapper pipelining and scheduling heuristic

16th International Conference on Field Programmable Logic and Applications (FPL 2006), Madrid, Spain

4.3. Wrapper Synthesis

The timed high-level wrapper, the code in Figure 4 for

example, is passed through the ROCCC compiler in Figure

1 as user input. Currently, the front-end does not do any

optimizations on IP wrappers. The back-end first gets the

control flow graph (CFG) of a wrapper, and converts the

CFG into static single assignment (SSA) CFG. Starting

from this SSA-CFG, the back-end constructs the DFG

[Figure 5]. First, the pre-process pass converts

wait_cycles_for(n) function calls into instruction “WCF n”,

where n is an immediate operand. When building the data-

flow, the compiler replaces each “WCF n” into n

consecutive “WCF 1” instructions. Thus a WCF instruction

has a clear hardware timing meaning, passing the predicator

to the next pipeline stage. The compiler enforces all

instructions between two adjacent WCFs to be at the same

pipeline stage, as in the pseudo-code shown in Figure 5.

This constraint ensures that the back-end’s pipelining

consists with the high-level C’s timing semantics, and

thereby satisfies the IP cores’ timing requirement. In

scheduling process, WCF instructions are replaced by PFW

(predicator forward) instructions. PFW instructions pass

predicators through the data-flow, while predicators guard

other pipelined instructions.

The IR, right before VHDL emission of the FFT16

input wrapper, is shown in Figure 6. The IR records the

predicated hardware actions with cycle-level timing

constrains. In front of an instruction, the L field is the latch-

level, namely, at which pipeline stage the instruction is

executed. Instructions with a zero latch-level are

combinational logic or even just wires if the opcode is mov.

A predicator guards an instruction with a Boolean P field,

which is the last source operand. For IP wrappers, a str

(store) instruction with zero address offset is treated as a

mov instruction, whose destination is the operand that the

pointer is pointing to. From line 16 through line 33, the

anticipated hardware does the following: monitoring the

assertion of the predicator from outside and passing it (line

16 and 17), storing all the 16 pairs of input data into

(1) .in_fft16
(2) Node 1, {0} {2, 3}
(3) [L0] mov $vr85.u1 <- in_fft16.in_token
(4) [L0] mov $vr84.u16 <- in_fft16.real_0
 ……
(5) [L0] mov $vr53.u16 <- in_fft16.imag_15
(6) [L0] mov $vr52.p1 <- in_fft16.CE
(7) [L0] mov $vr51.p1 <- in_fft16.SCALE_MODE
(8) [L0] mov $vr50.p1 <- in_fft16.START
(9) [L0] mov $vr49.p1 <- in_fft16.FWD_INV
(10) [L0] mov $vr48.p16 <- in_fft16.DI_R
(11) [L0] mov $vr47.p16 <- in_fft16.DI_I
(12) [L0] str 0($vr51.p16) <- 1 /*configure SCALE_MODE*/
(13) [L0] str 0($vr49.p16) <- 1 /* configure FWD_INV*/
(14) [L0] sne $vr559.u1 <- $vr85.u1, 1 /*set if not equal*/

(15) Node 2, {1} {3}
(16) [L0] not $vr560.u1 <- $vr559.u1
(17) [L87] pfw $vr471.u1 <- $vr560.u1

(18) [L87, P] mov $vr167.u16 <- $vr84.u16, $vr560.u1
…… /* latch the input data to the internal registers. */
(19) [L87, P] mov $vr198.u16 <- $vr53.u16, $vr560.u1

(20) [L87, P] str 0($vr50.p1) <- 1, $vr560.u1/*assert START*/
(21) [L87, P] str 0($vr52.p1) <- 1, $vr560.u1 /*assert CE*/
(22) [L86] pfw $vr472.u1 <- $vr471.u1
(23) [L86,P] str 0($vr50.p1)<-0, $vr471.u1/*de-assert START*/

(24) [L85] pfw $vr473.u1 <- $vr472.u1
(25) [L85, P] str 0($vr48.p16) <- $vr167.u16, $vr472.u1
(26) [L85, P] str 0($vr47.p16) <- $vr183.u16, $vr472.u1
…/*export the 16 pairs of data elements serially to the IP core*/
(27) [L70] pfw $vr488.u1 <- $vr487.u1
(28) [L70, P] str 0($vr48.p16) <- $vr182.u16, $vr487.u1
(29) [L70, P] str 0($vr47.p16) <- $vr198.u16, $vr487.u1

(30) [L69, E69] pfw $vr489.u1 <- $vr488.u1
…… /* wait for 69 clock cycles */
(31) [L2] pfw $vr556.u1 <- $vr555.u1
(32) [L1] pfw $vr557.u1 <- $vr556.u1
(33) [L1, P] str 0($vr52.p1) <- 0, $vr556.u1 /*de-assert CE*/

(34) Node 3, [-1], {2, 1} {4}
(35) in_fft16._no_while_iTmp0:
(36) [L0] ior $vr558.u1 <- $vr557.u1, $vr559.u1
(37) [L0] ret $vr558.u1

The L field is the latch-level, a P field marks a predicated
instruction. Line 12 and 13 configure the IP core. Line 18
through line 19 latch the 32 input data elements into internal
registers. Line 20 and 21 assert start and ce, while line 23 de-
asserts start (one cycle later). Ce is de-asserted in line 33, 85

Figure 6 - Back-end IR of FFT16's input wrapper

Figure 7 – The execution model of a wrapped IP inside

the predicated data-path. A core’s wrapper also consumes

and produces predicators. From the point of view of

outside, a wrapped IP core has an identical predication

mechanism as other regular predicated instructions.

16th International Conference on Field Programmable Logic and Applications (FPL 2006), Madrid, Spain

internal registers and asserting start and ce (line 18 through

line 21), one cycle later (line 22) de-asserting start, one

more cycle later (line 24) starting feeding input data into the

core pair by pair serially (line 25 through line 29), after 69

more cycles waiting (line 30 through line 31), de-asserting

Ce. The compiler’s very last pass emits the VHDL code for

the wrappers. The combinational instructions become

combinational logic in hardware and pipelined instructions

become sequential logic. From the point of view of outside,

the generated wrappers (the wrappers of FFT16 in Figure 3,

for example) have unified interface: input data ports and

one input predicator at input side, and output data ports and

one output predicator at output side. Figure 7 shows a

wrapped IP core embedded in a compiler-generated outer

circuit. The wrapped IP core has an identical interface as

that of other regular predicated instructions.

5. DYNAMIC PARTIAL RECONFIGURATION

We also use our tool to support dynamic partial

reconfiguration. Dynamic partial reconfiguration at runtime

allows re-use of FPGA resources to obtain a plurality of

functionality, from the same hardware block, but at

different times, and also without affecting the static parts of

the device. The compiler generates the wrappers for each IP

cores that need to be dynamically reconfigured.

The design flow involves the generation of the static

logic along with partial reconfigurable logic (wrapped IP

cores). Thereafter the FPGA is floor planned to allocate

pre-determined areas for the dynamic logic and static logic

respectively. The area dedicated to the dynamic logic, also

known as the PR-Block (Partial Reconfigurable Block), is

such that it may allow for the largest IP block to be placed

and routed within. I/O and communication of the static

logic with the PR-block takes place using certain pre-

configured CLBs known as slice-macros. These slice-

macros need to be manually placed around the boundary of

the PR-block. We have employed the Xilinx PlanAhead

visual floorplanning tool for iterative design and

placement. The final stage of the partial reconfigurable

flow generates ‘N’ static bitstreams and ‘N’ partial

bitstreams, where ‘N’ is the number of different IP blocks

to be configured in the PR-Block. Each of the ‘N’ static

bitstream contains the static design with the partial-

reconfigurable block numbered ‘N’ already programmed

into the stream, while each of the ‘N’ partial bitstreams

contains the logic to just program the PR-Block with the

functionality of the ‘N’th IP core. Thus the system may

choose to start with one of the static bitstreams during

power-up and thereafter reprogram the PR-Block with the

desired functionality.

6. EXPERIMENTAL RESULTS

We have used four Xilinx IP cores, shown in Table 1, in

our experimental evaulation. Cordic performs a

rectangular-to-polar vector translation. The input is a

vector (X, Y) in a Cartesian coordinate and the IP’s outputs

are the magnitude and the angle in a polar coordinate.

DCT8 performs a one-dimensional 8-point discrete cosine

transform. FFT16 is the IP core shown in Figure 3. RS

encode is a (15, 13) Reed-Solomom encoder. It has a 13-

symbol code block and outputs 15 symbols, including 13

original data symbols followed by two check symbols. In

Table 1, Total area is the total circuit including the input

and output interfaces, and the IP core itself. Area (slice)

and Area (%) are the area utilization in the number of slice

and in percentage with respect to the entire circuit,

respectively. Addtl Cycl is the number of extra clock cycles

after the addition of the wrappers. Total cycle is the total

number of clock cycles to compute on one set of input

data. DCT8’s input data size is 8-bit while its output data

size is 19-bit. RS encode’s input and output data sizes are

4-bit. Both Cordic and FFT16’s input and output sizes are

16-bit. The target architecture is the Xilinx Virtex-II

XC2V8000-5 FPGA having 46592 slices.

Cordic has only two inputs and two outputs, and a

simple handshaking protocol. DCT8's input wrapper

latches all eight 16-bit input data. These are fed serially

into the IP core. The wrapper asserts the new_data signal

to be high during the data transmission and de-asserts it

right after the transmission, following the timing

requirement of the DCT8 IP core. The output wrapper

monitors the output_ready signal from the core and starts

receiving the eight serial output data elements once it is

asserted high. On the next clock cycle after all the eight

output elements have been collected, the wrapper exports

them all in parallel. FFT16 requires similar serial to

parallel and parallel to serial conversions, except that the

IP imports and exports data in pairs, one real component

Table 1 - Results of the wrappers for four Xilinx IPs

 Cordic DCT8 FFT16 RS encode

area (slice) 2 55 532 53

area (%) 3 6.7 24 64

input

wrapper

addtl cycl. 1 1 1 1

area (slice) 2 426 290 9

area (%) 2 52 13 11

output

wrapper

addtl cycl. 1 1 1 1

area (slice) 663 817 2183 83

clock (MHz) 123 68.7 45.0 96.4

total area

total cycles 23 23 200 20

16th International Conference on Field Programmable Logic and Applications (FPL 2006), Madrid, Spain

and one imaginary component. FFT16's input timing is

different in the way that start and ce (clock enable) have

certain cycle-level specifications described in the previous

section. The generated interface meets all those timing

requirements. The FFT16 core’s overflow output pin,

OVFLO, is duplicated and exported by the wrapper to the

outside data-path for further use. In RS_encode’s output,

the first 13 data elements are the data symbols that were

fed into the IP. From the point of view of the outside data-

path, these data are known and do not necessarily need to

be recovered from the IP core again, and only the two

check symbols, which follow the first 13 data elements, are

needed. The RS_encode IP core utilizes output signal info

to indicate the present of the check symbols. The generated

wrapper monitors info’s de-assertion and latches the check

symbols in an appropriate timing.

ROCCC wraps these IPs so that they have unified

outside interface. These four examples illustrate ROCCC's

capability to meet various timing protocols of IP cores.

The execution time overhead at both the input side and

output side for these four examples is one clock cycle. The

area of wrappers accounts for 2% ~ 64% of the

corresponding wrapped cores. Most of the wrappers’ area

cost comes from the registers used to do serial to parallel

and parallel to serial conversion. Compared to modern

FPGAs’ capacity, this overhead is quite small.

We measured the time required to load a static

bitstream as well as the time required for programming

partial bitstreams on the FPGA [Table 2]. JTAG and

SelectMAP are two interfaces for reconfiguration of the

FPGA. Since the partial bitstreams are smaller in size than

the static bitstreams, a partial reconfiguration can be

achieved in a shorter time vis-à-vis complete

reconfiguration.

7. CONCLUSION

Increasing silicon capacity requires both higher level design

methods and easier intellectual property core reuse.

ROCCC, a reconfigurable computing compiler, is designed

to take applications in C as input and generate RTL VHDL

code. In this paper, we introduced one aspect of ROCCC’s

functionalities, the IP wrapper generation.

As the input to the ROCCC system, users write IP

wrappers in high-level timed C. Clock cycle delays are

described as function calls and users do not have to

implement any cycle-level details in the input abstraction.

Constrained by the delay function calls, ROCCC converts

the wrapper from control flow graph to data flow graph.

The compiler schedules pipelined instructions using

predication. Wrapped IP cores have identical interface

compared with the outer predicated circuit that also

generated by ROCCC.

The wrappers of the IP core examples meet the various

timing protocol requirements, and unify the IP cores’

interface with the outer compiler-generated circuit. The

results show that the execution time and area overhead are

reasonable low. We also show the same tool can be used to

support run-time reconfiguration on FPGAs by generating

one wrapper that interfaces to multiple cores.

8. REFERENCES

[1] SUIF Compiler System. http://suif.stanford.edu, 2006

[2] Machine-SUIF. 2006

http://www.eecs.harvard.edu/hube/research/machsuif.html

[3] G. Holloway. The Machine-SUIF Static Single Assignment

Library. Division of Engineering and Applied Sciences,

Harvard University 2002.

[4] Z. Guo, B. Buyukkurt, W. Najjar and K. Vissers. Optimized

Generation of Data-path from C Codes for FPGAs, Int.

ACM/IEEE Design, Automation and Test in Europe

Conference (DATE 2005). Munich, Germany, March, 2005.

[5] Virtual Socket Interface Association (VSIA),

http://www.vsi.org/ , 2006

[6] P.Chou, G. Ortega, G. Borriello. Interface co-synthesis

techniques for embedded systems, Int. Conf. on Computer

Aided Design, San Jose, USA,1995.

[7] R. Lysecky and F. Vahid. Prefetching for Improved Bus

Wrapper Performance in Cores, ACM Transactions on

Design Automation of Electronic Systems, Vol. 7, No. 1, pp.

58-90, January 2002.

[8] J. Zhu. MetaRTL: Raising the abstraction level of RTL

design, Design, Automation, and Test in Europe, Munich,

Germany, 2001

[9] V. Stuikys, R. Damasevicius. Soft IP Customisation Model

Based on Metaprogramming Techniques, Informatica, Lith.

Acad. Sci. 15(1): 111-126 (2004)

[10] J. Tripp, K. Peterson, C. Ahrens, J. Poznanovic, M. Gokhale.

Trident: An FPGA Compiler Framework for Floating-Point

Algorithms, int. Conference on Field Programmable Logic

and Applications (FPL 2005). Finland, 2005.

[11] R. Mukherjee, A. Jones, P. Banerjee, System Level

Synthesis of Multiple IP Blocks in the Behavioral Symthesis

Tool, Int. Conf. on Parallel and Distributed Computing and

Systems (PDCS), November 2003.

Table 2 - Reconfiguration time for static and partial

reconfiguration on a Xilinx Virtex-2 PRO (XC2VP30)

design type

(Static/Partial)

of

slices

Btstrm

size

(Kbits)

prgrm.

time

JTAG(ms)

program. time

SelectMAP(ms)

static conf 13696 1415 2318 48

DCT8 prtl recnf 378 216 354 7.3

FFT8 prtl recnf 512 426 698 14.3

16th International Conference on Field Programmable Logic and Applications (FPL 2006), Madrid, Spain

